[1]
Gedye, R.; Smith, F.; Westaway, K.; Ali, H.; Baldisera, L.; Laberge, L.; Rousell, J. The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett., 1986, 27, 279-282.
[2]
Giguere, R.J.; Bray, T.L.; Duncan, S.M.; Majetich, G. Application of commercial microwave ovens to organic synthesis. Tetrahedron Lett., 1986, 27, 4945-4948.
[3]
(a) Takkellapati, S.R. Microwave-assisted chemical transformations. Curr. Org. Chem., 2013, 17, 2305-2322.
(b) Yu-zhen, L.; Huai-qiu, X. Microwave solid-phase synthesis technique and its application in the synthesis of polypeptide (amino acid)-metal chelates. Modern Food Sci. Technol, 2017, 33, 262-269.
[4]
Loupy, A. Microwaves in Organic Synthesis, 2nd ed; Wiley-VCH: Weinheim, 2006.
[5]
Kranjc, K.; Kočevar, M. Microwave-assisted organic synthesis: General considerations and transformations of heterocyclic compounds. Curr. Org. Chem., 2010, 14, 1050-1074.
[6]
Lidström, P.; Tierney, J.; Wathey, B.; Westman, J. Microwave assisted organic synthesis a review. Tetrahedron, 2001, 57, 9225-9283.
[7]
(a) de la Hoz, A.; Diaz-Ortis, A.; Moreno, A.; Langa, F. Cycloadditions under microwave irradiation conditions: Methods and applications. Eur. J. Org. Chem., 2000, 3659-3673.
(b) Keglevich, G.; Zsuzsa Kiss, N.; Grün, A.; Bálint, E.; Kovács, T. Advantages of the microwave tool in organophosphorus syntheses. Synthesis (Germany), 2017, 49, 3069-3083.
(c) Naeimi, H.; Golestanzadeh, M. Microwave-assisted synthesis of 6,6′-(aryl(alkyl)methylene)bis(2,4-dialkylphenol) antioxidants catalyzed by multi-sulfonated reduced graphene oxide nanosheets in water. New J. Chem., 2015, 39, 2697-2710.
[8]
El Marrouni, A.; Fabrellas, J.M.; Heras, M. Coupling reaction between electron-rich pyrimidinones and α-amino acids promoted by phosphonium salts. Org. Biomol. Chem., 2011, 9, 5967.
[9]
(a) Buffler, C.R. Microwave Cooking and Processing: Engineering Fundamentals for the Food Scientist; Van Nostrand Reinhold: New York, 1993.
(b) Larhed, M.; Moberg, C.; Hallberg, A. Microwave-accelerated homogeneous catalysis in organic chemistry. Acc. Chem. Res., 2002, 35, 717-727.
(c) Al-Obeidi, F.; Austin, R.E.; Okonya, J.F.; Bond, D.R.S. Microwave-assisted solid-phase synthesis (MASS): Parallel and combinatorial chemical library synthesis. Mini Rev. Med. Chem., 2003, 3, 449-460.
(d) Swamy, K.M.K.; Yeh, W-B.; Lin, M.J.; Sun, C.M. Microwave-assisted polymer-supported combinatorial synthesis. Curr. Med. Chem., 2003, 10, 2403-2423.
(e) Nüchter, M.; Ondruschka, B.; Bonrath, W.; Gum, A. Microwave assisted synthesis - a critical technology overview. Green Chem., 2004, 6, 128-141.
(f) Kappe, C.O.; Dallinger, D. The impact of microwave synthesis on drug discovery. Nat. Rev. Drug Discov., 2006, 5, 51-63.
(g) Polshettiwar, V.; Varma, R.S. Microwave-assisted organic synthesis and transformations using benign reaction media. Acc. Chem. Res., 2008, 41, 629-639.
(h) Gaba, M.; Dhingra, N. Microwave chemistry: General features and applications. Indian J. Pharma. Edu. Res., 2011, 45, 175-183; h) Maiuolo, L.; Nino, A.D.; Algieri, V.; Nardi, M. Microwave-assisted 1,3-dipolar cyclo-addition: recent advances in synthesis of isooxazolidines. Mini Rev. Org. Chem., 2017, 14, 136-142.
i) Lidström, P.; Tierney, J.P. Microwave-Assisted Organic Synthesis; Blackwell: Oxford, 2004.
j) Hayes, B.L. Microwave Synthesis: Chemistry at the Speed of Light; CEM Publishing: Matthews, NC, 2002.
k) Kappe, C.O. Microwaves in
Combinatorial and High-Throughput Synthesis; Kluwer Academic
Publishers: Dordrecht. , 2003, p. 7, pp. 95-307.
l)Meng, L-Y.; Wang, B.; Ma, M.G.; Lin, K.L. The progress of microwave assisted hydrothermal method in the synthesis of functional nanomaterials. Materials Today Chem., 2016, 1-2, 63-83.
m)Rosa, R.; Trombi, L.; Veronesi, P.; Leonelli, C. Microwave energy application to combustion synthesis: A comprehensive review of recent advancements and most promising perspectives. Int. J. Self-Propag. High-Temp. Synth., 2017, 26, 221-233.
n)Mirzaei, A.; Neri, G. Microwave-assisted synthesis of metal oxide nanostructures for gas sensing application: A review. Sens. Actuators B, 2016, 237, 749-775.
[10]
Gabriel, C.; Gabriel, S.; Grant, E.H.; Halstead, B.S.J.; Mingos, D.M.P. Dielectric parameters relevant to microwave dielectric heating. Chem. Soc. Rev., 1998, 27, 213-224.
[11]
Mingos, D.M.P. Theoretical aspects of microwave dielectric heating.In: Microwave-Assisted Organic Synthesis, 1st ed; Lidstrom, P.; Tierney, J., Eds.; Blackwell Publishing Ltd.: Oxford, 2004.
[12]
Kappe, C.O. Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed., 2004, 43, 6250-6284.
[13]
Krow, G.R. The Baeyer-Villiger oxidation of ketones and aldehydes. Org. React., 2004, 43, 251-798.
[14]
Świzdor, A.; Kołek, T.; Panek, A.; Milecka, N. Selective modifications of steroids performed by oxidative enzymes. Curr. Org. Chem., 2012, 16, 2551-2582.
[15]
Borah, J.M.; Chowdhury, P.J. Expedited Baeyer–Villiger oxidation of steroidal ketones by microwave irradiation. Steroids, 2011, 76, 1341-1345.
[16]
Queffélec, C.; Petit, M.; Janvier, P.; Knight, D.A.; Bujoli, B. Surface modification using phosphonic acids and esters. Chem. Rev., 2012, 112, 3777-3807.
[17]
Jansa, P.; Hradil, O.; Baszczyňski, O.; Dračínsky, M.; Klepetářová, B.; Holý, A.; Balzarini, J.; Janeba, Z. An efficient microwaveassisted synthesis and biological properties of polysubstituted pyrimidinyl- and 1,3,5-triazinylphosphonic acids. Tetrahedron, 2012, 68, 865-871.
[18]
Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev., 1995, 95, 2457-2483.
[19]
Lennox, A.J.J.; Lloyd-Jones, G.C. Selection of boron reagents for Suzuki-Miyaura coupling. Chem. Soc. Rev., 2014, 43, 412-443.
[20]
Melchor, M.G.; Braga, A.A.C.; Lledós, A.; Ujaque, G.; Maseras, F. Computational perspective on Pd-catalyzed C–C cross-coupling reaction mechanisms. Acc. Chem. Res., 2013, 46, 2626-2634.
[21]
Horikoshi, S.; Suttisawat, Y.; Osawa, A.; Takayama, C.; Chen, X.; Yang, S.; Sakai, H.; Abe, M.; Serpone, N. Organic synthesis by microwave selective heating of novel metal/CMC catalysts-The Suzuki–Miyaura coupling reaction in toluene and the dehydrogenation of tetralin in solvent-free media. J. Catal., 2012, 289, 266-271.
[22]
Hajipour, A.R.; Karami, K.; Pirisedigh, A. Application of dimeric orthopalladated complex in Suzuki–Miyaura crosscoupling reaction under microwave irradiation and conventional heating. Inorg. Chim. Acta, 2011, 370, 531-535.
[23]
Kolvari, E.; Koukabi, N.; Armandpour, O. A simple and efficient synthesis of 3,4-dihydropyrimidin-2-(1H)-ones via Biginelli reaction catalyzed by nanomagnetic-supported sulfonic acid. Tetrahedron, 2014, 70, 1383-1386.
[24]
Safari, J.; Zarnegar, Z. Brønsted acidic ionic liquid based magnetic nanoparticles: a new promoter for the Biginelli synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones. New J. Chem., 2014, 38, 358-365.
[25]
An, D.; Fan, Y.S.; Gao, Y.; Zheng, L.Y.; Zhang, S.Q. Highly enantioselective Biginelli reaction catalyzed by double axially chiral bisphosphorylimides. Eur. J. Org. Chem., 2014, 2, 301-306.
[26]
Kappe, C.O. Recent advances in the Biginelli dihydropyrimidine synthesis. new tricks from an old dog. Acc. Chem. Res., 2000, 33, 879-888.
[27]
Gorobets, N.Y.; Sedash, Y.V.; Ostras, K.S.; Zaremba, O.V.; Shishkina, S.V.; Baumer, V.N.; Shishkin, O.V.; Kovalenko, S.M.; Desenko, S.M.; Van der Eycken, E.V. Unexpected alternative direction of a Biginelli-like multicomponent reaction with 3-amino-1,2,4-triazole as the urea component. Tetrahedron Lett., 2010, 51, 2095-2098.
[28]
Liang, B.; Wang, X.; Wang, J.X.; Du, Z. New three-component cyclocondensation reaction: Microwave-assisted one-pot synthesis of 5 unsubstituted-3,4-dihydropyrimidin-2(1H)-ones under solvent-free conditions. Tetrahedron, 2007, 63, 1981-1986.
[29]
Pasunooti, K.K.; Chai, H.; Jensen, C.N.; Gorityala, B.K.; Wang, S.; Liu, X.W. A microwave-assisted, copper-catalyzed three-component synthesis of dihydropyrimidinones under mild conditions. Tetrahedron Lett., 2011, 5280-5284.
[30]
Liu, Q.; Pan, N.; Xu, J.; Zhang, J. Microwave-assisted and iodine-catalyzed synthesis of dihydropyrimidin-2-thiones via Biginelli reaction under solvent-free condition. Synth. Commun., 2013, 43, 139-146.
[31]
Vanden Eynde, J.J.; Hecq, N.; Kataeva, O.; Kappe, C.O. Microwave-mediated regioselective synthesis of novel pyrimido[1,2-a]pyrimidines under solvent-free conditions. Tetrahedron, 2001, 57, 1785-1791.
[32]
Felluga, F.; Benedetti, F.; Berti, F.; Drioli, S.; Regini, G. Efficient Biginelli synthesis of 2-aminodihydropyrimidines under microwave irradiation. Synlett, 2018, 29, 1047-1054.
[33]
Yoshimura, A.; Middleton, K.R.; Luedtke, M.W.; Zhu, C.; Zhdankin, V.V. Hypervalent iodine catalyzed Hofmann Rearrangement of carboxamides using oxone as terminal oxidant. J. Org. Chem., 2012, 77, 11399-11404.
[34]
Borah, A.J.; Phukan, P. Efficient synthesis of methyl carbamate via Hofmann Rearrangement in the presence of TsNBr2. Tetrahedron Lett., 2012, 53, 3035-3037.
[35]
Miranda, L.S.M.; Silva, D.; Crespo, L.; Esteves, P.M.; Matos, F.; Diederichs, C. TBCA mediated microwave-assisted Hofmann Rearrangement. Tetrahedron Lett., 2011, 52, 1639-1640.
[36]
Balalaie, S.; Nemati, N. Ammonium acetate-basic alumina catalyzed Knoevenagel Condensation under microwave irradiation under solvent-free condition. Synth. Commun., 2000, 30, 869-875.
[37]
Bian, Y.J.; Qin, Y.; Xiao, L.W.; Li, J.T. New advances of Knoevenagel condensation reactions. Chin. J. Org. Chem, 2006, 26, 1165-1172.
[38]
Zanin, L.L.; Jimenez, D.E.Q.; Fonseca, L.P.; Porto, A.L.M. Curr. Org. Chem., 2018, 22, 519-532.
[39]
Bigi, F.; Quarantelli, C. The Knoevenagel condensation in water. Curr. Org. Synth., 2012, 9, 31-39.
[40]
Kamila, S.; Ankati, H.; Harry, E.; Biehl, R.E. A facile synthesis of novel 3-(aryl/alkyl-2-ylmethyl)-2-thioxothiazolidin-4-ones using microwave heating. Tetrahedron Lett., 2012, 53, 2195-2198.
[41]
Jlassi, R.; Ribeiro, A.P.C.; Tiago, G.A.O.; Wang, J.; Krawczyk, M.S.; Martins, L.M.D.R.S.; Naïli, H.; Pombeiro, A.J.L.; Rekik, W. Elementary and efficient catalyst process for the Knoevenagel condensation of araldehydes with arylmethylidene malononitrile. Inorg. Chim. Acta, 2018, 471, 76-81.
[42]
Hora, L.; Kelbichová, V.; Kikhtyanin, O.; Bortnovskiy, O.; Kubička, D. Aldol condensation of furfural and acetone over Mg-Al layered double hydroxides and mixed oxides. Catal. Today, 2014, 223, 138-147.
[43]
Kan, S.B.J.; Ng, K.K.H.; Paterson, I. The impact of the Mukaiyama Aldol reaction in total synthesis. Angew. Chem. Int. Ed., 2013, 52, 9097-9108.
[44]
Matsuo, J.I.; Murakami, M. The Mukaiyama Aldol reaction: 40 years of continuous development. Angew. Chem. Int. Ed., 2013, 52, 9109-9111.
[45]
Solhy, A.; Amer, W.; Karkouri, M.; Tahir, R.; Bouari A, El.; Fihri, A.; Bousmina, M.; Zahouily, M. Bi-functional modified-phosphate catalyzed the synthesis of α,α′-(EE)-bis(benzylidene)-cycloalkanones: microwave versus conventional-heating. J. Mol. Catal. Chem., 2011, 336, 8-15.
[46]
Cheng, K.; Wang, C.; Ding, Y.; Song, Q.; Qi, C.; Zhang, X.M. Hiyama cross-coupling of arenediazonium salts under mild reaction conditions. J. Org. Chem., 2011, 76, 9261-9268.
[47]
Deore, P.S.; Argade, N.P. Metal-catalyzed cross-coupling reactions of halomaleic hnhydrides and halomaleimides: synthesis of structurally interesting and biologically-important natural and unnatural products. Synthesis, 2014, 46, 281-289.
[48]
Shah, D.; Kaur, H. Macroporous resin impregnated palladium nanoparticles: catalyst for a microwave-assisted green Hiyama reaction. J. Mol. Catal. Chem., 2012, 359, 69-73.
[49]
Pastor, I.M.; Yus, M. Focused update on the Prins reaction and the Prins cyclization. Curr. Org. Chem., 2012, 16, 1277-1312.
[50]
Greco, S.J.; Fiorot, R.G. Lacerda, Jr.; Dos, V.; Santos, R.B. Recent advances in the Prins cyclization. Aldrichim Acta, 2013, 46, 59-70.
[51]
Clarisse, D.; Atrice, P.B.; Piva, O.; Fache, F. Green chemistry: Solvent- and metal-free Prins cyclization: Application to sequential reactions. Chem. Commun., 2012, 48, 157-159.
[52]
Pei, B.J.; Lee, A.W.M. Highly efficient synthesis of extended triptycenes via Diels–Alder cycloaddition in water under microwave radiation. Tetrahedron Lett., 2010, 51, 4519-4522.
[53]
Wu, J.; Jiang, X.; Xu, J.; Dai, W.M. Tandem Wittig–intramolecular Diels–Alder cycloaddition of ester-tethered 1,3,9-decatrienes under microwave heating. Tetrahedron, 2011, 67, 179-192.
[54]
Jayagobi, M.; Raghunathan, R. AgOAc-catalyzed asymmetric amination of glycine Schiff bases with azodicarboxylates. Tetrahedron Lett., 2009, 5, 6886-6890.
[55]
Karney, M.J.; Porter, K.A.; Barnhardt, E.K.; Vanier, G.S. Meso-scale microwave-assisted continuous flow reactions utilizing a selective heating matrix. RSC Advances, 2013, 3, 7106-7111.
[56]
Das, S.; Thakur, A.J.; Medhi, T.; Das, B. An efficient stereo-controlled synthesis of bis-pyrimido-[4,5-d]-pyrimidine derivatives via aza-Diels-Alder methodology and their preliminary bioactivity. RSC Advances, 2013, 3, 3407-3413.
[57]
Bhuyan, D.; Sarma, R.; Prajapati, D. Microwave-assisted efficient synthesis of spiroquinoline derivatives via a catalyst- and solvent-free aza-Diels–Alder reaction. Tetrahedron Lett., 2012, 53, 6460-6463.
[58]
Zheng, S.; Chowdhury, A.; Ojima, I.; Honda, T. Microwave-assisted Diels-Alder reactions between Danishefsky’s diene and derivatives of ethyl α-(hydroxymethyl)acrylate. Synthetic approach toward a biotinylated anti-inflammatory monocyclic cyanoenone. Tetrahedron, 2013, 29, 2052-2055.
[59]
Albuquerque, H.M.T.; Santos, C.M.M.; Cavaleiro, J.A.S.; Silva, A.M.S. First intramolecular Diels–Alder reactions using chromone derivatives: Synthesis of chromeno[3,4-b]xanthones and 2-(benzo[c]chromenyl)-chromones. New J. Chem., 2018, 42, 4251-4260.
[60]
Ugi, I. The α-addition of immonium ions and anions to isonitriles accompanied by secondary reactions. Angew. Chem. Int. Ed., 1962, 1, 8-21.
[61]
Xu, J.; Li, Y.; Meng, J-P.; Lei, J.; Chen, Z-Z.; Tang, D-Y.; Zhu, J.; Xu, Z-G. Efficient microwave-assisted synthesis of fused benzoxazepine-isoquinoline derivatives via an Ugi reaction/tautomerization/intramolecular SNAr reaction sequence. Tetrahedron Lett., 2017, 58, 1640-1643.
[62]
Michael, A. Ueber die Addition von Natriumacetessig‐ und Natriummalonsäureäthern zu den Aethern ungesättigter Säuren. J. Prakt. Chem., 1887, 35, 349-356.
[63]
Denmark, S.E.; Kim, J.H. Asymmetric Michael addition reaction of phosphorus-stabilized allyl anions with cyclic enones. J. Org. Chem., 1995, 60, 7535-7547.
[64]
Wu, L.; Jin, R.; Li, L.; Hu, X.; Cheng, T.; Liu, G. A Michael addition-asymmetric transfer hydrogenation one-pot enantioselective tandem process for syntheses of chiral γ-secondary amino alcohols. Org. Lett., 2017, 19, 3047-3050.
[65]
Iida, H.; Akatsu, Y.; Mizukami, K.; Natori, S.; Matsukawa, M.; Takahashi, K. Efficient and rapid synthesis of phenolic analogs of 4-phenylbutanoic acid using microwave-assisted Michael addition as a key reaction. Synth. Commun., 2016, 581-585.
[66]
Lu, H.; Wu, R.; Cheng, H.; Nie, S.; Tang, Y.; Gao, Y.; Luo, Z. An efficient, mild, solvent-free, one-pot three-component mannich reaction catalyzed by (C4H12N2)2[BiCl6]Cl·H2O. Synthesis, 2015, 47, 1280-1290.
[67]
Hatano, M.; Horibe, T.; Ishihara, K. Chiral lithium(I) binaphtholate salts for the enantioselective direct mannich-type reaction with a change of syn/anti and absolute stereochemistry. J. Am. Chem. Soc., 2010, 132, 56-57.
[68]
Lehmann, F.; Pilotti, Å.; Luthman, K. Efficient large scale microwave assisted Mannich reactions using substituted acetophenones. Mol. Divers., 2003, 7, 145-152.
[69]
McLean, N.J.; Tye, H.; Whittaker, M. Microwave assisted Petasis boronic-Mannich reactions. Tetrahedron Lett., 2004, 45, 993-995.
[70]
Matić, J.; Nekola, I.; Višnjevac, A.; Kobetić, R.; Martin-Kleiner, I.; Kralj, M.; Žinić, B. C5-Morpholinomethylation of N1-sulfonylcytosines by a one-pot microwave assisted Mannich reaction. Org. Biomol. Chem., 2018, 16, 2678.
[71]
Meher, G.; Efthymiou, T.; Stoop, M.; Krishnamurthy, R. Microwave-assisted preparation of nucleoside-phosphoramidites. Chem. Commun., 2014, 50, 7463-7465.
[72]
Thakur, A.J.; Das, S.; Phukan, A.K. Replay of amide type resonance in 6-[(dimethylamino)methylene]1,3-dimethylaminouracil: A dynamic NMR and density functional theory study. J. Mol. Struct., 2009, 929, 134-140.
[73]
Narasimhan, B.; Sharma, D.; Kumar, P. Benzimidazole: a medicinally important heterocyclic moiety. Med. Chem. Res., 2012, 2, 269-283.
[74]
Rongved, P.; Kirsch, G.; Bouaziz, Z.; Jose, J.; Borgne, M.L. Indenoindoles and cyclopentacarbazoles as bioactive compounds: Synthesis and biological applications. Eur. J. Med. Chem., 2013, 69, 465-479.
[75]
Casild, V.C.; Aranda, R.M.M.; López-Peinado, A.J. Alkaline carbons as effective catalysts for the microwave-assisted synthesis of N-substituted-gamma-lactams. Appl. Catal., 2011, 398, 73-81.
[76]
Pawar, H.; Lali, A. Microwave assisted organocatalytic synthesis of 5-hydroxymethyl furfural in a monophasic green solvent system†. RSC Advances, 2014, 4, 26714-26720.
[77]
Lasri, J.; Rodríguez, M.J.F.; Fátima, M.; Silva, C.G.; Smolenski, P.; Kopylovich, M.N.; Silva, F.R.; Pombeiro, J.L.A. Microwave synthesis of bis(tetrazolato)-PdII complexes with PPh3 and water-soluble 1,3,5-triaza-7-phosphaadamantane (PTA). The first example of CeCN bond cleavage of propionitrile by a PdII centre. J. Organomet. Chem., 2011, 696, 3513-3520.
[78]
Kumari, K.; Raghuvanshi, D.S.; Jouikov, V.; Singh, K.N. Sc(OTf)3-catalyzed, solvent-free domino synthesis of functionalized pyrazoles under controlled microwave irradiation. Tetrahedron Lett., 2012, 53, 1130-1133.
[79]
Seus, N.; Gonçalves, L.C.; Deobald, A.M.; Savegnago, L.; Alves, D.; Paixão, M.W. Synthesis of arylselanyl-1H-1,2,3-triazole-4-carboxylates by organocatalytic cycloaddition of azidophenyl arylselenides with β-keto-esters. Tetrahedron, 2012, 68, 10456-10463.
[80]
Bandyopadhyay, D.; Cruz, J.; Banik, B.K. Novel synthesis of 3-pyrrole substituted β-lactams via microwave-induced bismuth nitrate-catalyzed reaction. Tetrahedron, 2012, 37, 1-10.
[81]
Pingali, S.K.R.; Jursic, S.B. Microwave-assisted synthesis of 1,3-benzodioxole derivatives from catechol and ketones or aldehydes. Tetrahedron Lett., 2011, 52, 4371-4374.
[82]
Wilson, N.S.; Osuma, T.A.; Van Camp, J.A.; Xu, X. A scalable approach to diaminopyrazoles using flow chemistry. Tetrahedron Lett., 2012, 53, 4494-4501.
[83]
Al-Hazimi, H.M.; El Faham, A.; Ghazzali, M.; Al-Farhan, K. Microwave irradiation: A facile, scalable and convenient method for synthesis of N-phthaloylamino acids. Arab. J. Chem., 2012, 5, 285-289.
[84]
Apasery, M.A.E.; Mousawi, S.M.A.; Elnagdi, M.H. Green methodologies in organic synthesis: microwave assisted solvent- and catalyst-free synthesis of enaminones and their conversion into 1,3,5-trisubstituted benzenes as well as 3-aroyl-6-substituted pyridines. Eur. J. Chem., 2011, 22, 168-172.
[85]
Jiang, B.; Yi, M.S.; Shi, F.; Jiang, T.S.; Pindi, S.; McDowell, P.; Guigen, L. A multi-component domino reaction for the direct access to poly-functionalized indoles via intermolecular allylic esterification and indolation. Chem. Commun., 2012, 48, 808-810.
[86]
Liedtke, A.J.; Kim, K.; Stec, D.F.; Sulikowski, G.A.; Marnett, J.L. Straightforward protocol for the efficient synthesis of varied N1-acylated (aza) indole 2-/3-alkanoic acids and esters: optimization and scale-up. Tetrahedron, 2012, 68, 10049-10058.
[87]
Kamalraja, J.; Perumal, P.T. Microwave assisted InCl3 mediated regioselective synthesis of highly functionalized indolylpyran under solvent-free condition and its chemical transformation to indolyltriazolylpyran hybrids. Tetrahedron Lett., 2014, 55, 3561-3564.
[88]
Jiang, B.; Xue, L.Y.; Wang, X.H.; Tu, M.S.; Liu, Y.P.; Tu, S.J. Microwave-assisted multicomponent reaction of aryl amidines: regiospecific synthesis of new polysubstituted thiopyrano-, and pyrano[4,3-d]pyrimidines. Tetrahedron Lett., 2012, 53, 1261-1264.
[89]
Loidreau, Y.; Besson, T. Microwave-assisted thermal decomposition of formamide: a tool for coupling a pyrimidine ring with an aromatic partner. Tetrahedron, 2011, 67, 4852-4857.
[90]
Dao, P.; Garbay, C.; Chen, H. High yielding microwave-assisted synthesis of tri-substituted 1,3,5-triazines using Pd-catalyzed aryl and heteroarylamination. Tetrahedron, 2012, 68, 3856-3860.
[91]
Karuehanon, W.; Fanfuenha, W.; Rujiwatra, A.; Pattarawarapan, M. Microwave-assisted SNAr reaction of 2,4,6-trichloro-1,3,5-triazine for the rapid synthesis of C3-symmetrical polycarboxylate ligands. Tetrahedron Lett., 2012, 53, 3486-3489.
[92]
Meshram, H.M.; Nageswara, R.N.; Chandrasekhara, R.L.; Satish, K.N. Microwave assisted catalyst-free synthesis of azaarene-substituted 3-hydroxy-2-oxindoles by the functionalization of sp3 C–H bond in methyl pyridine. Tetrahedron Lett., 2012, 53, 3963-3966.
[93]
Richel, A.; Laurent, P.; Wathelet, B.; Wathelet, J.P.; Paquot, M. Current perspectives on microwave-enhanced reactions of monosaccharides promoted by heterogeneous catalysts. Catal. Today, 2011, 167, 141-147.
[94]
Hricovíniov, Z. Rapid, one pot preparation of D-mannose and D-mannitol from starch: the effect of microwave irradiation and Mo(VI) catalyst. Tetrahedron, 2011, 22, 1184-1188.
[95]
Thaker, B.T.; Barvalia, R.S. Microwave assisted synthesis and characterization of unsymmetrical tetradentate Schiff base complexes of VO(IV) and MoO(V). Spectrochim. Acta A, 2011, 84, 51-61.
[96]
Richel, A.; Laurent, P.; Wathelet, B.; Wathelet, P.J.; Paquot, M. Microwave-assisted conversion of carbohydrates. State of the art and outlook. C. R. Chim., 2011, 14, 224-234.
[97]
Biswa Mohan, S.; Ravi Kumar, B.V.V.; Dinda, S.C.; Naik, D.; Seenivasan, S.P.; Kumar, V.; Rana, D.N.; Brahmkshatriya, S.P. Microwave-assisted synthesis, molecular docking and antitubercular activity of 1,2,3,4-tetrahydropyrimidine-5-carbonitrile derivatives. Bioorg. Med. Chem. Lett., 2012, 22, 7539-7542.
[98]
Kelly, C.B.; Lee, C.; Leadbeater, E.N. An approach for continuous-flow processing of reactions that involve the in situ formation of organic products. Tetrahedron Lett., 2011, 52, 263-265.
[99]
Cagide, F.; Reis, J.; Gaspar, A.; Borges, F. Accelerating lead optimization of chromone carboxamide scaffold throughout microwave-assisted organic synthesis. Tetrahedron Lett., 2011, 52, 6446-6449.
[100]
Azzam, S.H.S.; Pasha, M.A. Microwave-assisted, mild, facile, and rapid one-pot three-component synthesis of some novel pyrano[2,3-d]pyrimidine-2,4,7-triones. Tetrahedron Lett., 2012, 53, 7056-7059.
[101]
Takano, H.; Narumi, T.; Nomura, W.; Tamamura, H. Microwave-assisted synthesis of azacoumarin fluorophores and the fluorescence characterization. J. Org. Chem., 2017, 82, 2739-2744.
[102]
Raghuvanshi, D.S.; Singh, K.N. A highly efficient green synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-dione derivatives and their photophysical studies. Tetrahedron Lett., 2011, 52, 5702-5705.
[103]
Das, S.; Thakur, A.J. A green development of Bernthsen 9-substituted acridine synthesis in the absence of solvent catalysed by p-toluenesulphonic acid (p -TSA). Green Chem. Lett. Rev., 2011, 4, 131-135.
[104]
Zhang, J-J.; Hu, J-D.; Cao, C-P.; Dou, G-L.; Fu, L.; Huang, Z-B.; Shi, D-Q. Selective synthesis of polyfunctionalized hydroisoquinoline derivatives via a three-component domino reaction. RSC Advances, 2014, 4, 62457-62464.
[105]
Perin, N.; Hranjec, M.; Pavlovi, G.; Zamola, K. Novel aminated benzimidazo[1,2-a]quinolines as potential fluorescent probes for DNA detection: Microwave-assisted synthesis, spectroscopic characterization and crystal structure determination. Dyes Pigments, 2011, 91, 79-88.
[106]
Wang, S.L.; Cheng, C.; Wu, F.Y.; Jiang, B.; Shi, F.; Tu, S.; Rajale, T. Microwave-assisted multi-component reaction in water leading to highly regioselective formation of benzo[f]azulen-1-ones. Tetrahedron, 2011, 67, 4485-4493.
[107]
Neochoritis, C.G.; Tzitzikas, T.Z.; Tsoleridis, C.A.; Stephanatou, J.S.; Kontogiorgis, C.A.; Litina, J.H.; Papadopoulou, T.C. One-pot microwave assisted synthesis under green chemistry conditions, antioxidant screening, and cytotoxicity assessments of benzimidazole Schiff bases and pyrimido[1,2-a]benzimidazol-3(4H)-ones. J. Med. Chem., 2011, 46, 297-306.
[108]
Biradar, J.S.; Sasidhar, B.S. Solvent-free, microwave assisted Knoevenagel condensation of novel 2,5-disubstituted indole analogues and their biological evaluation. J. Med. Chem., 2011, 46, 6112-6118.
[109]
Desai, N.C.; Dodiya, A.M. Conventional and microwave techniques for the synthesis and antimicrobial studies of novel 1-[2-(2-chloro-6-methyl (3-quinolyl))-5-(4-nitrophenyl)-(1,3,4-oxadiazolin-3-yl)]-3-(aryl)prop-2-en-1-ones. Arab. J. Chem., 2011, 1-9.
[110]
Cechov, L.; Jansa, P.; Ala, M.S.; Cínsk, M.D.; Hol, A. Janeba, Z. The optimized microwave-assisted decomposition of formamides and its synthetic utility in the amination reactions of purines. Tetrahedron, 2011, 67, 866-871.
[111]
Lee, J.; Hong, M.; Jung, Y.; Cho, E.J.; Rhee, H. Synthesis of 1,3,5-trisubstituted-1,2,4-triazoles by microwave-assisted N-acylation of amide derivatives and the consecutive reaction with hydrazine hydrochlorides. Tetrahedron, 2012, 68, 2045-2051.
[112]
Adhikari, A.; Kalluraya, B.; Sujith, K.V.; Gouthamchandra, K.; Mahmood, R. Microwave assisted synthesis of novel thiazolidinone analogues as possible bioactive agents. J. Adv. Res., 2012, 3, 325-330.
[113]
Jain, K.S.; Kathiravan, M.K.; Bariwal, J.B.; Chaskar, P.K.; Tompe, S.S.; Arya, N. Novel dual use of formamide-POCl3 mixture for the efficient, one-pot synthesis of condensed 2H-pyrimidin-4- amine libraries under microwave irradiation. Synth. Commun., 2013, 43, 719-727.
[114]
Ragno, D.; Bortolini, O.; Giovannini, P.P.; Massi, A.; Pacifico, S.; Zaghi, A. One-pot, two-step desymmetrization of symmetrical benzils catalyzed by the methylsulfinyl (dimsyl) anion. Org. Biomol. Chem., 2014, 12, 5733-5744.
[115]
Lu, X.; Wang, H.; Gao, R.; Sun, D.; Bi, X. Microwave-assisted synthesis of asymmetric disulfides. RSC Advances, 2014, 4, 28794-28797.
[116]
Maiuolo, L.; Nino, A.D.; Merino, P.; Russo, B.; Stabile, G.; Nardi, M.; D’Agostino, N.; Bernardi, T. Rapid, efficient and solvent free microwave mediated synthesis of aldo- and ketonitrones. Arab. J. Chem., 2016, 9, 25-31.
[117]
Farhadi, S.; Kazem, M.; Siadatnasa, F. NiO nanoparticles prepared via thermal decomposition of the bis(dimethylglyoximato)nickel(II) complex: A novel reusable heterogeneous catalyst for fast and efficient microwave-assisted reduction of nitroareneswith ethanol. Polyhedron, 2011, 30, 606-613.
[118]
Vaddula, B.R.; Tantak, M.P.; Sadana, R.; Gonzalez, M.A.; Kumar, D. One-pot synthesis and in vitro anticancer evaluation of 5-(2′-indolyl)thiazoles. Sci. Rep., 2016, 6, 23401.
[119]
Das, S.; Das, V.K.; Saikia, L.; Thakur, A.J. Environment-friendly and solvent-free synthesis of symmetrical bis-imines under microwave irradiation. Green Chem. Lett. Rev., 2012, 5, 457-474.
[120]
Ruiz-Carretero, A.; Ramirez, J.R.; Sanchez-Migallon, A.; Hoz, A. Tetrahedron, 2014, 70, 1733-1739.
[121]
Funfuenha, W.; Phakhodee, W.; Pattarawarapan, M. Tetrahedron, 2014, 70, 5415-5419.
[122]
Gupta, A.K.; Rao, G.I.T.; Singh, K.N. NiCl2.6H2O as recyclable heterogeneous catalyst for N-arylation of amines and NH-heterocycles under microwave exposure. Tetrahedron Lett., 2012, 53, 2218-2221.
[123]
Xia, F.; Zhao, Z.L.; Liu, N.P. Sulfuric acid catalyzed addition of b-dicarbonyl compounds to alcohols under conventional heating and microwave-assisted conditions. Tetrahedron Lett., 2012, 53, 2828-2832.
[124]
Yadav, G.D.; Devendran, S. Lipase catalyzed kinetic resolution of (±)-1-(1-naphthyl) ethanol under microwave irradiation. J. Mol. Catal., B Enzym., 2012, 81, 58-65.
[125]
Pathak, G.; Das, D.; Rokhum, L. A microwave-assisted highly practical chemoselective esterification and amidation of carboxylic acids. RSC Advances, 2016, 6, 93729.
[126]
Allen, C.L.; Chhatwal, R.A.; Williams, J.M.J. Direct amide formation from unactivated carboxylic acids and amines. Chem. Commun., 2012, 48, 666-668.
[127]
Coulibaly, W.K.; Paquin, L.; Bénie, A.; Bekro, Y.A.; Durieu, E.; Meijer, L.; Bazureau, J.P. Synthesis of N,N′-bis(5-arylidene-4-oxo-3,5-dihydro-4H-imidazol-2-yl)diamines bearing various linkers and biological evaluation as potential inhibitors of kinases. Eur. J. Med. Chem., 2012, 58, 581-590.
[128]
Chen, W.; Baghbanzadeh, M.; Kapp, C.O. Microwave-assisted nickel(II) acetylacetonate-catalyzed arylation of aldehydes with arylboronic acids. Tetrahedron Lett., 2011, 52, 1677-1679.
[129]
Das, B.; Pal, R.; Banerjee, J.; Ramesh, C.; Mahender, G.; Venkateswarlu, K. A convenient, rapid and eco-friendly synthesis of bis-indolylmethanes under microwave irradiation. Ind. J. Chem.-. B: Org. Med. Chem., 2005, 44, 327-330.
[130]
Aliyan, H.; Fazaeli, R.; Naghash, H.J.; Massah, A.R.; Momeni, A.R.; Iravani, Z. Bulk and supported tungstophosphoric acid as friendly, efficient, recyclable catalysts for the synthesis of bis-indolylmethanes under solvent-free conditions. Heteroatom Chem., 2009, 20, 325-331.
[131]
Uddin, M.I.; Buck, J.R.; Schulte, M.L.; Tang, D.; Saleh, S.A.; Cheung, Y.Y.; Harp, J.; Mannin, C. Microwave-assisted, one-pot reaction of 7-azaindoles and aldehydes: A facile route to novel di-7-azaindolylmethanes. Tetrahedron Lett., 2014, 55, 169-173.
[132]
Naeimi, H.; Raeisi, A.; Moradia, M. Microwave assisted chemistry: A rapid and regioselective route for direct ortho-acylation of phenols and naphthols by methanesulfonic acid as catalyst. Arab. J. Chem., 2017, 10, S2723-S2728.
[133]
Kanishchev, O.S.; Sanselme, M.; Bouillon, J-P. Hetero-Diels–Alder reactions of perfluoroalkyl thioamides with electron-rich 1,3-dienes: synthesis of new 2-aminosubstituted-3,6-dihydro-2H-thiopyrans and related compounds. Tetrahedron, 2013, 69, 1322-1336.
[134]
Hooyberghs, G.; Coster, H.; Vachhani, D.; Ermolat, D.S.; Eycken, E.V.V. Synthesis of [1,2,3]-triazolo[1,5-a][1,4]benzodiazepines via an unprecedented one-pot Cu-catalyzed azidation–cyclization reaction. Tetrahedron, 2013, 69, 4331-4337.
[135]
Verbitskiy, E.V.; Cheprakova, E.M.; Zhilina, E.F.; Kodess, M.I.; Ezhikova, M.A.; Pervova, M.G. Microwave-assisted palladium-catalyzed C–C coupling versus nucleophilic aromatic substitution of hydrogen (SNH) in 5-bromopyrimidine by action of bithiophene and its analogues. Tetrahedron, 2013, 69, 5164-5172.
[136]
Haggam, R.A. Cu(I)-catalyzed intramolecular cyclizations of substituted 2-iodobenzophenones under thermal andmicrowave conditions. Tetrahedron, 2013, 69, 6488-6494.
[137]
Abás, S.; Moens, U.; Escolano, C. Facile microwave-assisted synthesis of thioformamides from isocyanides and carbon disulfide. Tetrahedron Lett., 2017, 58, 2768-2770.
[138]
Teo, Y.C.; Yong, F.F.; Sim, S. Ligand-free Cu2O-catalyzed cross coupling of nitrogen heterocycles with iodopyridines. Tetrahedron, 2013, 69, 7279-7284.
[139]
Nechayev, M.A.; Gorobets, N.Y.; Shishkina, S.V.; Shishkin, O.V.; Kovalenko, S.M. Microwave-assisted acid-catalyzed nucleophilic heteroaromatic substitution: the synthesis of 7-amino-6-azaindoles. Tetrahedron, 2015, 71, 1311-1321.
[140]
Machicao, P.A.; Burt, S.R.; Christensen, R.K.; Lohner, N.B.; Singleton, J.D.; Peterson, M.A. An efficient microwave assisted synthesis of N′-aryl/(alkyl)-substituted N-(4-hydroxy-6-phenylpyrimidin-2-yl)guanidines: Scope and limitations. Tetrahedron Lett., 2017, 58, 2318-2321.
[141]
Lee, H.; Jun, C.H. Microwave-assisted, tetrabutylammonium hydroxide catalysed 1,4-addition of water to α,β-unsaturated ketones and α,β-ynones in aqueous solution. RSC Advances, 2014, 4, 48331-48335.