Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

A Green Approach for Organic Transformations Using Microwave Reactor

Author(s): Subrata Das*, Rupak Banik, Brajesh Kumar, Subhadip Roy, Noorussabah, Khursheed Amhad and Pradip K. Sukul*

Volume 16, Issue 5, 2019

Page: [730 - 764] Pages: 35

DOI: 10.2174/1570179416666190412160048

Price: $65

Abstract

Microwave-assisted organic transformation (MAOR) is presently gaining wide popularity in the field of organic synthesis. The conventional heating technique is gradually being removed from the laboratory and a novel microwave heating technique established to be used in both academia and industry. As compared to the classical organic methodology, the green technology tools have several advantages like dramatically reduced reaction times, improved yields, site selectivity, and the increased product purities with simplification of work-up procedures. In the current study, we have briefly described the overview of recent developments and applications of microwave irradiation in organic transformation with schematic compiling of the organic reactions, bioactive heterocyclic compounds, and so on. This review also presents a critical analysis of the various advantages of microwave irradiation in organic synthesis/transformation compared to the classical or conventional heating. So, we believe that our current study of the green microwave heating technique will be highly beneficial for the researchers from both academia and industry in their near future.

Keywords: Microwave irradiation, green synthesis, organic name reactions, heterocyclic compounds, organic transformations, microwave reactor.

Graphical Abstract
[1]
Gedye, R.; Smith, F.; Westaway, K.; Ali, H.; Baldisera, L.; Laberge, L.; Rousell, J. The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett., 1986, 27, 279-282.
[2]
Giguere, R.J.; Bray, T.L.; Duncan, S.M.; Majetich, G. Application of commercial microwave ovens to organic synthesis. Tetrahedron Lett., 1986, 27, 4945-4948.
[3]
(a) Takkellapati, S.R. Microwave-assisted chemical transformations. Curr. Org. Chem., 2013, 17, 2305-2322.
(b) Yu-zhen, L.; Huai-qiu, X. Microwave solid-phase synthesis technique and its application in the synthesis of polypeptide (amino acid)-metal chelates. Modern Food Sci. Technol, 2017, 33, 262-269.
[4]
Loupy, A. Microwaves in Organic Synthesis, 2nd ed; Wiley-VCH: Weinheim, 2006.
[5]
Kranjc, K.; Kočevar, M. Microwave-assisted organic synthesis: General considerations and transformations of heterocyclic compounds. Curr. Org. Chem., 2010, 14, 1050-1074.
[6]
Lidström, P.; Tierney, J.; Wathey, B.; Westman, J. Microwave assisted organic synthesis a review. Tetrahedron, 2001, 57, 9225-9283.
[7]
(a) de la Hoz, A.; Diaz-Ortis, A.; Moreno, A.; Langa, F. Cycloadditions under microwave irradiation conditions: Methods and applications. Eur. J. Org. Chem., 2000, 3659-3673.
(b) Keglevich, G.; Zsuzsa Kiss, N.; Grün, A.; Bálint, E.; Kovács, T. Advantages of the microwave tool in organophosphorus syntheses. Synthesis (Germany), 2017, 49, 3069-3083.
(c) Naeimi, H.; Golestanzadeh, M. Microwave-assisted synthesis of 6,6′-(aryl(alkyl)methylene)bis(2,4-dialkylphenol) antioxidants catalyzed by multi-sulfonated reduced graphene oxide nanosheets in water. New J. Chem., 2015, 39, 2697-2710.
[8]
El Marrouni, A.; Fabrellas, J.M.; Heras, M. Coupling reaction between electron-rich pyrimidinones and α-amino acids promoted by phosphonium salts. Org. Biomol. Chem., 2011, 9, 5967.
[9]
(a) Buffler, C.R. Microwave Cooking and Processing: Engineering Fundamentals for the Food Scientist; Van Nostrand Reinhold: New York, 1993.
(b) Larhed, M.; Moberg, C.; Hallberg, A. Microwave-accelerated homogeneous catalysis in organic chemistry. Acc. Chem. Res., 2002, 35, 717-727.
(c) Al-Obeidi, F.; Austin, R.E.; Okonya, J.F.; Bond, D.R.S. Microwave-assisted solid-phase synthesis (MASS): Parallel and combinatorial chemical library synthesis. Mini Rev. Med. Chem., 2003, 3, 449-460.
(d) Swamy, K.M.K.; Yeh, W-B.; Lin, M.J.; Sun, C.M. Microwave-assisted polymer-supported combinatorial synthesis. Curr. Med. Chem., 2003, 10, 2403-2423.
(e) Nüchter, M.; Ondruschka, B.; Bonrath, W.; Gum, A. Microwave assisted synthesis - a critical technology overview. Green Chem., 2004, 6, 128-141.
(f) Kappe, C.O.; Dallinger, D. The impact of microwave synthesis on drug discovery. Nat. Rev. Drug Discov., 2006, 5, 51-63.
(g) Polshettiwar, V.; Varma, R.S. Microwave-assisted organic synthesis and transformations using benign reaction media. Acc. Chem. Res., 2008, 41, 629-639.
(h) Gaba, M.; Dhingra, N. Microwave chemistry: General features and applications. Indian J. Pharma. Edu. Res., 2011, 45, 175-183; h) Maiuolo, L.; Nino, A.D.; Algieri, V.; Nardi, M. Microwave-assisted 1,3-dipolar cyclo-addition: recent advances in synthesis of isooxazolidines. Mini Rev. Org. Chem., 2017, 14, 136-142.
i) Lidström, P.; Tierney, J.P. Microwave-Assisted Organic Synthesis; Blackwell: Oxford, 2004.
j) Hayes, B.L. Microwave Synthesis: Chemistry at the Speed of Light; CEM Publishing: Matthews, NC, 2002.
k) Kappe, C.O. Microwaves in Combinatorial and High-Throughput Synthesis; Kluwer Academic Publishers: Dordrecht. , 2003, p. 7, pp. 95-307.
l)Meng, L-Y.; Wang, B.; Ma, M.G.; Lin, K.L. The progress of microwave assisted hydrothermal method in the synthesis of functional nanomaterials. Materials Today Chem., 2016, 1-2, 63-83.
m)Rosa, R.; Trombi, L.; Veronesi, P.; Leonelli, C. Microwave energy application to combustion synthesis: A comprehensive review of recent advancements and most promising perspectives. Int. J. Self-Propag. High-Temp. Synth., 2017, 26, 221-233.
n)Mirzaei, A.; Neri, G. Microwave-assisted synthesis of metal oxide nanostructures for gas sensing application: A review. Sens. Actuators B, 2016, 237, 749-775.
[10]
Gabriel, C.; Gabriel, S.; Grant, E.H.; Halstead, B.S.J.; Mingos, D.M.P. Dielectric parameters relevant to microwave dielectric heating. Chem. Soc. Rev., 1998, 27, 213-224.
[11]
Mingos, D.M.P. Theoretical aspects of microwave dielectric heating.In: Microwave-Assisted Organic Synthesis, 1st ed; Lidstrom, P.; Tierney, J., Eds.; Blackwell Publishing Ltd.: Oxford, 2004.
[12]
Kappe, C.O. Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed., 2004, 43, 6250-6284.
[13]
Krow, G.R. The Baeyer-Villiger oxidation of ketones and aldehydes. Org. React., 2004, 43, 251-798.
[14]
Świzdor, A.; Kołek, T.; Panek, A.; Milecka, N. Selective modifications of steroids performed by oxidative enzymes. Curr. Org. Chem., 2012, 16, 2551-2582.
[15]
Borah, J.M.; Chowdhury, P.J. Expedited Baeyer–Villiger oxidation of steroidal ketones by microwave irradiation. Steroids, 2011, 76, 1341-1345.
[16]
Queffélec, C.; Petit, M.; Janvier, P.; Knight, D.A.; Bujoli, B. Surface modification using phosphonic acids and esters. Chem. Rev., 2012, 112, 3777-3807.
[17]
Jansa, P.; Hradil, O.; Baszczyňski, O.; Dračínsky, M.; Klepetářová, B.; Holý, A.; Balzarini, J.; Janeba, Z. An efficient microwaveassisted synthesis and biological properties of polysubstituted pyrimidinyl- and 1,3,5-triazinylphosphonic acids. Tetrahedron, 2012, 68, 865-871.
[18]
Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev., 1995, 95, 2457-2483.
[19]
Lennox, A.J.J.; Lloyd-Jones, G.C. Selection of boron reagents for Suzuki-Miyaura coupling. Chem. Soc. Rev., 2014, 43, 412-443.
[20]
Melchor, M.G.; Braga, A.A.C.; Lledós, A.; Ujaque, G.; Maseras, F. Computational perspective on Pd-catalyzed C–C cross-coupling reaction mechanisms. Acc. Chem. Res., 2013, 46, 2626-2634.
[21]
Horikoshi, S.; Suttisawat, Y.; Osawa, A.; Takayama, C.; Chen, X.; Yang, S.; Sakai, H.; Abe, M.; Serpone, N. Organic synthesis by microwave selective heating of novel metal/CMC catalysts-The Suzuki–Miyaura coupling reaction in toluene and the dehydrogenation of tetralin in solvent-free media. J. Catal., 2012, 289, 266-271.
[22]
Hajipour, A.R.; Karami, K.; Pirisedigh, A. Application of dimeric orthopalladated complex in Suzuki–Miyaura crosscoupling reaction under microwave irradiation and conventional heating. Inorg. Chim. Acta, 2011, 370, 531-535.
[23]
Kolvari, E.; Koukabi, N.; Armandpour, O. A simple and efficient synthesis of 3,4-dihydropyrimidin-2-(1H)-ones via Biginelli reaction catalyzed by nanomagnetic-supported sulfonic acid. Tetrahedron, 2014, 70, 1383-1386.
[24]
Safari, J.; Zarnegar, Z. Brønsted acidic ionic liquid based magnetic nanoparticles: a new promoter for the Biginelli synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones. New J. Chem., 2014, 38, 358-365.
[25]
An, D.; Fan, Y.S.; Gao, Y.; Zheng, L.Y.; Zhang, S.Q. Highly enantioselective Biginelli reaction catalyzed by double axially chiral bisphosphorylimides. Eur. J. Org. Chem., 2014, 2, 301-306.
[26]
Kappe, C.O. Recent advances in the Biginelli dihydropyrimidine synthesis. new tricks from an old dog. Acc. Chem. Res., 2000, 33, 879-888.
[27]
Gorobets, N.Y.; Sedash, Y.V.; Ostras, K.S.; Zaremba, O.V.; Shishkina, S.V.; Baumer, V.N.; Shishkin, O.V.; Kovalenko, S.M.; Desenko, S.M.; Van der Eycken, E.V. Unexpected alternative direction of a Biginelli-like multicomponent reaction with 3-amino-1,2,4-triazole as the urea component. Tetrahedron Lett., 2010, 51, 2095-2098.
[28]
Liang, B.; Wang, X.; Wang, J.X.; Du, Z. New three-component cyclocondensation reaction: Microwave-assisted one-pot synthesis of 5 unsubstituted-3,4-dihydropyrimidin-2(1H)-ones under solvent-free conditions. Tetrahedron, 2007, 63, 1981-1986.
[29]
Pasunooti, K.K.; Chai, H.; Jensen, C.N.; Gorityala, B.K.; Wang, S.; Liu, X.W. A microwave-assisted, copper-catalyzed three-component synthesis of dihydropyrimidinones under mild conditions. Tetrahedron Lett., 2011, 5280-5284.
[30]
Liu, Q.; Pan, N.; Xu, J.; Zhang, J. Microwave-assisted and iodine-catalyzed synthesis of dihydropyrimidin-2-thiones via Biginelli reaction under solvent-free condition. Synth. Commun., 2013, 43, 139-146.
[31]
Vanden Eynde, J.J.; Hecq, N.; Kataeva, O.; Kappe, C.O. Microwave-mediated regioselective synthesis of novel pyrimido[1,2-a]pyrimidines under solvent-free conditions. Tetrahedron, 2001, 57, 1785-1791.
[32]
Felluga, F.; Benedetti, F.; Berti, F.; Drioli, S.; Regini, G. Efficient Biginelli synthesis of 2-aminodihydropyrimidines under microwave irradiation. Synlett, 2018, 29, 1047-1054.
[33]
Yoshimura, A.; Middleton, K.R.; Luedtke, M.W.; Zhu, C.; Zhdankin, V.V. Hypervalent iodine catalyzed Hofmann Rearrangement of carboxamides using oxone as terminal oxidant. J. Org. Chem., 2012, 77, 11399-11404.
[34]
Borah, A.J.; Phukan, P. Efficient synthesis of methyl carbamate via Hofmann Rearrangement in the presence of TsNBr2. Tetrahedron Lett., 2012, 53, 3035-3037.
[35]
Miranda, L.S.M.; Silva, D.; Crespo, L.; Esteves, P.M.; Matos, F.; Diederichs, C. TBCA mediated microwave-assisted Hofmann Rearrangement. Tetrahedron Lett., 2011, 52, 1639-1640.
[36]
Balalaie, S.; Nemati, N. Ammonium acetate-basic alumina catalyzed Knoevenagel Condensation under microwave irradiation under solvent-free condition. Synth. Commun., 2000, 30, 869-875.
[37]
Bian, Y.J.; Qin, Y.; Xiao, L.W.; Li, J.T. New advances of Knoevenagel condensation reactions. Chin. J. Org. Chem, 2006, 26, 1165-1172.
[38]
Zanin, L.L.; Jimenez, D.E.Q.; Fonseca, L.P.; Porto, A.L.M. Curr. Org. Chem., 2018, 22, 519-532.
[39]
Bigi, F.; Quarantelli, C. The Knoevenagel condensation in water. Curr. Org. Synth., 2012, 9, 31-39.
[40]
Kamila, S.; Ankati, H.; Harry, E.; Biehl, R.E. A facile synthesis of novel 3-(aryl/alkyl-2-ylmethyl)-2-thioxothiazolidin-4-ones using microwave heating. Tetrahedron Lett., 2012, 53, 2195-2198.
[41]
Jlassi, R.; Ribeiro, A.P.C.; Tiago, G.A.O.; Wang, J.; Krawczyk, M.S.; Martins, L.M.D.R.S.; Naïli, H.; Pombeiro, A.J.L.; Rekik, W. Elementary and efficient catalyst process for the Knoevenagel condensation of araldehydes with arylmethylidene malononitrile. Inorg. Chim. Acta, 2018, 471, 76-81.
[42]
Hora, L.; Kelbichová, V.; Kikhtyanin, O.; Bortnovskiy, O.; Kubička, D. Aldol condensation of furfural and acetone over Mg-Al layered double hydroxides and mixed oxides. Catal. Today, 2014, 223, 138-147.
[43]
Kan, S.B.J.; Ng, K.K.H.; Paterson, I. The impact of the Mukaiyama Aldol reaction in total synthesis. Angew. Chem. Int. Ed., 2013, 52, 9097-9108.
[44]
Matsuo, J.I.; Murakami, M. The Mukaiyama Aldol reaction: 40 years of continuous development. Angew. Chem. Int. Ed., 2013, 52, 9109-9111.
[45]
Solhy, A.; Amer, W.; Karkouri, M.; Tahir, R.; Bouari A, El.; Fihri, A.; Bousmina, M.; Zahouily, M. Bi-functional modified-phosphate catalyzed the synthesis of α,α′-(EE)-bis(benzylidene)-cycloalkanones: microwave versus conventional-heating. J. Mol. Catal. Chem., 2011, 336, 8-15.
[46]
Cheng, K.; Wang, C.; Ding, Y.; Song, Q.; Qi, C.; Zhang, X.M. Hiyama cross-coupling of arenediazonium salts under mild reaction conditions. J. Org. Chem., 2011, 76, 9261-9268.
[47]
Deore, P.S.; Argade, N.P. Metal-catalyzed cross-coupling reactions of halomaleic hnhydrides and halomaleimides: synthesis of structurally interesting and biologically-important natural and unnatural products. Synthesis, 2014, 46, 281-289.
[48]
Shah, D.; Kaur, H. Macroporous resin impregnated palladium nanoparticles: catalyst for a microwave-assisted green Hiyama reaction. J. Mol. Catal. Chem., 2012, 359, 69-73.
[49]
Pastor, I.M.; Yus, M. Focused update on the Prins reaction and the Prins cyclization. Curr. Org. Chem., 2012, 16, 1277-1312.
[50]
Greco, S.J.; Fiorot, R.G. Lacerda, Jr.; Dos, V.; Santos, R.B. Recent advances in the Prins cyclization. Aldrichim Acta, 2013, 46, 59-70.
[51]
Clarisse, D.; Atrice, P.B.; Piva, O.; Fache, F. Green chemistry: Solvent- and metal-free Prins cyclization: Application to sequential reactions. Chem. Commun., 2012, 48, 157-159.
[52]
Pei, B.J.; Lee, A.W.M. Highly efficient synthesis of extended triptycenes via Diels–Alder cycloaddition in water under microwave radiation. Tetrahedron Lett., 2010, 51, 4519-4522.
[53]
Wu, J.; Jiang, X.; Xu, J.; Dai, W.M. Tandem Wittig–intramolecular Diels–Alder cycloaddition of ester-tethered 1,3,9-decatrienes under microwave heating. Tetrahedron, 2011, 67, 179-192.
[54]
Jayagobi, M.; Raghunathan, R. AgOAc-catalyzed asymmetric amination of glycine Schiff bases with azodicarboxylates. Tetrahedron Lett., 2009, 5, 6886-6890.
[55]
Karney, M.J.; Porter, K.A.; Barnhardt, E.K.; Vanier, G.S. Meso-scale microwave-assisted continuous flow reactions utilizing a selective heating matrix. RSC Advances, 2013, 3, 7106-7111.
[56]
Das, S.; Thakur, A.J.; Medhi, T.; Das, B. An efficient stereo-controlled synthesis of bis-pyrimido-[4,5-d]-pyrimidine derivatives via aza-Diels-Alder methodology and their preliminary bioactivity. RSC Advances, 2013, 3, 3407-3413.
[57]
Bhuyan, D.; Sarma, R.; Prajapati, D. Microwave-assisted efficient synthesis of spiroquinoline derivatives via a catalyst- and solvent-free aza-Diels–Alder reaction. Tetrahedron Lett., 2012, 53, 6460-6463.
[58]
Zheng, S.; Chowdhury, A.; Ojima, I.; Honda, T. Microwave-assisted Diels-Alder reactions between Danishefsky’s diene and derivatives of ethyl α-(hydroxymethyl)acrylate. Synthetic approach toward a biotinylated anti-inflammatory monocyclic cyanoenone. Tetrahedron, 2013, 29, 2052-2055.
[59]
Albuquerque, H.M.T.; Santos, C.M.M.; Cavaleiro, J.A.S.; Silva, A.M.S. First intramolecular Diels–Alder reactions using chromone derivatives: Synthesis of chromeno[3,4-b]xanthones and 2-(benzo[c]chromenyl)-chromones. New J. Chem., 2018, 42, 4251-4260.
[60]
Ugi, I. The α-addition of immonium ions and anions to isonitriles accompanied by secondary reactions. Angew. Chem. Int. Ed., 1962, 1, 8-21.
[61]
Xu, J.; Li, Y.; Meng, J-P.; Lei, J.; Chen, Z-Z.; Tang, D-Y.; Zhu, J.; Xu, Z-G. Efficient microwave-assisted synthesis of fused benzoxazepine-isoquinoline derivatives via an Ugi reaction/tautomerization/intramolecular SNAr reaction sequence. Tetrahedron Lett., 2017, 58, 1640-1643.
[62]
Michael, A. Ueber die Addition von Natriumacetessig‐ und Natriummalonsäureäthern zu den Aethern ungesättigter Säuren. J. Prakt. Chem., 1887, 35, 349-356.
[63]
Denmark, S.E.; Kim, J.H. Asymmetric Michael addition reaction of phosphorus-stabilized allyl anions with cyclic enones. J. Org. Chem., 1995, 60, 7535-7547.
[64]
Wu, L.; Jin, R.; Li, L.; Hu, X.; Cheng, T.; Liu, G. A Michael addition-asymmetric transfer hydrogenation one-pot enantioselective tandem process for syntheses of chiral γ-secondary amino alcohols. Org. Lett., 2017, 19, 3047-3050.
[65]
Iida, H.; Akatsu, Y.; Mizukami, K.; Natori, S.; Matsukawa, M.; Takahashi, K. Efficient and rapid synthesis of phenolic analogs of 4-phenylbutanoic acid using microwave-assisted Michael addition as a key reaction. Synth. Commun., 2016, 581-585.
[66]
Lu, H.; Wu, R.; Cheng, H.; Nie, S.; Tang, Y.; Gao, Y.; Luo, Z. An efficient, mild, solvent-free, one-pot three-component mannich reaction catalyzed by (C4H12N2)2[BiCl6]Cl·H2O. Synthesis, 2015, 47, 1280-1290.
[67]
Hatano, M.; Horibe, T.; Ishihara, K. Chiral lithium(I) binaphtholate salts for the enantioselective direct mannich-type reaction with a change of syn/anti and absolute stereochemistry. J. Am. Chem. Soc., 2010, 132, 56-57.
[68]
Lehmann, F.; Pilotti, Å.; Luthman, K. Efficient large scale microwave assisted Mannich reactions using substituted acetophenones. Mol. Divers., 2003, 7, 145-152.
[69]
McLean, N.J.; Tye, H.; Whittaker, M. Microwave assisted Petasis boronic-Mannich reactions. Tetrahedron Lett., 2004, 45, 993-995.
[70]
Matić, J.; Nekola, I.; Višnjevac, A.; Kobetić, R.; Martin-Kleiner, I.; Kralj, M.; Žinić, B. C5-Morpholinomethylation of N1-sulfonylcytosines by a one-pot microwave assisted Mannich reaction. Org. Biomol. Chem., 2018, 16, 2678.
[71]
Meher, G.; Efthymiou, T.; Stoop, M.; Krishnamurthy, R. Microwave-assisted preparation of nucleoside-phosphoramidites. Chem. Commun., 2014, 50, 7463-7465.
[72]
Thakur, A.J.; Das, S.; Phukan, A.K. Replay of amide type resonance in 6-[(dimethylamino)methylene]1,3-dimethylaminouracil: A dynamic NMR and density functional theory study. J. Mol. Struct., 2009, 929, 134-140.
[73]
Narasimhan, B.; Sharma, D.; Kumar, P. Benzimidazole: a medicinally important heterocyclic moiety. Med. Chem. Res., 2012, 2, 269-283.
[74]
Rongved, P.; Kirsch, G.; Bouaziz, Z.; Jose, J.; Borgne, M.L. Indenoindoles and cyclopentacarbazoles as bioactive compounds: Synthesis and biological applications. Eur. J. Med. Chem., 2013, 69, 465-479.
[75]
Casild, V.C.; Aranda, R.M.M.; López-Peinado, A.J. Alkaline carbons as effective catalysts for the microwave-assisted synthesis of N-substituted-gamma-lactams. Appl. Catal., 2011, 398, 73-81.
[76]
Pawar, H.; Lali, A. Microwave assisted organocatalytic synthesis of 5-hydroxymethyl furfural in a monophasic green solvent system†. RSC Advances, 2014, 4, 26714-26720.
[77]
Lasri, J.; Rodríguez, M.J.F.; Fátima, M.; Silva, C.G.; Smolenski, P.; Kopylovich, M.N.; Silva, F.R.; Pombeiro, J.L.A. Microwave synthesis of bis(tetrazolato)-PdII complexes with PPh3 and water-soluble 1,3,5-triaza-7-phosphaadamantane (PTA). The first example of CeCN bond cleavage of propionitrile by a PdII centre. J. Organomet. Chem., 2011, 696, 3513-3520.
[78]
Kumari, K.; Raghuvanshi, D.S.; Jouikov, V.; Singh, K.N. Sc(OTf)3-catalyzed, solvent-free domino synthesis of functionalized pyrazoles under controlled microwave irradiation. Tetrahedron Lett., 2012, 53, 1130-1133.
[79]
Seus, N.; Gonçalves, L.C.; Deobald, A.M.; Savegnago, L.; Alves, D.; Paixão, M.W. Synthesis of arylselanyl-1H-1,2,3-triazole-4-carboxylates by organocatalytic cycloaddition of azidophenyl arylselenides with β-keto-esters. Tetrahedron, 2012, 68, 10456-10463.
[80]
Bandyopadhyay, D.; Cruz, J.; Banik, B.K. Novel synthesis of 3-pyrrole substituted β-lactams via microwave-induced bismuth nitrate-catalyzed reaction. Tetrahedron, 2012, 37, 1-10.
[81]
Pingali, S.K.R.; Jursic, S.B. Microwave-assisted synthesis of 1,3-benzodioxole derivatives from catechol and ketones or aldehydes. Tetrahedron Lett., 2011, 52, 4371-4374.
[82]
Wilson, N.S.; Osuma, T.A.; Van Camp, J.A.; Xu, X. A scalable approach to diaminopyrazoles using flow chemistry. Tetrahedron Lett., 2012, 53, 4494-4501.
[83]
Al-Hazimi, H.M.; El Faham, A.; Ghazzali, M.; Al-Farhan, K. Microwave irradiation: A facile, scalable and convenient method for synthesis of N-phthaloylamino acids. Arab. J. Chem., 2012, 5, 285-289.
[84]
Apasery, M.A.E.; Mousawi, S.M.A.; Elnagdi, M.H. Green methodologies in organic synthesis: microwave assisted solvent- and catalyst-free synthesis of enaminones and their conversion into 1,3,5-trisubstituted benzenes as well as 3-aroyl-6-substituted pyridines. Eur. J. Chem., 2011, 22, 168-172.
[85]
Jiang, B.; Yi, M.S.; Shi, F.; Jiang, T.S.; Pindi, S.; McDowell, P.; Guigen, L. A multi-component domino reaction for the direct access to poly-functionalized indoles via intermolecular allylic esterification and indolation. Chem. Commun., 2012, 48, 808-810.
[86]
Liedtke, A.J.; Kim, K.; Stec, D.F.; Sulikowski, G.A.; Marnett, J.L. Straightforward protocol for the efficient synthesis of varied N1-acylated (aza) indole 2-/3-alkanoic acids and esters: optimization and scale-up. Tetrahedron, 2012, 68, 10049-10058.
[87]
Kamalraja, J.; Perumal, P.T. Microwave assisted InCl3 mediated regioselective synthesis of highly functionalized indolylpyran under solvent-free condition and its chemical transformation to indolyltriazolylpyran hybrids. Tetrahedron Lett., 2014, 55, 3561-3564.
[88]
Jiang, B.; Xue, L.Y.; Wang, X.H.; Tu, M.S.; Liu, Y.P.; Tu, S.J. Microwave-assisted multicomponent reaction of aryl amidines: regiospecific synthesis of new polysubstituted thiopyrano-, and pyrano[4,3-d]pyrimidines. Tetrahedron Lett., 2012, 53, 1261-1264.
[89]
Loidreau, Y.; Besson, T. Microwave-assisted thermal decomposition of formamide: a tool for coupling a pyrimidine ring with an aromatic partner. Tetrahedron, 2011, 67, 4852-4857.
[90]
Dao, P.; Garbay, C.; Chen, H. High yielding microwave-assisted synthesis of tri-substituted 1,3,5-triazines using Pd-catalyzed aryl and heteroarylamination. Tetrahedron, 2012, 68, 3856-3860.
[91]
Karuehanon, W.; Fanfuenha, W.; Rujiwatra, A.; Pattarawarapan, M. Microwave-assisted SNAr reaction of 2,4,6-trichloro-1,3,5-triazine for the rapid synthesis of C3-symmetrical polycarboxylate ligands. Tetrahedron Lett., 2012, 53, 3486-3489.
[92]
Meshram, H.M.; Nageswara, R.N.; Chandrasekhara, R.L.; Satish, K.N. Microwave assisted catalyst-free synthesis of azaarene-substituted 3-hydroxy-2-oxindoles by the functionalization of sp3 C–H bond in methyl pyridine. Tetrahedron Lett., 2012, 53, 3963-3966.
[93]
Richel, A.; Laurent, P.; Wathelet, B.; Wathelet, J.P.; Paquot, M. Current perspectives on microwave-enhanced reactions of monosaccharides promoted by heterogeneous catalysts. Catal. Today, 2011, 167, 141-147.
[94]
Hricovíniov, Z. Rapid, one pot preparation of D-mannose and D-mannitol from starch: the effect of microwave irradiation and Mo(VI) catalyst. Tetrahedron, 2011, 22, 1184-1188.
[95]
Thaker, B.T.; Barvalia, R.S. Microwave assisted synthesis and characterization of unsymmetrical tetradentate Schiff base complexes of VO(IV) and MoO(V). Spectrochim. Acta A, 2011, 84, 51-61.
[96]
Richel, A.; Laurent, P.; Wathelet, B.; Wathelet, P.J.; Paquot, M. Microwave-assisted conversion of carbohydrates. State of the art and outlook. C. R. Chim., 2011, 14, 224-234.
[97]
Biswa Mohan, S.; Ravi Kumar, B.V.V.; Dinda, S.C.; Naik, D.; Seenivasan, S.P.; Kumar, V.; Rana, D.N.; Brahmkshatriya, S.P. Microwave-assisted synthesis, molecular docking and antitubercular activity of 1,2,3,4-tetrahydropyrimidine-5-carbonitrile derivatives. Bioorg. Med. Chem. Lett., 2012, 22, 7539-7542.
[98]
Kelly, C.B.; Lee, C.; Leadbeater, E.N. An approach for continuous-flow processing of reactions that involve the in situ formation of organic products. Tetrahedron Lett., 2011, 52, 263-265.
[99]
Cagide, F.; Reis, J.; Gaspar, A.; Borges, F. Accelerating lead optimization of chromone carboxamide scaffold throughout microwave-assisted organic synthesis. Tetrahedron Lett., 2011, 52, 6446-6449.
[100]
Azzam, S.H.S.; Pasha, M.A. Microwave-assisted, mild, facile, and rapid one-pot three-component synthesis of some novel pyrano[2,3-d]pyrimidine-2,4,7-triones. Tetrahedron Lett., 2012, 53, 7056-7059.
[101]
Takano, H.; Narumi, T.; Nomura, W.; Tamamura, H. Microwave-assisted synthesis of azacoumarin fluorophores and the fluorescence characterization. J. Org. Chem., 2017, 82, 2739-2744.
[102]
Raghuvanshi, D.S.; Singh, K.N. A highly efficient green synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-dione derivatives and their photophysical studies. Tetrahedron Lett., 2011, 52, 5702-5705.
[103]
Das, S.; Thakur, A.J. A green development of Bernthsen 9-substituted acridine synthesis in the absence of solvent catalysed by p-toluenesulphonic acid (p -TSA). Green Chem. Lett. Rev., 2011, 4, 131-135.
[104]
Zhang, J-J.; Hu, J-D.; Cao, C-P.; Dou, G-L.; Fu, L.; Huang, Z-B.; Shi, D-Q. Selective synthesis of polyfunctionalized hydroisoquinoline derivatives via a three-component domino reaction. RSC Advances, 2014, 4, 62457-62464.
[105]
Perin, N.; Hranjec, M.; Pavlovi, G.; Zamola, K. Novel aminated benzimidazo[1,2-a]quinolines as potential fluorescent probes for DNA detection: Microwave-assisted synthesis, spectroscopic characterization and crystal structure determination. Dyes Pigments, 2011, 91, 79-88.
[106]
Wang, S.L.; Cheng, C.; Wu, F.Y.; Jiang, B.; Shi, F.; Tu, S.; Rajale, T. Microwave-assisted multi-component reaction in water leading to highly regioselective formation of benzo[f]azulen-1-ones. Tetrahedron, 2011, 67, 4485-4493.
[107]
Neochoritis, C.G.; Tzitzikas, T.Z.; Tsoleridis, C.A.; Stephanatou, J.S.; Kontogiorgis, C.A.; Litina, J.H.; Papadopoulou, T.C. One-pot microwave assisted synthesis under green chemistry conditions, antioxidant screening, and cytotoxicity assessments of benzimidazole Schiff bases and pyrimido[1,2-a]benzimidazol-3(4H)-ones. J. Med. Chem., 2011, 46, 297-306.
[108]
Biradar, J.S.; Sasidhar, B.S. Solvent-free, microwave assisted Knoevenagel condensation of novel 2,5-disubstituted indole analogues and their biological evaluation. J. Med. Chem., 2011, 46, 6112-6118.
[109]
Desai, N.C.; Dodiya, A.M. Conventional and microwave techniques for the synthesis and antimicrobial studies of novel 1-[2-(2-chloro-6-methyl (3-quinolyl))-5-(4-nitrophenyl)-(1,3,4-oxadiazolin-3-yl)]-3-(aryl)prop-2-en-1-ones. Arab. J. Chem., 2011, 1-9.
[110]
Cechov, L.; Jansa, P.; Ala, M.S.; Cínsk, M.D.; Hol, A. Janeba, Z. The optimized microwave-assisted decomposition of formamides and its synthetic utility in the amination reactions of purines. Tetrahedron, 2011, 67, 866-871.
[111]
Lee, J.; Hong, M.; Jung, Y.; Cho, E.J.; Rhee, H. Synthesis of 1,3,5-trisubstituted-1,2,4-triazoles by microwave-assisted N-acylation of amide derivatives and the consecutive reaction with hydrazine hydrochlorides. Tetrahedron, 2012, 68, 2045-2051.
[112]
Adhikari, A.; Kalluraya, B.; Sujith, K.V.; Gouthamchandra, K.; Mahmood, R. Microwave assisted synthesis of novel thiazolidinone analogues as possible bioactive agents. J. Adv. Res., 2012, 3, 325-330.
[113]
Jain, K.S.; Kathiravan, M.K.; Bariwal, J.B.; Chaskar, P.K.; Tompe, S.S.; Arya, N. Novel dual use of formamide-POCl3 mixture for the efficient, one-pot synthesis of condensed 2H-pyrimidin-4- amine libraries under microwave irradiation. Synth. Commun., 2013, 43, 719-727.
[114]
Ragno, D.; Bortolini, O.; Giovannini, P.P.; Massi, A.; Pacifico, S.; Zaghi, A. One-pot, two-step desymmetrization of symmetrical benzils catalyzed by the methylsulfinyl (dimsyl) anion. Org. Biomol. Chem., 2014, 12, 5733-5744.
[115]
Lu, X.; Wang, H.; Gao, R.; Sun, D.; Bi, X. Microwave-assisted synthesis of asymmetric disulfides. RSC Advances, 2014, 4, 28794-28797.
[116]
Maiuolo, L.; Nino, A.D.; Merino, P.; Russo, B.; Stabile, G.; Nardi, M.; D’Agostino, N.; Bernardi, T. Rapid, efficient and solvent free microwave mediated synthesis of aldo- and ketonitrones. Arab. J. Chem., 2016, 9, 25-31.
[117]
Farhadi, S.; Kazem, M.; Siadatnasa, F. NiO nanoparticles prepared via thermal decomposition of the bis(dimethylglyoximato)nickel(II) complex: A novel reusable heterogeneous catalyst for fast and efficient microwave-assisted reduction of nitroareneswith ethanol. Polyhedron, 2011, 30, 606-613.
[118]
Vaddula, B.R.; Tantak, M.P.; Sadana, R.; Gonzalez, M.A.; Kumar, D. One-pot synthesis and in vitro anticancer evaluation of 5-(2′-indolyl)thiazoles. Sci. Rep., 2016, 6, 23401.
[119]
Das, S.; Das, V.K.; Saikia, L.; Thakur, A.J. Environment-friendly and solvent-free synthesis of symmetrical bis-imines under microwave irradiation. Green Chem. Lett. Rev., 2012, 5, 457-474.
[120]
Ruiz-Carretero, A.; Ramirez, J.R.; Sanchez-Migallon, A.; Hoz, A. Tetrahedron, 2014, 70, 1733-1739.
[121]
Funfuenha, W.; Phakhodee, W.; Pattarawarapan, M. Tetrahedron, 2014, 70, 5415-5419.
[122]
Gupta, A.K.; Rao, G.I.T.; Singh, K.N. NiCl2.6H2O as recyclable heterogeneous catalyst for N-arylation of amines and NH-heterocycles under microwave exposure. Tetrahedron Lett., 2012, 53, 2218-2221.
[123]
Xia, F.; Zhao, Z.L.; Liu, N.P. Sulfuric acid catalyzed addition of b-dicarbonyl compounds to alcohols under conventional heating and microwave-assisted conditions. Tetrahedron Lett., 2012, 53, 2828-2832.
[124]
Yadav, G.D.; Devendran, S. Lipase catalyzed kinetic resolution of (±)-1-(1-naphthyl) ethanol under microwave irradiation. J. Mol. Catal., B Enzym., 2012, 81, 58-65.
[125]
Pathak, G.; Das, D.; Rokhum, L. A microwave-assisted highly practical chemoselective esterification and amidation of carboxylic acids. RSC Advances, 2016, 6, 93729.
[126]
Allen, C.L.; Chhatwal, R.A.; Williams, J.M.J. Direct amide formation from unactivated carboxylic acids and amines. Chem. Commun., 2012, 48, 666-668.
[127]
Coulibaly, W.K.; Paquin, L.; Bénie, A.; Bekro, Y.A.; Durieu, E.; Meijer, L.; Bazureau, J.P. Synthesis of N,N′-bis(5-arylidene-4-oxo-3,5-dihydro-4H-imidazol-2-yl)diamines bearing various linkers and biological evaluation as potential inhibitors of kinases. Eur. J. Med. Chem., 2012, 58, 581-590.
[128]
Chen, W.; Baghbanzadeh, M.; Kapp, C.O. Microwave-assisted nickel(II) acetylacetonate-catalyzed arylation of aldehydes with arylboronic acids. Tetrahedron Lett., 2011, 52, 1677-1679.
[129]
Das, B.; Pal, R.; Banerjee, J.; Ramesh, C.; Mahender, G.; Venkateswarlu, K. A convenient, rapid and eco-friendly synthesis of bis-indolylmethanes under microwave irradiation. Ind. J. Chem.-. B: Org. Med. Chem., 2005, 44, 327-330.
[130]
Aliyan, H.; Fazaeli, R.; Naghash, H.J.; Massah, A.R.; Momeni, A.R.; Iravani, Z. Bulk and supported tungstophosphoric acid as friendly, efficient, recyclable catalysts for the synthesis of bis-indolylmethanes under solvent-free conditions. Heteroatom Chem., 2009, 20, 325-331.
[131]
Uddin, M.I.; Buck, J.R.; Schulte, M.L.; Tang, D.; Saleh, S.A.; Cheung, Y.Y.; Harp, J.; Mannin, C. Microwave-assisted, one-pot reaction of 7-azaindoles and aldehydes: A facile route to novel di-7-azaindolylmethanes. Tetrahedron Lett., 2014, 55, 169-173.
[132]
Naeimi, H.; Raeisi, A.; Moradia, M. Microwave assisted chemistry: A rapid and regioselective route for direct ortho-acylation of phenols and naphthols by methanesulfonic acid as catalyst. Arab. J. Chem., 2017, 10, S2723-S2728.
[133]
Kanishchev, O.S.; Sanselme, M.; Bouillon, J-P. Hetero-Diels–Alder reactions of perfluoroalkyl thioamides with electron-rich 1,3-dienes: synthesis of new 2-aminosubstituted-3,6-dihydro-2H-thiopyrans and related compounds. Tetrahedron, 2013, 69, 1322-1336.
[134]
Hooyberghs, G.; Coster, H.; Vachhani, D.; Ermolat, D.S.; Eycken, E.V.V. Synthesis of [1,2,3]-triazolo[1,5-a][1,4]benzodiazepines via an unprecedented one-pot Cu-catalyzed azidation–cyclization reaction. Tetrahedron, 2013, 69, 4331-4337.
[135]
Verbitskiy, E.V.; Cheprakova, E.M.; Zhilina, E.F.; Kodess, M.I.; Ezhikova, M.A.; Pervova, M.G. Microwave-assisted palladium-catalyzed C–C coupling versus nucleophilic aromatic substitution of hydrogen (SNH) in 5-bromopyrimidine by action of bithiophene and its analogues. Tetrahedron, 2013, 69, 5164-5172.
[136]
Haggam, R.A. Cu(I)-catalyzed intramolecular cyclizations of substituted 2-iodobenzophenones under thermal andmicrowave conditions. Tetrahedron, 2013, 69, 6488-6494.
[137]
Abás, S.; Moens, U.; Escolano, C. Facile microwave-assisted synthesis of thioformamides from isocyanides and carbon disulfide. Tetrahedron Lett., 2017, 58, 2768-2770.
[138]
Teo, Y.C.; Yong, F.F.; Sim, S. Ligand-free Cu2O-catalyzed cross coupling of nitrogen heterocycles with iodopyridines. Tetrahedron, 2013, 69, 7279-7284.
[139]
Nechayev, M.A.; Gorobets, N.Y.; Shishkina, S.V.; Shishkin, O.V.; Kovalenko, S.M. Microwave-assisted acid-catalyzed nucleophilic heteroaromatic substitution: the synthesis of 7-amino-6-azaindoles. Tetrahedron, 2015, 71, 1311-1321.
[140]
Machicao, P.A.; Burt, S.R.; Christensen, R.K.; Lohner, N.B.; Singleton, J.D.; Peterson, M.A. An efficient microwave assisted synthesis of N′-aryl/(alkyl)-substituted N-(4-hydroxy-6-phenylpyrimidin-2-yl)guanidines: Scope and limitations. Tetrahedron Lett., 2017, 58, 2318-2321.
[141]
Lee, H.; Jun, C.H. Microwave-assisted, tetrabutylammonium hydroxide catalysed 1,4-addition of water to α,β-unsaturated ketones and α,β-ynones in aqueous solution. RSC Advances, 2014, 4, 48331-48335.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy