[1]
Ibrahim, A.S.; Khaled, H.M.; Mikhail, N.N.; Baraka, H.; Kamel, H. Cancer incidence in Egypt: Results of the national population-based cancer registry program. J. Cancer Epidemiol., 2014, 2014437971
[2]
Donato, F.; Boffetta, P.; Puoti, M. A meta-analysis of epidemiological studies on the combined effect of hepatitis B and C virus infections in causing hepatocellular carcinoma. Int. J. Cancer, 1998, 75(3), 347-354.
[3]
(a) Jackson, P.E.; Groopman, J.D. Aflatoxin and liver cancer. Best Pract. Res. Clin. Gastroenterol., 1999, 13(4), 545-555.
(b) Dhumal, S.S.; Salunkhe, D.K. Mycotoxins in Foods. In: Handbook of Natural
Toxins: Food Poisoning; CRC Press; Florida, 1992; 7, p. 291.
(c) Badria, F.A.; Abbas, H.K.; Abou-Karam, M.; Shier, W.T.; Resch, P.A. Fumonisins: Abiogenic conversions of an environmental tumor promoter and common food contaminant. J. Toxicol., 2003, 22(4), 591-616.
(d) Badria, F.A.; Zaghloul, H.; Ibrahim, A.S. Case report evidence of relationships between hepatocellular carcinoma and ochratoxicosis. PLoS One, 2013, 8(8)e71423
[4]
(a) Bosch, F.X.; Ribes, J.; Cléries, R.; Díaz, M. Epidemiology of hepatocellular carcinoma. Clin. Liver Dis., 2005, 9(2), 191-211.
(b) Badria, F.A.; El-Neketi, M.; Saad, H.-E.A. Toxicity of confiscated
illicit opium and heroin on liver. Curr. Res. Bioorg. Org. Chem., 2018, CRBOC-104
[5]
(a) El-Serag, H.B.; Marrero, J.A.; Rudolph, L.; Reddy, K.R. Diagnosis and treatment of hepatocellular carcinoma. Gastroenterology, 2008, 134(6), 1752-1763.
(b) Fan, S.T. Selection of HCC patients for liver transplantation: The Milan criteria, Hangzhou criteria and beyond. Hepatobiliary Pancreat. Dis. Int., 2008, 7(3), 233-234.
[6]
Yamamoto, J.; Kosuge, T.; Takayama, T.; Shimada, K.; Yamasaki, S.; Ozaki, H.; Yamaguchi, N.; Makuuchi, M. Recurrence of hepatocellular carcinoma after surgery. Br. J. Surg., 1996, 83(9), 1219-1222.
[7]
(a) Thomas, M.B.; O’Beirne, J.P.; Furuse, J.; Chan, A.T.; Abou-Alfa, G.; Johnson, P. Systemic therapy for hepatocellular carcinoma: cytotoxic chemotherapy, targeted therapy and immunotherapy. Ann. Surg. Oncol., 2008, 15(4), 1008-1014.
(b) Yeo, W.; Mok, T.S.; Zee, B.; Leung, T.W.; Lai, P.B.; Lau, W.Y.; Koh, J.; Mo, F.K.; Yu, S.C.; Chan, A.T. A randomized phase III study of doxorubicin versus cisplatin/interferon α-2b/doxorubicin/fluorouracil (PIAF) combination chemotherapy for unresectable hepatocellular carcinoma. J. Natl. Cancer Inst., 2005, 97(20), 1532-1538.
[8]
(a) Sobolewski, C.; Cerella, C.; Dicato, M.; Ghibelli, L.; Diederich, M. The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies. Int. J. Cell Biol., 2010, 2010215158
(b) Longley, D.; Johnston, P. Molecular mechanisms of drug resistance. J. Pathol., 2005, 205(2), 275-292.
(c) Wilson, T.; Longley, D.; Johnston, P. Chemoresistance in solid tumours. Ann. Oncol., 2006, 17(Suppl. 10), x315-x324.
(d) Kerbel, R.; Kobayashi, H.; Graham, C.H. Intrinsic or acquired drug resistance and metastasis: are they linked phenotypes? J. Cell. Biochem., 1994, 56(1), 37-47.
[9]
Molnár, J.; Gyémánt, N.; Tanaka, M.; Hohmann, J.; Bergmann-Leitner, E.; Molnár, P.; Deli, J.; Didiziapetris, R.; Ferreira, M.J. Inhibition of multidrug resistance of cancer cells by natural diterpenes, triterpenes and carotenoids. Curr. Pharm. Des., 2006, 12(3), 287-311.
[10]
El-Senduny, F.F.; Badria, F.A.; El-waseef, A.M.; Chauhan, S.C.; Halaweish, F. Approach for chemosensitization of cisplatin-resistant ovarian cancer by cucurbitacin B. Tumour Biol., 2016, 37(1), 685-698.
[11]
(a) Sharma, G.; Kar, S.; Palit, S.; Das, P.K. 18β-glycyrrhetinic acid induces apoptosis through modulation of Akt/FOXO3a/Bim pathway in human breast cancer MCF-7 cells. J. Cell. Physiol., 2012, 227(5), 1923-1931.
(b) Mukherjee, R.; Kumar, V.; Srivastava, S.K.; Agarwal, S.K.; Burman, A.C. Betulinic acid derivatives as anticancer agents: Structure activity relationship. Anticancer. Agents Med. Chem., 2006, 6(3), 271-279.
[12]
(a) Hibasami, H.; Iwase, H.; Yoshioka, K.; Takahashi, H. Glycyrrhizin induces apoptosis in human stomach cancer KATO III and human promyelotic leukemia HL-60 cells. Int. J. Mol. Med., 2005, 16(2), 233-236.
(b) Newman, D.J.; Cragg, G.M.; Snader, K.M. Natural products as sources of new drugs over the period 1981− 2002. J. Nat. Prod., 2003, 66(7), 1022-1037.
(c) Rabi, T.; Shukla, S.; Gupta, S. Betulinic acid suppresses constitutive and TNFα-induced NF-κB activation and induces apoptosis in human prostate carcinoma PC-3 cells. Mol. Carcinog., 2008, 47(12), 964-973.
(d) Badria, F.A.; Elimam, D.M.; Ibrahim, A.S. Anticancer activities of fruits and vegetables against liver and pancreatic cancers. In: Anticancer Properties Of Fruits And Vegetables: A Scientific Review; World Scientific: Singapore, 2015; pp. 185-220.
(e) El-Senduny, F.F.; Badria, F.A. EL-Waseef, M.A.; Callegari, E.A.; Halaweish, F. Cucurbitacin B restored cisplatin sensitivity of ovarian cancer cells by altering fatty acid synthase and LRP-130 protein expression. CPQ Cancer, 2018, 1(4), 15.
[13]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661.
[14]
Thoppil, R.J.; Bishayee, A. Terpenoids as potential chemopreventive and therapeutic agents in liver cancer. World J. Hepatol., 2011, 3(9), 228-249.
[15]
(a) Kris-Etherton, P.M.; Hecker, K.D.; Bonanome, A.; Coval, S.M.; Binkoski, A.E.; Hilpert, K.F.; Griel, A.E.; Etherton, T.D. Bioactive compounds in foods: Their role in the prevention of cardiovascular disease and cancer. Am. J. Med., 2002, 113(9), 71-88.
(b) Riboli, E.; Norat, T. Epidemiologic evidence of the protective effect of fruit and vegetables on cancer risk. Am. J. Clin. Nutr., 2003, 78(3), 559S-569S.
(c) Fund, W.C.R.; Research, A.I.F.C. Food, nutrition, physical activity, and the prevention of cancer: A global perspective. Am. Inst. Cancer Res, 2007, 1, 1.
[16]
(a) Ovesna, Z.; Vachalkova, A.; Horvathova, K.; Tothova, D. Pentacyclic triterpenoic acids: New chemoprotective compounds Minireview. Neoplasma, 2004, 51(5), 327-333.
(b) Lee, K-H. Research and future trends in the pharmaceutical development of medicinal herbs from Chinese medicine. Public Health Nutr., 2000, 3(4a), 515-522.
[17]
(a) Setzer, W.; Setzer, M. Plant-derived triterpenoids as potential antineoplastic agents. Mini Rev. Med. Chem., 2003, 3(6), 540-556.
(b) Laszczyk, M.N. Pentacyclic triterpenes of the lupane, oleanane and ursane group as tools in cancer therapy. Planta Med., 2009, 75(15), 1549-1560.
[18]
Liby, K.T.; Yore, M.M.; Sporn, M.B. Triterpenoids and rexinoids as multifunctional agents for the prevention and treatment of cancer. Nat. Rev. Cancer, 2007, 7(5), 357-369.
[20]
(a) Badria, F.A.; Houssen, W.E.; El-Nashar, E.M.; Saaed, S.A. Effect of glycyrrhizin and Boswellia carterii extract on liver injury: Biochemical and histopathological evaluation. Biosci. Biotechnol. Res. Asia, 2003, 1, 93-96.
(b) Badria, F.A.; Mikhaeil, B.R.; Maatooq, G.T.; Amer, M.M. Immunomodulatory triterpenoids from the oleogum resin of Boswellia carterii Birdwood. Zeitschrift für Naturforschung C, 2003, 58(7-8), 505-516.
[21]
Bar, F.M.A.; Khanfar, M.A.; Elnagar, A.Y.; Liu, H.; Zaghloul, A.M.; Badria, F.A.; Sylvester, P.W.; Ahmad, K.F.; Raisch, K.P.; El Sayed, K.A. Rational design and semisynthesis of betulinic acid analogues as potent topoisomerase inhibitors. J. Nat. Prod., 2009, 72(9), 1643-1650.
[22]
Abdel Bar, F.M.; Elimam, D.M.; Mira, A.S.; El-Senduny, F.F.; Badria, F.A. Derivatization, molecular docking and in vitro acetylcholinesterase inhibitory activity of glycyrrhizin as a selective anti-Alzheimer agent. Nat. Prod. Res., 2018, 33(18), 2591-2599.
[23]
Vega-Avila, E.; Pugsley, M.K. An Overview Of Colorimetric Assay Methods Used To Assess Survival Or Proliferation of Mammalian Cells. Proc. West. Pharmacol. Soc., 2011, 54, 10-14.
[24]
Abdel Bar, F.M.; Elimam, D.M.; Mira, A.S.; El-Senduny, F.F.; Badria, F.A.J.N. Derivatization, molecular docking and in vitro acetylcholinesterase inhibitory activity of glycyrrhizin as a selective anti-Alzheimer agent. Nat. Prod. Res., 2019, 33(18), 2591-2599.
[25]
Safayhi, H.; Sailer, E-R.; Ammon, H. Mechanism of 5-lipoxygenase inhibition by acetyl-11-keto-beta-boswellic acid. Mol. Pharmacol., 1995, 47(6), 1212-1216.
[26]
Guan, J-L. Cell migration: Developmental methods and protocols; Springer Science & Business Media, 2005, Vol. 294, .
[27]
Tang, D.; Lahti, J.M.; Kidd, V.J. Caspase-8 activation and bid cleavage contribute to MCF7 cellular execution in a caspase-3-dependent manner during staurosporine-mediated apoptosis. J. Biol. Chem., 2000, 275(13), 9303-9307.
[28]
Parkin, D.M.; Pisani, P.; Ferlay, J. Global cancer statistics. CA, 1999, 49(1), 33-64.
[29]
Salomatina, O.V.; Markov, A.V.; Logashenko, E.B.; Korchagina, D.V.; Zenkova, M.A.; Salakhutdinov, N.F.; Vlassov, V.V.; Tolstikov, G.A. Synthesis of novel 2-cyano substituted glycyrrhetinic acid derivatives as inhibitors of cancer cells growth and NO production in LPS-activated J-774 cells. Bioorg. Med. Chem., 2014, 22(1), 585-593.
[30]
Yo, Y-T.; Shieh, G-S.; Hsu, K-F.; Wu, C-L.; Shiau, A-L. Licorice and licochalcone-A induce autophagy in LNCaP prostate cancer cells by suppression of Bcl-2 expression and the mTOR pathway. J. Agric. Food Chem., 2009, 57(18), 8266-8273.
[31]
(a) Yan, X-J.; Gong, L-H.; Zheng, F-Y.; Cheng, K-J.; Chen, Z-S.; Shi, Z. Triterpenoids as reversal agents for anticancer drug resistance treatment. Drug Discov. Today, 2014, 19(4), 482-488.
(b) Siracusa, L.; Saija, A.; Cristani, M.; Cimino, F.; D’Arrigo, M.; Trombetta, D.; Rao, F.; Ruberto, G. Phytocomplexes from liquorice (Glycyrrhiza glabra L.) leaves-chemical characterization and evaluation of their antioxidant, anti-genotoxic and anti-inflammatory activity. Fitoterapia, 2011, 82(4), 546-556.
(c) Ramos, A.A.; Lima, C.F.; Pereira, M.; Fernandes-Ferreira, M.; Pereira-Wilson, C. Antigenotoxic effects of quercetin, rutin and ursolic acid on HepG2 cells: Evaluation by the comet assay. Toxicol. Lett., 2008, 177(1), 66-73.
[32]
Su, X.; Wu, L.; Hu, M.; Dong, W.; Xu, M.; Zhang, P. Glycyrrhizic acid: A promising carrier material for anticancer therapy. Biomed. Pharmacother., 2017, 95, 670-678.
[33]
Sakamoto, K.M.; Grant, S.; Saleiro, D.; Crispino, J.D.; Hijiya, N.; Giles, F.; Platanias, L.; Eklund, E.A. Targeting novel signaling pathways for resistant acute myeloid leukemia. Mol. Genet. Metab., 2015, 114(3), 397-402.
[34]
Wang, L-H. Molecular signaling regulating anchorage-independent growth of cancer cells. Mount. Sinai J. Med., 2004, 71(6), 361-367.
[35]
Jiang, J.; Grieb, B.; Thyagarajan, A.; Sliva, D. Ganoderic acids suppress growth and invasive behavior of breast cancer cells by modulating AP-1 and NF-κB signaling. Int. J. Oncol., 2008, 21(5), 577-584.
[36]
Park, J-H.; Lim, H.J.; Lee, K-S.; Lee, S.; Kwak, H-J.; Cha, J-H.; Park, H-Y. Anti-proliferative effect of licochalcone A on vascular smooth muscle cells. Biol. Pharm. Bull., 2008, 31(11), 1996-2000.
[37]
Fu, Y.; Hsieh, T-C.; Guo, J.; Kunicki, J.; Lee, M.Y.; Darzynkiewicz, Z.; Wu, J.M. Licochalcone-A, a novel flavonoid isolated from licorice root (Glycyrrhiza glabra), causes G2 and late-G1 arrests in androgen-independent PC-3 prostate cancer cells. Biochem. Biophys. Res. Commun., 2004, 322(1), 263-270.
[38]
Darzynkiewicz, Z.; Bedner, E. Analysis of apoptotic cells by flow and laser scanning cytometry. Methods Enzymol., 2000, 322, 18-39.
[39]
Ashkenazi, A.; Dixit, V.M. Death receptors: Signaling and modulation. Science, 1998, 281(5381), 1305-1308.
[40]
Miyashita, T.; Krajewski, S.; Krajewska, M.; Wang, H.G.; Lin, H.; Liebermann, D.A.; Hoffman, B.; Reed, J.C. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene, 1994, 9(6), 1799-1805.
[41]
Haldar, S.; Negrini, M.; Monne, M.; Sabbioni, S.; Croce, C.M. Down-regulation of bcl-2 by p53 in breast cancer cells. Cancer Res., 1994, 54(8), 2095-2097.
[42]
Weng, C.; Li, Y.; Xu, D.; Shi, Y.; Tang, H. Specific cleavage of Mcl-1 by caspase-3 in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in Jurkat leukemia T cells. J. Biol. Chem., 2005, 280(11), 10491-10500.