Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

An Approach to Treatment of Liver Cancer by Novel Glycyrrhizin Derivative

Author(s): Fardous F. El-Senduny, Mahmoud M. Zidane, Magdy M. Youssef and Farid A. Badria*

Volume 19, Issue 15, 2019

Page: [1863 - 1873] Pages: 11

DOI: 10.2174/1871520619666190411114718

Price: $65

Abstract

Background: Liver cancer is a life threating disease as it is the fifth most common cancer and the third most common cause of death worldwide with no safe, efficient, and economic drug available for treatment.

Methods: This study intended to investigate glycyrrhizin and its derivatives for possible use as a cytotoxic agent and as a drug for liver cancer treatment. Thus, after treatment of liver cancer cell line HepG-2 with 50 μM of each compound, cell viability was determined.

Results: The cytotoxicity assay showed glycyrrhizin derivatives ME-GA (18β-Glycyrrhetinic-30-methyl ester) and AKBA (3-acetyl-11- keto-β-Boswellic acid) to be the most potent drug against liver cancer cell line HepG-2 with IC50 values 25.50 ± 1.06 and 19.73 ± 0.89 μM, respectively. Both the compounds showed higher selectivity towards hepatocellular carcinoma rather than the normal lung fibroblast cell line WI-38. The presence of methyl ester at C-30 greatly increased the cytotoxicity of ME-GA which might be attributed to its higher activity and selectivity. Both ME-GA and AKBA contributed to inhibit cancer cell migration in the wound healing assay and impeded colony formation. The use of flow cytometry to carry out cell cycle analysis and the determination of possible mechanisms of action for apoptosis revealed that ME-GA arrested the cell cycle at G2/M that led to the inhibition of hepatocellular carcinoma and induced apoptosis via the extrinsic pathway and its ability to increase p53 transactivation.

Conclusion: This work highlights the cytotoxicity of glycyrrhizin and its derivatives for possible use as a chemotherapeutic agent against hepatocellular carcinoma cells HepG-2. The most cytotoxic compound was ME-GA (18β-Glycyrrhetinic-30-methyl ester) with no cytotoxic effect on the normal cell line. In summary, this new derivative may be used as an alternative or complementary medicine for liver cancer.

Keywords: Liver cancer, pentacyclic triterpenoids, cytotoxicity, selective index, cell cycle, apoptosis.

Graphical Abstract
[1]
Ibrahim, A.S.; Khaled, H.M.; Mikhail, N.N.; Baraka, H.; Kamel, H. Cancer incidence in Egypt: Results of the national population-based cancer registry program. J. Cancer Epidemiol., 2014, 2014437971
[2]
Donato, F.; Boffetta, P.; Puoti, M. A meta-analysis of epidemiological studies on the combined effect of hepatitis B and C virus infections in causing hepatocellular carcinoma. Int. J. Cancer, 1998, 75(3), 347-354.
[3]
(a) Jackson, P.E.; Groopman, J.D. Aflatoxin and liver cancer. Best Pract. Res. Clin. Gastroenterol., 1999, 13(4), 545-555.
(b) Dhumal, S.S.; Salunkhe, D.K. Mycotoxins in Foods. In: Handbook of Natural Toxins: Food Poisoning; CRC Press; Florida, 1992; 7, p. 291.
(c) Badria, F.A.; Abbas, H.K.; Abou-Karam, M.; Shier, W.T.; Resch, P.A. Fumonisins: Abiogenic conversions of an environmental tumor promoter and common food contaminant. J. Toxicol., 2003, 22(4), 591-616.
(d) Badria, F.A.; Zaghloul, H.; Ibrahim, A.S. Case report evidence of relationships between hepatocellular carcinoma and ochratoxicosis. PLoS One, 2013, 8(8)e71423
[4]
(a) Bosch, F.X.; Ribes, J.; Cléries, R.; Díaz, M. Epidemiology of hepatocellular carcinoma. Clin. Liver Dis., 2005, 9(2), 191-211.
(b) Badria, F.A.; El-Neketi, M.; Saad, H.-E.A. Toxicity of confiscated illicit opium and heroin on liver. Curr. Res. Bioorg. Org. Chem., 2018, CRBOC-104
[5]
(a) El-Serag, H.B.; Marrero, J.A.; Rudolph, L.; Reddy, K.R. Diagnosis and treatment of hepatocellular carcinoma. Gastroenterology, 2008, 134(6), 1752-1763.
(b) Fan, S.T. Selection of HCC patients for liver transplantation: The Milan criteria, Hangzhou criteria and beyond. Hepatobiliary Pancreat. Dis. Int., 2008, 7(3), 233-234.
[6]
Yamamoto, J.; Kosuge, T.; Takayama, T.; Shimada, K.; Yamasaki, S.; Ozaki, H.; Yamaguchi, N.; Makuuchi, M. Recurrence of hepatocellular carcinoma after surgery. Br. J. Surg., 1996, 83(9), 1219-1222.
[7]
(a) Thomas, M.B.; O’Beirne, J.P.; Furuse, J.; Chan, A.T.; Abou-Alfa, G.; Johnson, P. Systemic therapy for hepatocellular carcinoma: cytotoxic chemotherapy, targeted therapy and immunotherapy. Ann. Surg. Oncol., 2008, 15(4), 1008-1014.
(b) Yeo, W.; Mok, T.S.; Zee, B.; Leung, T.W.; Lai, P.B.; Lau, W.Y.; Koh, J.; Mo, F.K.; Yu, S.C.; Chan, A.T. A randomized phase III study of doxorubicin versus cisplatin/interferon α-2b/doxorubicin/fluorouracil (PIAF) combination chemotherapy for unresectable hepatocellular carcinoma. J. Natl. Cancer Inst., 2005, 97(20), 1532-1538.
[8]
(a) Sobolewski, C.; Cerella, C.; Dicato, M.; Ghibelli, L.; Diederich, M. The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies. Int. J. Cell Biol., 2010, 2010215158
(b) Longley, D.; Johnston, P. Molecular mechanisms of drug resistance. J. Pathol., 2005, 205(2), 275-292.
(c) Wilson, T.; Longley, D.; Johnston, P. Chemoresistance in solid tumours. Ann. Oncol., 2006, 17(Suppl. 10), x315-x324.
(d) Kerbel, R.; Kobayashi, H.; Graham, C.H. Intrinsic or acquired drug resistance and metastasis: are they linked phenotypes? J. Cell. Biochem., 1994, 56(1), 37-47.
[9]
Molnár, J.; Gyémánt, N.; Tanaka, M.; Hohmann, J.; Bergmann-Leitner, E.; Molnár, P.; Deli, J.; Didiziapetris, R.; Ferreira, M.J. Inhibition of multidrug resistance of cancer cells by natural diterpenes, triterpenes and carotenoids. Curr. Pharm. Des., 2006, 12(3), 287-311.
[10]
El-Senduny, F.F.; Badria, F.A.; El-waseef, A.M.; Chauhan, S.C.; Halaweish, F. Approach for chemosensitization of cisplatin-resistant ovarian cancer by cucurbitacin B. Tumour Biol., 2016, 37(1), 685-698.
[11]
(a) Sharma, G.; Kar, S.; Palit, S.; Das, P.K. 18β-glycyrrhetinic acid induces apoptosis through modulation of Akt/FOXO3a/Bim pathway in human breast cancer MCF-7 cells. J. Cell. Physiol., 2012, 227(5), 1923-1931.
(b) Mukherjee, R.; Kumar, V.; Srivastava, S.K.; Agarwal, S.K.; Burman, A.C. Betulinic acid derivatives as anticancer agents: Structure activity relationship. Anticancer. Agents Med. Chem., 2006, 6(3), 271-279.
[12]
(a) Hibasami, H.; Iwase, H.; Yoshioka, K.; Takahashi, H. Glycyrrhizin induces apoptosis in human stomach cancer KATO III and human promyelotic leukemia HL-60 cells. Int. J. Mol. Med., 2005, 16(2), 233-236.
(b) Newman, D.J.; Cragg, G.M.; Snader, K.M. Natural products as sources of new drugs over the period 1981− 2002. J. Nat. Prod., 2003, 66(7), 1022-1037.
(c) Rabi, T.; Shukla, S.; Gupta, S. Betulinic acid suppresses constitutive and TNFα-induced NF-κB activation and induces apoptosis in human prostate carcinoma PC-3 cells. Mol. Carcinog., 2008, 47(12), 964-973.
(d) Badria, F.A.; Elimam, D.M.; Ibrahim, A.S. Anticancer activities of fruits and vegetables against liver and pancreatic cancers. In: Anticancer Properties Of Fruits And Vegetables: A Scientific Review; World Scientific: Singapore, 2015; pp. 185-220.
(e) El-Senduny, F.F.; Badria, F.A. EL-Waseef, M.A.; Callegari, E.A.; Halaweish, F. Cucurbitacin B restored cisplatin sensitivity of ovarian cancer cells by altering fatty acid synthase and LRP-130 protein expression. CPQ Cancer, 2018, 1(4), 15.
[13]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661.
[14]
Thoppil, R.J.; Bishayee, A. Terpenoids as potential chemopreventive and therapeutic agents in liver cancer. World J. Hepatol., 2011, 3(9), 228-249.
[15]
(a) Kris-Etherton, P.M.; Hecker, K.D.; Bonanome, A.; Coval, S.M.; Binkoski, A.E.; Hilpert, K.F.; Griel, A.E.; Etherton, T.D. Bioactive compounds in foods: Their role in the prevention of cardiovascular disease and cancer. Am. J. Med., 2002, 113(9), 71-88.
(b) Riboli, E.; Norat, T. Epidemiologic evidence of the protective effect of fruit and vegetables on cancer risk. Am. J. Clin. Nutr., 2003, 78(3), 559S-569S.
(c) Fund, W.C.R.; Research, A.I.F.C. Food, nutrition, physical activity, and the prevention of cancer: A global perspective. Am. Inst. Cancer Res, 2007, 1, 1.
[16]
(a) Ovesna, Z.; Vachalkova, A.; Horvathova, K.; Tothova, D. Pentacyclic triterpenoic acids: New chemoprotective compounds Minireview. Neoplasma, 2004, 51(5), 327-333.
(b) Lee, K-H. Research and future trends in the pharmaceutical development of medicinal herbs from Chinese medicine. Public Health Nutr., 2000, 3(4a), 515-522.
[17]
(a) Setzer, W.; Setzer, M. Plant-derived triterpenoids as potential antineoplastic agents. Mini Rev. Med. Chem., 2003, 3(6), 540-556.
(b) Laszczyk, M.N. Pentacyclic triterpenes of the lupane, oleanane and ursane group as tools in cancer therapy. Planta Med., 2009, 75(15), 1549-1560.
[18]
Liby, K.T.; Yore, M.M.; Sporn, M.B. Triterpenoids and rexinoids as multifunctional agents for the prevention and treatment of cancer. Nat. Rev. Cancer, 2007, 7(5), 357-369.
[19]
Yang, Z.; Xiong, H-R. Culture conditions and types of growth media for mammalian cells., 2012. Available from: https://www. intechopen.com/books/biomedical-tissue-culture/culture-conditions-and-types-of-growth-media-for-mammalian-cells
[20]
(a) Badria, F.A.; Houssen, W.E.; El-Nashar, E.M.; Saaed, S.A. Effect of glycyrrhizin and Boswellia carterii extract on liver injury: Biochemical and histopathological evaluation. Biosci. Biotechnol. Res. Asia, 2003, 1, 93-96.
(b) Badria, F.A.; Mikhaeil, B.R.; Maatooq, G.T.; Amer, M.M. Immunomodulatory triterpenoids from the oleogum resin of Boswellia carterii Birdwood. Zeitschrift für Naturforschung C, 2003, 58(7-8), 505-516.
[21]
Bar, F.M.A.; Khanfar, M.A.; Elnagar, A.Y.; Liu, H.; Zaghloul, A.M.; Badria, F.A.; Sylvester, P.W.; Ahmad, K.F.; Raisch, K.P.; El Sayed, K.A. Rational design and semisynthesis of betulinic acid analogues as potent topoisomerase inhibitors. J. Nat. Prod., 2009, 72(9), 1643-1650.
[22]
Abdel Bar, F.M.; Elimam, D.M.; Mira, A.S.; El-Senduny, F.F.; Badria, F.A. Derivatization, molecular docking and in vitro acetylcholinesterase inhibitory activity of glycyrrhizin as a selective anti-Alzheimer agent. Nat. Prod. Res., 2018, 33(18), 2591-2599.
[23]
Vega-Avila, E.; Pugsley, M.K. An Overview Of Colorimetric Assay Methods Used To Assess Survival Or Proliferation of Mammalian Cells. Proc. West. Pharmacol. Soc., 2011, 54, 10-14.
[24]
Abdel Bar, F.M.; Elimam, D.M.; Mira, A.S.; El-Senduny, F.F.; Badria, F.A.J.N. Derivatization, molecular docking and in vitro acetylcholinesterase inhibitory activity of glycyrrhizin as a selective anti-Alzheimer agent. Nat. Prod. Res., 2019, 33(18), 2591-2599.
[25]
Safayhi, H.; Sailer, E-R.; Ammon, H. Mechanism of 5-lipoxygenase inhibition by acetyl-11-keto-beta-boswellic acid. Mol. Pharmacol., 1995, 47(6), 1212-1216.
[26]
Guan, J-L. Cell migration: Developmental methods and protocols; Springer Science & Business Media, 2005, Vol. 294, .
[27]
Tang, D.; Lahti, J.M.; Kidd, V.J. Caspase-8 activation and bid cleavage contribute to MCF7 cellular execution in a caspase-3-dependent manner during staurosporine-mediated apoptosis. J. Biol. Chem., 2000, 275(13), 9303-9307.
[28]
Parkin, D.M.; Pisani, P.; Ferlay, J. Global cancer statistics. CA, 1999, 49(1), 33-64.
[29]
Salomatina, O.V.; Markov, A.V.; Logashenko, E.B.; Korchagina, D.V.; Zenkova, M.A.; Salakhutdinov, N.F.; Vlassov, V.V.; Tolstikov, G.A. Synthesis of novel 2-cyano substituted glycyrrhetinic acid derivatives as inhibitors of cancer cells growth and NO production in LPS-activated J-774 cells. Bioorg. Med. Chem., 2014, 22(1), 585-593.
[30]
Yo, Y-T.; Shieh, G-S.; Hsu, K-F.; Wu, C-L.; Shiau, A-L. Licorice and licochalcone-A induce autophagy in LNCaP prostate cancer cells by suppression of Bcl-2 expression and the mTOR pathway. J. Agric. Food Chem., 2009, 57(18), 8266-8273.
[31]
(a) Yan, X-J.; Gong, L-H.; Zheng, F-Y.; Cheng, K-J.; Chen, Z-S.; Shi, Z. Triterpenoids as reversal agents for anticancer drug resistance treatment. Drug Discov. Today, 2014, 19(4), 482-488.
(b) Siracusa, L.; Saija, A.; Cristani, M.; Cimino, F.; D’Arrigo, M.; Trombetta, D.; Rao, F.; Ruberto, G. Phytocomplexes from liquorice (Glycyrrhiza glabra L.) leaves-chemical characterization and evaluation of their antioxidant, anti-genotoxic and anti-inflammatory activity. Fitoterapia, 2011, 82(4), 546-556.
(c) Ramos, A.A.; Lima, C.F.; Pereira, M.; Fernandes-Ferreira, M.; Pereira-Wilson, C. Antigenotoxic effects of quercetin, rutin and ursolic acid on HepG2 cells: Evaluation by the comet assay. Toxicol. Lett., 2008, 177(1), 66-73.
[32]
Su, X.; Wu, L.; Hu, M.; Dong, W.; Xu, M.; Zhang, P. Glycyrrhizic acid: A promising carrier material for anticancer therapy. Biomed. Pharmacother., 2017, 95, 670-678.
[33]
Sakamoto, K.M.; Grant, S.; Saleiro, D.; Crispino, J.D.; Hijiya, N.; Giles, F.; Platanias, L.; Eklund, E.A. Targeting novel signaling pathways for resistant acute myeloid leukemia. Mol. Genet. Metab., 2015, 114(3), 397-402.
[34]
Wang, L-H. Molecular signaling regulating anchorage-independent growth of cancer cells. Mount. Sinai J. Med., 2004, 71(6), 361-367.
[35]
Jiang, J.; Grieb, B.; Thyagarajan, A.; Sliva, D. Ganoderic acids suppress growth and invasive behavior of breast cancer cells by modulating AP-1 and NF-κB signaling. Int. J. Oncol., 2008, 21(5), 577-584.
[36]
Park, J-H.; Lim, H.J.; Lee, K-S.; Lee, S.; Kwak, H-J.; Cha, J-H.; Park, H-Y. Anti-proliferative effect of licochalcone A on vascular smooth muscle cells. Biol. Pharm. Bull., 2008, 31(11), 1996-2000.
[37]
Fu, Y.; Hsieh, T-C.; Guo, J.; Kunicki, J.; Lee, M.Y.; Darzynkiewicz, Z.; Wu, J.M. Licochalcone-A, a novel flavonoid isolated from licorice root (Glycyrrhiza glabra), causes G2 and late-G1 arrests in androgen-independent PC-3 prostate cancer cells. Biochem. Biophys. Res. Commun., 2004, 322(1), 263-270.
[38]
Darzynkiewicz, Z.; Bedner, E. Analysis of apoptotic cells by flow and laser scanning cytometry. Methods Enzymol., 2000, 322, 18-39.
[39]
Ashkenazi, A.; Dixit, V.M. Death receptors: Signaling and modulation. Science, 1998, 281(5381), 1305-1308.
[40]
Miyashita, T.; Krajewski, S.; Krajewska, M.; Wang, H.G.; Lin, H.; Liebermann, D.A.; Hoffman, B.; Reed, J.C. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene, 1994, 9(6), 1799-1805.
[41]
Haldar, S.; Negrini, M.; Monne, M.; Sabbioni, S.; Croce, C.M. Down-regulation of bcl-2 by p53 in breast cancer cells. Cancer Res., 1994, 54(8), 2095-2097.
[42]
Weng, C.; Li, Y.; Xu, D.; Shi, Y.; Tang, H. Specific cleavage of Mcl-1 by caspase-3 in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in Jurkat leukemia T cells. J. Biol. Chem., 2005, 280(11), 10491-10500.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy