[1]
Lin, L.G.; Liu, Q.Y.; Ye, Y. Naturally occurring homoisoflavonoids and their pharmacological activities. Planta Med., 2014, 80(13), 1053-1066.
[2]
Jiang, H.B.; Huang, J.; Guo, M.J.; Zou, P.; Tian, X.Q. Recent advances in the study of natural homoisoflavonoids. Acta Pharm. Sin, 2007, 42(2), 118-126.
[3]
Rafi, M.M.; Vastano, B.C. Identification of a structure specific Bcl-2 phosphorylating homoisoflavone molecule from Vietnamese coriander (Polygonatum odoratum) that induces apoptosis and G2/M cell cycle arrest in breast cancer cell lines. Food Chem., 2007, 104(1), 332-340.
[4]
Alipour, E.; Mousavi, Z.; Safaei, Z.; Pordeli, M.; Safavi, M.; Firoozpour, L.; Mohammadhosseini, N.; Saeedi, M.; Ardestani, S.K.; Shafiee, A.; Foroumadi, A. Synthesis and cytotoxic evaluation of some new [1,3]dioxolo[4,5-g]chromen-8- one derivatives. Daru J. Pharm. Sci, 2014, 22(1), 41.
[5]
Zhou, C.X.; Zou, L.; Mo, J.X.; Wang, X.Y.; Yang, B.; He, Q.J.; Gan, L.S. Homoisoflavonoids from Ophiopogon japonicas. Helv. Chim. Acta, 2013, 96(7), 1203-1407.
[6]
Tait, S.; Salvati, A.L.; Desideri, N.; Fiore, L. Antiviral activity of substituted homoisoflavonoids on enteroviruses. Antiviral Res., 2006, 72(3), 252-255.
[7]
Hung, T.M.; Thu, C.V.; Dat, N.T.; Ryoo, S.W.; Lee, J.H.; Kim, J.C.; Na, M.; Jung, H.J.; Bae, K.; Min, B.S. Homoisoflavonoid derivatives from the roots of Ophiopogon japonicus and their in vitro anti-inflammation activity. Bioorg. Med. Chem. Lett., 2010, 20(8), 2412-2416.
[8]
Li, N.; Zhang, J.Y.; Zeng, K.W.; Zhang, L.; Che, Y.Y.; Tu, P.F. Anti-inflammatory homoisoflavonoids from the tuberous roots of Ophiopogon japonicas. Fitoterapia, 2012, 83(6), 1042-1045.
[9]
Shaikh, M.M.; Kruger, H.G.; Bodenstein, J.; Smith, P.; duToit, K. Anti-inflammatory activities of selected synthetic homoisoflavanones. Nat. Prod. Res., 2012, 26(16), 1473-1482.
[10]
Siddaiah, V.; Maheswara, M.; Rao, C.V.; Venkateswarlu, S.; Subbaraju, G.V. Synthesis, structural revision, and antioxidant activities of antimutagenic homoisoflavonoids from Hoffmanosseggia intricate. Bioorg. Med. Chem. Lett., 2007, 17(5), 1288-1290.
[11]
Wang, D.M.; Zeng, L.; Li, D.W.; Pu, W.J. Antioxidant activities of different extracts and homoisoflavanones isolated from the Polygonatum odoratum. Nat. Prod. Res., 2013, 27(12), 1111-1114.
[12]
Hu, C.M.; Kang, J.J.; Lee, C.C.; Li, C.H.; Liao, J.W.; Cheng, Y.W. Induction of vasorelaxation through activation of nitric oxide synthase in endothelial cells by brazilin. Eur. J. Pharmacol., 2003, 468(1), 37-45.
[13]
Basavarajappa, H.D.; Lee, B.; Lee, H.; Sulaiman, R.S.; An, H.C.; Magaña, C.; Shadmand, M.; Vayl, A.; Rajashekhar, G.; Kim, E.Y.; Suh, Y.G.; Lee, K.; Seo, S.Y.; Corson, T.W. Synthesis and biological evaluation of novel homoisoflavonoids for retinal neovascularization. J. Med. Chem., 2015, 58(12), 5015-5027.
[14]
Yempala, T.; Sriram, D.; Yogeeswari, P.; Kantevari, S. Molecular hybridization of bioactives: synthesis and antitubercular evaluation of novel dibenzofuran embodied homoisoflavonoids via Baylis-Hillman reaction. Bioorg. Med. Chem. Lett., 2012, 22(24), 7426-7430.
[15]
Zheng, G.X.; Zhang, Z.C.; Kang, B.R.; Yu, R.H.; Cao, Y.X.; Zhang, S.Q. Synthesis and vasodilatation of homoisoflavones. hin. J. Org. Chem, 2015, 35(5), 1112-1122.
[16]
Desideri, N.; Bolasco, A.; Fioravanti, R.; Monaco, L.P.; Orallo, F.; Yáñez, M.; Ortuso, F.; Alcaro, S. Homoisoflavonoids: natural scaffolds with potent and selective monoamine oxidase-B inhibition propertie. J. Med. Chem., 2011, 54(7), 2155-2164.
[17]
Sun, Y.; Chen, J.W.; Chen, X.M.; Huang, L.; Li, X.S. Inhibition of cholinesterase and monoamine oxidase-B activity by Tacrine-Homoisoflavonoid hybrids. Bioorg. Med. Chem., 2013, 21(23), 7406-7417.
[18]
Gan, C.S.; Zhao, Z.Z.; Nan, D.D.; Yin, B.B.; Hu, J.Y. Homoisoflavonoids as potential imaging agents for β-amyloid plaques in Alzheimer’s disease. Eur. J. Med. Chem., 2014, 76, 125-131.
[19]
Pourshojaei, Y.; Gouranourimi, A.; Hekmat, S.; Asadipour, A.; Rahmani-Nezhad, S.; Moradi, A.; Nadri, H.F.; Moghadam, H.; Emami, S.; Foroumadi, A.; Shafiee, A. Design, synthesis and anticholinesterase activity of novel benzylidenechroman-4-ones bearing cyclic amine side chain. Eur. J. Med. Chem., 2015, 97, 181-189.
[20]
Gan, L.S.; Zeng, L.W.; Li, X.R.; Zhou, C.X.; Li, J. New homoisoflavonoid analogues protect cells by regulating autophagy. Bioorg. Med. Chem. Lett., 2017, 27(6), 1441-1445.