Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

General Review Article

Mitochondria: A Connecting Link in the Major Depressive Disorder Jigsaw

Author(s): Shilpa Sharma and Ravi S. Akundi*

Volume 17, Issue 6, 2019

Page: [550 - 562] Pages: 13

DOI: 10.2174/1570159X16666180302120322

Price: $65

Abstract

Background: Depression is a widespread phenomenon with varying degrees of pathology in different patients. Various hypotheses have been proposed for the cause and continuance of depression. Some of these include, but not limited to, the monoamine hypothesis, the neuroendocrine hypothesis, and the more recent epigenetic and inflammatory hypotheses.

Objective: In this article, we review all the above hypotheses with a focus on the role of mitochondria as the connecting link. Oxidative stress, respiratory activity, mitochondrial dynamics and metabolism are some of the mitochondria-dependent factors which are affected during depression. We also propose exogenous ATP as a contributing factor to depression.

Result: Literature review shows that pro-inflammatory markers are elevated in depressive individuals. The cause for elevated levels of cytokines in depression is not completely understood. We propose exogenous ATP activates purinergic receptors which in turn increase the levels of various proinflammatory factors in the pathophysiology of depression.

Conclusion: Mitochondria are integral to the function of neurons and undergo dysfunction in major depressive disorder patients. This dysfunction is reflected in all the various hypotheses that have been proposed for depression. Among the newer targets identified, which also involve mitochondria, includes the role of exogenous ATP. The diversity of purinergic receptors, and their differential expression among various individuals in the population, due to genetic and environmental (prenatal) influences, may influence the susceptibility and severity of depression. Identifying specific receptors involved and using patient-specific purinergic receptor antagonist may be an appropriate therapeutic course in the future.

Keywords: Major depressive disorder, mitochondria, ATP, purinergic receptors, neuroinflammation, PBAIDs.

Graphical Abstract
[1]
Collins, P.Y.; Patel, V.; Joestl, S.S.; March, D.; Insel, T.R.; Daar, A.S. Scientific Advisory Board and the Executive Committee of the Grand Challenges on Global Mental Health. Grand challenges in global mental health Nature,, 2011, 475(7354), 27-30.
[http://dx.doi.org/10.1038/475027a]] [PMID: 21734685]
[2]
Gardner, A.; Boles, R. Beyond the serotonin hypothesis: mitochondria, inflammation and neurodegeneration in major depression and affective spectrum disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, 35(3), 730-743.
[http://dx.doi.org/10.1016/j.pnpbp.2010.07.030] [PMID: 20691744]
[3]
Tobe, E.H. Mitochondrial dysfunction.; oxidative stress.; and major depressive disorder. Neuropsychiatr. Dis. Treat, 2013, 9, 567-73.
[http://dx.doi.org/10.2147/NDT.S44282] [PMID: 23650447]
[4]
Bansal, Y.; Kuhad, A. Mitochondrial dysfunction in depression Curr. Neuropharmacol., 2016, 14(6), 610-8.
[http://dx.doi.org/10.2174/1570159X14666160229114755] [PMID: 26923778]
[5]
Mattson, M.P.; Gleichmann, M.; Cheng, A. Mitochondria in neuroplasticity and neurological disorders. Neuron, 2008, 60(5), 748-66.
[http://dx.doi.org/10.1016/j.neuron.2008.10.010]] [PMID: 19081372]
[6]
Narendra, D.P.; Jin, S.M.; Tanaka, A.; Suen, D.F.; Gautier, C.A.; Shen, J.; Cookson, M.R.; Youle, R. J. Pink1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol, 2010, 8(1), e1000298.
[http://dx.doi.org/10.1371/journal.pbio.1000298] [PMID: 20126261]
[7]
Guedes-Dias, P.; Pinho, B.R.; Soares, T.R.; de Proenca, J.; Duchen, M.R.; Oliveira, J.M. Mitochondrial dynamics and quality control in huntington’s disease. Neurobiol. Dis, 2016, 90, 51-7.
[http://dx.doi.org/10.1016/j.nbd.2015.09.008] [PMID: 26388396]
[8]
Klinedinst, N.J.; Regenold, W.T. A mitochondrial bioenergetics basis of depression. J. Bioenergetics Biomembranes, 2014, 47(1-2), 155-71.
[http://dx.doi.org/10.1007/s10863-014-9584-6] [PMID: 25262287]
[9]
Gardner, A.; Johansson, A.; Wibom, R.; Nennesmo, I.; von Dobeln, U.; Hagenfeldt, L.; Hallstrom, T. Alterations of mitochondrial function and correlations with personality traits in selected major depressive disorder patients. J. Affect. Disord, 2003, 76, 55-68.
[http://dx.doi.org/10.1016/S0165-0327(02)00067-8] [PMID: 12943934]
[10]
Rezin, T.G.; Gonclaves, L.C.; Daufenbach, F.J.; Fraga, B.D.; Santos, M.P.; Ferreira, K.G.; Hermani, V.F.; Comim, M.C.; Quevedo, J.; Streck, L.E. Acute administration of ketamine reverses the inhibition of mitochondrial respiratory chain induced by chronic mild stress. Brain Res. Bull, 2009, 79, 418-21.
[http://dx.doi.org/10.1016/j.brainresbull.2009.03.010] [PMID: 19393724]
[11]
Chang, C.C.; Jou, S.H.; Lin, T.T.; Lai, T.J.; Liu, C.S. Mitochondria DNA change and oxidative damage in clinically stable patients with major depressive disorder. PLoS One, 2015, 10(5), e0125855.
[http://dx.doi.org/10.1371/journal.pone.0125855] [PMID: 25946463]
[12]
Czarny, P.; Wigner, P.; Galecki, P.; Sliwinski, T. The interplay between inflammation, oxidative stress, DNA damage, DNA repair and mitochondrial dysfunction in depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2017, Jun 29.
[http://dx.doi.org/10.1016/j.pnpbp.2017.06] [PMID: 28669580]
[13]
Forlenza, M.; Miller, G. Increased serum levels of 8-hydroxy-2’- deoxyguanosine in clinical depression. Psychosom. Med, 2006, 68, 1-7.
[http://dx.doi.org/10.1097/01.psy.0000195780.37277.2a] [PMID: 16449405]
[14]
Maes, M.; De Vos, N.; Pioli, R.; Demedts, P.; Wauters, A.; Neels, H.; Christophe, A. Lower serum vitamin E concentrations in major depression. Another marker of lowered antioxidant defenses in that illness. J. Affect. Disord, 2000, 58(3), 241-246.
[http://dx.doi.org/10.1016/S0165-0327(99)00121-4] [PMID: 10802134]
[15]
Gałecki, P.; Szemraj, J.; Bienkiewicz, M.; Florkowski, A.; Galecka, E. Lipid peroxidation and antioxidant protection in patients during acute depressive episodes and in remission after fluoxetine treatment. Pharmacol. Rep., 2009, 61(3), 436-447. PMID: [19605942].
[16]
Du, J.; Zhu, M.; Bao, H.; Li, B.; Dong, Y.; Xiao, C.; Zhang, G.Y.; Henter, I.; Rudorfer, M.; Vitiello, B. The role of nutrients in protecting mitochondrial function and neurotransmitter signaling: Implications for the treatment of depression, PTSD, and suicidal behaviors. Crit. Rev. Food Sci. Nutr, 2016, 56(15), 2560-2578.
[http://dx.doi.org/10.1080/10408398.2013.876960] [PMID: 25365455]
[17]
Wang, Q.; Dwivedi, Y. Transcriptional profiling of mitochondria associated genes in prefrontal cortex of subjects with major depressive disorder. World J. Biol. Psychiatry, 2016, 11, 1-12.
[http://dx.doi.org/10.1080/15622975.2016.1197423] [PMID: 27269743]
[18]
Delgado, P.L. Depression: the case for a monoamien deficiency. J. Clin. Psychiatry, 2000, 61(6), 7-11. PMID: [10775018]
[19]
Berton, O.; Nestler, E.J. New approaches to antidepressant drug discovery: Beyond monoamines. Nat. Rev. Neurosci, 2006, 7(2), 137-151.
[http://dx.doi.org/10.1038/nrn1846] [PMID: 16429123]
[20]
Ruhe, H.G.; Mason, N.S.; Schene, A.H. Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies. Mol. Psychiatry, 2007, 12(4), 331-359.
[http://dx.doi.org/10.1038/sj.mp.4001949] [PMID: 17389902]
[21]
Meyer, J.H.; Ginovart, N.; Boovariwala, A.; Sagrati, S.; Hussey, D.; Garcia, A.; Young, T.; Praschak-Rieder, N.; Wilson, A.A.; Houle, S. Elevated monoamine oxidase a levels in the brain: An explanation for the monoamine imbalance of major depression. Arch. Gen. Psychiatry, 2006, 63(11), 1209-1216.
[http://dx.doi.org/10.1001/archpsyc.63.11.1209] [PMID: 17088501]
[22]
Nautiyal, KM.; Hen, R. Serotonin receptors in depression: from A to B F1000Res.,, 2017, 6, 123.
[http://dx.doi.org/10.12688/f1000research.9736.1] [PMID: 28232871]
[23]
Sowa-Kucma, M.; Panczyszyn-Trzewik, P.; Misztak, P.; Jaeschke, RR.; Sendek, K.; Styczen, K.; Datka, W.; Koperny, M. Vortioxetine: a review of the pharmacology and clinical profile of the novel antidepressant Pharmacol Rep, 2017, 69(4), 595-601.
[http://dx.doi.org/10.1016/j.pharep.2017.01.030]] [PMID: 28499187]
[24]
Rosenblat, J.D.; Kakar, R.; McIntyre, R.S. The cognitive effects of antidepressants in major depressive disorder: A systematic review and meta-analysis of randomized clinical trials. Int. J. Neuropsychopharmacol.,, 2015, 19(2)
[http://dx.doi.org/10.1093/ijnp/pyv082] [PMID: 26209859]
[25]
Edmondson, D.E. Hydrogen peroxide produced by mitochondrial monoamine oxidase catalysis: biological implications Curr. Pharm. Des, 2014, 20(2), 155-60.
[http://dx.doi.org/10.2174/13816128113190990406] [PMID: [23701542]
[26]
Thiffault, C.; Quirion, R.; Poirier, J. The effect of L-deprenyl.; D-deprenyl and MDL72974 on mitochondrial respiration: a possible mechanism leading to an adaptive increase in superoxide dismutase activity. Brain Res. Mol. Brain Res., 1997, 49(1-2), 127-136. PMID: [9387872]
[27]
Wills, L.P.; Trager, R.E.; Beeson, G.C.; Lindsey, C.C.; Peterson, Y.K.; Beeson, C.C.; Schnellmann, R.G. The b2-adrenoceptor agonist formoterol stimulates mitochondrial biogenesis. J. Pharmacol. Exp. Ther, 2012, 342, 106-18.
[http://dx.doi.org/10.1124/jpet. 112.191528] [PMID: 22490378]
[28]
Garrett, M.S.; Whitaker, M.R.; Beeson, C.C.; Schnell, G.R. Agonism of the 5-hydroxytryptamine 1F receptor promotes mitochondrial biogenesis and recovery from acute kidney injury J. Pharmacol. Exp. Ther., 2014, 350, 257-64.
[http://dx.doi.org/10.1124/jpet.114.214700] [PMID: 24849926]
[29]
Rasbach, K.A.; Funk, J.A.; Jayavelu, T.; Green, P.T.; Schnellmann, R.G. 5-Hydroxytryptamine receptor stimulation of mitochondrial biogenesis. J. Pharmacol. Exp. Ther, 2010, 332, 632-39.
[http://dx.doi.org/10.1124/jpet.109.159947] [PMID: 19875674]
[30]
Scaini, G.; Maggi, D.; De-Nes, B.T.; Goncalves, C.; Ferreira, K.G.; Teodorak, B.; Bez, G.; Ferreira, C.G.; Schuck, P.; Quevedo, J.; Emilo, S. Activity of mitochondrial respiratory chain is increased by chronic administration of antidepressants. Acta. Neuropsychiatrica, 2011, 23(3), 112-18.
[http://dx.doi.org/10.1111/j.1601- 5215.2011.00548.x] [PMID: 26952897]
[31]
Holsboer, F. The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology, 2000, 23(5), 477-501.
[http://dx.doi.org/10.1016/S0893-133X(00)00159-7] [PMID: 11027914]
[32]
Van Bodegom, M.; Homberg, J.R.; Henckens, M.J.A.G. Modulation of the hypothalamic-pituitary-adrenal axis by early life stress exposure. Front. Cell Neurosci, 2017, 11, 87.
[http://dx.doi.org/10.3389/fncel.2017.00087] [PMID: 28469557]
[33]
Rieder, R.; Wisniewski, P.J.; Alderman, BL.; Campbell, S.C. Microbes and mental health: a review. Brain Behav. Immun., 2017, Jan 25.
[http://dx.doi.org/10.1016/j.bbi.2017.01.016] [PMID: 28131791]
[34]
Fox, J.H.; Lowry, C.A. Corticotropin-releasing factor-related peptides, serotonergic systems, and emotional behaviour. Front. Neurosci, 2013, 7, 169.
[http://dx.doi.org/10.3389/fnins.2013.00169] [PMID: 24065880]
[35]
Binneman, B.; Feltner, D.; Kolluri, S.; Shi, Y.; Qiu, R.; Stiger, T. A 6-week randomized, placebo-controlled trial of CP-316,311 (a selective CRH1 antagonist) in the treatment of major depression. Am. J. Psychiary, 2008, 165(5), 617-20.
[http://dx.doi.org/10.1176/ appi.ajp.2008.07071199]] [PMID: 18413705]
[36]
Van den Eede, F.; van Broeckhoven, C.; Claes, S.J. Corticotropinreleasing factor-binding protein, stress and major depression. Ageing Res. Rev, 2005, 4(2), 213-39.
[http://dx.doi.org/10.1016/j.arr.2005.02.002] [PMID: 15996902]
[37]
Lazaridis, I.; Charalampopoulos, I.; Alexaki, V-I.; Avlonitis, N.; Pediaditakis, I.; Efstathopoulos, P.; Calogeropoulou, T.; Castanas, E.; Gravanis, A. Neurosteroid dehydroepiandrosterone interacts with nerve growth factor (NGF) receptors, preventing neuronal apoptosis. PLoS Biol, 2011, 9(4), e1001051.
[http://dx.doi.org/10.1371/journal.pbio.1001051] [PMID: 21541365]
[38]
McIntosh, L.J.; Sapolsky, R.M. Glucocorticoids may enhance oxygen radicalmediated neurotoxicity. Neurotoxicology, 1996, 17, 873-882. PMID: [9086511].
[39]
Epel, E.S.; Lin, J.; Dhabhar, F.S.; Wolkowitz, O.M.; Puterman, E.; Karan, L.; Blackburn, E.H. Dynamics of telomerase activity in response to acute psychological stress. Brain Behav. Immun, 2010, 24(4), 531-9.
[http://dx.doi.org/10.1016/j.bbi.2009.11.018] [PMID: 20018236]
[40]
Filipovic, D.; Zlatkovic, J.; Inta, D.; Bjelobaba, I.; Stojiljkovic, M.; Gass, P. Chronic isolation stress predisposes the frontal cortex but not the hippocampus to the potentially detrimental release of cytochrome c from mitochondria and the activation of caspase 3. J. Neurosci. Res, 2011, 89(9), 1461-70.
[http://dx.doi.org/10.1002/ jnr.22687]] [PMID: 21656845]
[41]
Lucca, G.; Comim, C.M.; Valvassori, S.S.; Reus, G.Z.; Vuolo, F.; Petronilho, F.; Dal-Pizzol, F.; Gavioli, EC.; Quevedo, J. Effects of chronic mild stress on the oxidative parameters in rat brain mitochondria. Neurochem. Int., 2009, 54, 358-62.
[http://dx.doi.org/10.1016/j.neuint.2009.01.001] [PMID: 19171172]
[42]
Du, J.; Wang, Y.; Hunter, R.; Wei, Y.; Blumenthal, R.; Falke, C.; Khairova, R.; Zhou, R.; Yuan, P.; Machado-Vieira, R.; McEwen, B.S.; Manji, H.K. Dynamic regulation of mitochondrial function by glucocorticoids. Proc. Natl. Acad. Sci. U.S.A, 2009, 106(9), 3543-8.
[http://dx.doi.org/10.1073/pnas.0812671106] [PMID: 19202080]
[43]
Pittenger, C.; Duman, R. Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology,, 2008, 33(1), 88-109.
[http://dx.doi.org/10.1038/sj.npp.1301574] [PMID: 17851537]
[44]
Kempermann, G.; Kronenberg, G. Depressed new neurons--adult hippocampal neurogenesis and a cellular plasticity hypothesis of major depression. Biol. Psychiatry, 2003, 54(5), 499-503.
[http://dx.doi.org/10.1016/S0006-3223(03)00319-6]] [PMID: 12946878]
[45]
Castren, E.; Voikar, V.; Rantamaki, T. Role of neurotrophic factors in depression. Curr. Opin. Pharmacol, 2007, 7(1), 18-21.
[http://dx.doi.org/10.1016/j.coph.2006.08.009] [PMID: 17049922]
[46]
Yu, L.Y.; Saarma, M.; Arumae, U. Death receptors and caspases but not mitochondria are activated in the GDNF- or BDNFdeprived dopaminergic neurons. J. Neurosci, 2008, 28(30), 7467- 75.
[http://dx.doi.org/10.1523/JNEUROSCI.1877-08.2008] [PMID: 18650325]
[47]
Cattaneo, A.; Gennarelli, M.; Uher, R.; Breen, G.; Farmer, A.; Aitchison, K.J.; Craig, I.W.; Anacker, C.; Zunsztain, P.A.; McGuffin, P.; Pariante, C.M. Candidate genes expression profile associated with antidepressants response in the GENDEP study: differentiating between baseline 'predictors' and longitudinal 'targets'. Neuropsychopharmacology, 2013, 38(3), 377-85.
[http://dx.doi.org/10.1038/npp.2012.191] [PMID: 22990943]
[48]
Lee, H.Y.; Kim, Y.K. Plasma brain-derived neurotrophic factor as a peripheral marker for the action mechanism of antidepressants. Neuropsychobiology, 2008, 57(4), 194-199.
[http://dx.doi.org/10.1159/000149817] [PMID: 18679038]]
[49]
Cheng, A.; Hou, Y.; Mattson, M.P. Mitochondria and neuroplasticity. ASN. Neuro, 2010, 2(5), e00045.
[http://dx.doi.org/10.1042/ AN20100019] [PMID: 20957078]
[50]
Markham, A.; Cameron, I.; Bains, R.; Franklin, P.; Kiss, J.P.; Schwendimann, L.; Gressens, P.; Spedding, M. Brain-derived neurotrophic factor-mediated effects on mitochondrial respiratory coupling and neuroprotection share the same molecular signalling pathways. Eur. J. Neurosci, 2012, 35(3), 366–374.
[http://dx.doi.org/10.1111/j.1460-9568.2011.07965.x] [PMID: 22288477]
[51]
Blendy, J.A. The role of CREB in depression and antidepressant treatment. Biol. Psychiatr, 2006, 59(12), 1144-1150.
[http://dx.doi.org/10.1016/j.biopsych.2005.11.003] [PMID: 16457782]
[52]
Aguiar, A.S., Jr; Stragier, E.; da Luz Scheffer, D.; Remor, A.P.; Oliveira, P.A.; Prediger, R.D.; Latini, A.; Raisman-Vozari, R.; Mongeau, R.; Lanfumey, L. Effects of exercise on mitochondrial function, neuroplasticity and anxio-depressive behavior of mice. Neuroscience, 2014, 271, 56-63.
[http://dx.doi.org/10.1016/j.neuroscience.2014.04.027]] [PMID: 24780767]
[53]
Ripke, S. Major Depressive Disorder Working Group of the Psychiatric GWAS Consortium. A mega-analysis of genome-wide association studies for major depressive disorder. Mol. Psychiatry, 2013, 18(4), 497-511.
[http://dx.doi.org/10.1038/mp.2012.21] [PMID: 22472876]
[54]
Mullins, N.; Lewis, C.M. Genetics of depression: Progress at last. Curr. Psychiatry, Rep, 2017, 19(8), 43.
[http://dx.doi.org/10. 1007/s11920-017-0803-9] [PMID: 28608123]
[55]
Flint, J.; Kendler, K.S. The genetics of major depression. Neuron, 2014, 81(3), 484-503.
[http://dx.doi.org/10.1016/j.neuron.2014. 01.027] [PMID: 24507187]
[56]
Ignacio, Z.M.; Reus, G.Z.; Abelaira, H.M.; Quevedo, J. Epigenetic and epistatic interactions between serotonin transporter and brainderived neurotrophic factor genetic polymorphism: insights in depression. Neuroscience, 2014, 275, 455-68.
[http://dx.doi.org/10. 1016/j.neuroscience.2014.06.036] [PMID: 24972302]
[57]
Bagot, R.C.; Labonte, B.; Pena, C.J.; Nestler, E.J. Epigenetic signaling in psychiatric disorders: stress and depression. Dialogues Clin. Neurosci, 2014, 16(3), 281–295.
[http://dx.doi.org/10.1016/j.jmb. 2014.03.016] [PMID: 24709417]
[58]
Booij, L.; Wang, D.; Levesque, M.L.; Tremblay, R.E.; Szyf, M. Looking beyond the DNA sequence: the relevance of DNA methylation processes for the stress–diathesis model of depression. Phil. Trans. R. Soc. Lond. B. Biol. Sci., 2013, 368(1615), 2012-51.
[http://dx.doi.org/10.1098/rstb.2012.0251] [PMID: 23440465]
[59]
Covington, H.E., 3rd; Maze, I.; LaPlant, Q.C.; Vialou, V.F.; Ohnishi, Y.N.; Berton, O.; Fass, D.M.; Renthal, W.; Rush, A.J., 3rd; Wu, E.Y.; Ghose, S.; Krishnan, V.; Russo, S.J.; Tamminga, C.; Haggarty, S.J.; Nestler, E.J. Antidepressant actions of histone deacetylase inhibitors. J. Neurosci, 2009, 29(37), 11451-60.
[http://dx.doi.org/10.1523/JNEUROSCI.1758-09.2009] [PMID: 19759294]
[60]
Klengel, T.; Binder, E.B. Epigenetics of stress-related psychiatric disorders and gene x environment interactions. Neuron, 2015, 86(6), 1343-57.
[http://dx.doi.org/10.1016/j.neuron.2015.05.036] [PMID: 26087162]
[61]
Massart, R.; Mongeau, R.; Lanfumey, L. Beyond the monoaminergic hypothesis: neuroplasticity and epigenetic changes in a transgenic mouse model of depression. Phil. Trans. R. Soc. Lond. B. Biol. Sci., 2012, 367(1601), 2485-94.
[http://dx.doi.org/10.1098/ rstb.2012.0212] [PMID: 22826347]
[62]
Szyf, M.; Weaver, I.; Meaney, M. Maternal care, the epigenome and phenotypic differences in behavior. Reprod. Toxicol, 2007, 24(1), 9-19.
[http://dx.doi.org/10.1016/j.reprotox.2007.05.001] [PMID: 17561370]
[63]
Loenen, W.A. S-adenosylmethionine: jack of all trades and master of everything? Biochem. Soc. Trans, 2006, 34(Pt 2), 330-3.
[http://dx.doi.org/10.1042/BST20060330] [PMID: 16545107]
[64]
Stover, P.J. Polymorphisms in 1-carbon metabolism.; epigenetics and folate-related pathologies. J. Nutrigenet. Nutrigenomics, 2011, 4(5), 293-305.
[http://dx.doi.org/10.1159/000334586] [PMID: 22353665]
[65]
Papakostas, G.I.; Mischoulon, D.; Shyu, I.; Alpert, J.E. Fava. M S-adenosyl methionine (SAMe) augmentation of serotonin reuptake inhibitors for antidepressant nonresponders with major depressive disorder: a double-blind, randomized clinical trial. Am. J. Psychiatry, 2010, 167, (8), 942-8.
[http://dx.doi.org/10.1176/appi.ajp. 2009.09081198] [PMID: 20595412]
[66]
De Berardis, D.; Orsolini, L.; Serroni, N.; Girinelli, G.; Iasevoli, F.; Tomasetti, C.; de Bartolomeis, A.; Mazza, M.; Valchera, A.; Fornaro, M.; Perna, G.; Piersanti, M.; Di Nicola, M.; Cavuto, M.; Martinotti, G.; Di Giannantonio, M. A comprehensive review on the efficacy of S-adenosyl-L-methionine in major depressive disorder. CNS Neurol. Disord. Drug Targets, 2016, 15(1), 35-44.
[http://dx.doi.org/10.2174/1871527314666150821103825] [PMID: 26295824]
[67]
Sharma, A.; Gerbarg, P.; Bottiglieri, T.; Massoumi, L.; Carpenter, L.L.; Lavretsky, H.; Muskin, P.R.; Brown, R.P.; Mischoulon, D. Work Group of the American Psychiatric Association Council on Research. S-Adenosylmethionine (SAMe) for neuropsychiatric disorders: a clinician-oriented review of research. J. Clin. Psychiatry, 2017, 78(6), e656-67.
[http://dx.doi.org/10.4088/JCP.16r11113] [PMID: 28682528]
[68]
Lopez, J.P.; Fiori, L.M.; Cruceanu, C.; Lin, R.; Labonte, B.; Cates, H.M.; Heller, E.A.; Vialou, V.; Ku, S.M.; Gerald, C.; Han, M.H.; Foster, J.; Frey, B.N.; Soares, C.N.; Muller, D.J.; Farzan, F.; Leri, F.; MacQueen, G.M.; Feilotter, H.; Tyryshkin, K.; Evans, K.R.; Giacobbe, P.; Blier, P.; Lam, R.W.; Milev, R.; Parikh, S.V.; Rotzinger, S.; Strother, S.C.; Lewis, C.M.; Aitchison, K.J.; Wittenberg, G.M.; Mechawar, N.; Nestler, E.J.; Uher, R.; Kennedy, S.H.; Turecki, G. MicroRNAs 146a/b-5 and 425-3p and 24-3p are markers of antidepressant response and regulate MAPK/Wnt-system genes. Nat. Commun, 2017, 8, 15497.
[http://dx.doi.org/10.1038/ ncomms15497]] [PMID: 28530238]
[69]
Wei, Y.B.; Melas, P.A.; Villaescusa, J.C.; Liu, J.J.; Xu, N.; Christiansen, S.H.; Elbrond-Bek, H.; Woldbye, D.P.; Wegener, G.; Mathe, A.A.; Lavebratt, C. MicroRNA 101b is downregulated in the prefrontal cortex of a genetic model of depression and targets the glutamate transporter SLC1A1 (EAAT3) in vitro. Int. J. Neuropsychopharmacol, 2016, 19(12), yw069.
[http://dx.doi.org/10.1093/ijnp/pyw069] [PMID: 27507301]
[70]
Lei, Q.; Liu, X.; Fu, H.; Sun, Y.; Wang, L.; Xu, G.; Wang, W.; Yu, Z.; Liu, C.; Li, P.; Feng, J.; Li, G.; Wu, M. miR-101 reverses hypomethylation of the PRDM16 promoter to disrupt mitochondrial function in astrocytoma cells. Oncotarget, 2016, 7(4), 5007-22.
[http://dx.doi.org/10.18632/oncotarget.6652] [PMID: 26701852]
[71]
Roy, B.; Dunbar, M.; Shelton, R.C.; Dwivedi, Y. Identification of microRNA-124-3p as a putative epigenetic signature of major depressive disorder. Neuropsychopharmacology, 2017, 42(4), 864-75.
[http://dx.doi.org/10.1038/npp.2016.175] [PMID: 27577603]
[72]
Valentino, A.; Calarco, A.; Di Salle, A.; Finicelli, M.; Crispi, S.; Calogero, RA.; Riccardo, F.; Sciarra, A.; Gentilucci, A.; Galderisi, U.; Margarucci, S.; Peluso, G. Deregulation of MicroRNAs mediated control of carnitine cycle in prostate cancer: molecular basis and pathophysiological consequences. Oncogene, 2017.
[http://dx.doi.org/10.1038/onc.2017.216]] [PMID: 28671672]
[73]
Wang, H.; Ye, Y.; Zhu, Z.; Mo, L.; Lin, C.; Wang, Q.; Wang, H.; Gong, X.; He, X.; Lu, G.; Lu, F.; Zhang, S. mir-124 regulates apoptosis and autophagy process in MPTP model of Parkinson’s disease by targeting to Bim. Brain Pathol, 2016, 26(2), 167-76.
[http://dx.doi.org//10.1111/bpa.12267]] [PMID: 25976060]
[74]
Alural, B.; Genc, S.; Haggarty, S.J. Diagnostic and therapeutic potential of microRNAs in neuropsychiatric disorders: past, present and future. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2017, 73, 87-103.
[http://dx.doi.org/10.1016/j.pnpbp.2016.03.010] [PMID: 27072377]
[75]
Audet, M.C.; Anisman, H. Interplay between pro-inflammatory cytokines and growth factors in depressive illnesses. Front. Cell Neurosci., 2013, 7, 68.
[http://dx.doi.org/10.3389/fncel.2013. 00068]] [PMID: 23675319]
[76]
Solomon, G.F.; Allansmith, M.; McCellan, B.; Amkraut, A. Immunoglobulins in psychiatric patients. Arch. Gen. Psychiatry, 1969, 20(3), 272–7. PMID: [4974471].
[77]
Yolken, R.H.; Torrey, E.F. Are some cases of psychosis caused by microbial agents? A review of the evidence. Mol. Psychiatry, 2008, 13(5), 470-9.
[http://dx.doi.org/10.1038/mp.2008.5] [PMID: 18268502]
[78]
Claypoole, L.D.; Zimmerberg, B.; Williamson, L.L. Neonatal lipopolysaccharide treatment alters hippocampal neuroinflammation, microglia morphology and anxiety-like behavior in rats selectively bred for an infantile trait. Brain Behav. Immunity, 2017, 59, 135-46.
[http://dx.doi.org/10.1016/j.bbi.2016.08.017] [PMID: 27591170]
[79]
Liu, Y.; Ho, RC.; Mak, A. Interleukin (IL)-6, tumour necrosis factor alpha (TNF-α) and soluble interleukin-2 receptors (sIL-2R) are elevated in patients with major depressive disorder: a metaanalysis and meta-regression. J. Affect. Disord, 2012, 139(3), 230-9.
[http://dx.doi.org/10.1016/j.jad.2011.08.003] [PMID: 21872339]
[80]
Dhabhar, F.S.; Burke, H.M.; Epel, E.S.; Mellon, S.H.; Rosser, R.; Reus, V.I.; Wolkowitz, O.M. Low serum IL-10 concentrations and loss of regulatory association between IL-6 and IL-10 in adults with major depression. J. Psychiatr. Res, 2009, 43(11), 962-9.
[http://dx.doi.org/10.1016/j.jpsychires.2009.05.010] [PMID: 19552919]
[81]
Raison, C.L.; Capuron, L.; Miller, A.H. Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol, 2006, 27(1), 24–31.
[http://dx.doi.org/10.1016/j.it.2005.11.006] [PMID: 16316783]
[82]
Hestad, K.A.; Tonseth, S.; Stoen, C.D.; Ueland, T.; Aukrust, P. Raised plasma levels of tumor necrosis factor alpha in patients with depression: normalization during electroconvulsive therapy. J. ECT, 2003, 19(4), 183-8. PMID: [14657769].
[83]
Miller, A.H.; Maletic, V.; Raison, C.L. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol. Psychiatry, 2009, 65(9), 732-41.
[http://dx.doi.org/10.1016/j.biopsych.2008.11.029]] [PMID: 19150053]
[84]
Müller, N.; Schwarz, MJ.; Dehning, S.; Douhe, A.; Cerovecki, A.; Goldstein-Muller, B.; Spellmann, I.; Hetzel, G.; Maino, K.; Kleindienst, N.; Moller, H.J.; Arolt, V.; Riedel, M. The cyclooxygenase- 2 inhibitor celecoxib has therapeutic effects in major depression: results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Mol. Psychiatry, 2006, 11(7), 680-4.
[http://dx.doi.org/10.1038/sj.mp.4001805] [PMID: 16491133]
[85]
Alcocer-Gómez, E.; de Miguel, M.; Casas-Barguero, N.; Nunez-Vasco, J.; Sanchez-Alcazar, J.A.; Fernandez-Rodriguez, A.; Cordero, M.D. NLRP3 inflammasome is activated in mononuclear blood cells from patients with major depressive disorder. Brain Behav. Immun., 2014, 36, 111-7.
[http://dx.doi.org/10.1016/j.bbi. 2013.10.017] [PMID: 24513871]
[86]
Hunter, R.L.; Dragicevic, N.; Seifert, K.; Choi, D.Y.; Liu, M.; Kim, H.C.; Cass, W.A.; Sullivan, P.G.; Bing, G. Inflammation induces mitochondrial dysfunction and dopaminergic neurodegeneration in the nigrostriatal system. J. Neurochem, 2007, 100(5), 1375- 86.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04327.x] [PMID: 17254027]
[87]
Zhang, Q.; Raoof, M.; Chen, Y.; Sumi, Y.; Sursal, T.; Junger, W.; Brohi, K.; Itagaki, K.; Hauser, C.J. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature, 2010, 464(7285), 104-7.
[http://dx.doi.org/10.1038/nature08780] [PMID: 20203610]
[88]
Liu, C.S.; Adibfar, A.; Herrmann, N.; Gallagher, D.; Lanctot, K.L. Evidence for inflammation-associated depression. Curr. Top. Behav. Neurosci, 2017, 31, 3-30.
[http://dx.doi.org/10.1007/7854_ 2016_2] [PMID: 12604600]
[89]
Anderson, G.; Maes, M. Oxidative/nitrosative stress and immuno-inflammatory pathways in depression: treatment implications. Curr. Pharm. Des., 2014, 20(23), 3812-47.
[http://dx.doi.org/10.2174/13816128113196660738]] [PMID: 24180395]
[90]
Zarate, C.A., Jr; Singh, J.B.; Carlson, P.J.; Brutsche, N.E.; Ameli, R.; Luckenbaugh, D.A.; Charney, D.S.; Manji, H.K. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch. Gen. Psychiatry, 2006, 63(8), 856-64.
[http://dx.doi.org/10.1001/archpsyc.63.8.856] [PMID: 16894061]
[91]
Hare, B.D.; Ghosal, S.; Duman, R.S. Rapid acting antidepressants in chronic stress models: molecular and cellular mechanisms. Chronic Stress (Thousand Oaks), 2017, Feb 1.
[http://dx.doi.org/10.1177/2470547017697317] [PMID: 28649673]
[92]
Pehrson, AL.; Sanchez, C. Serotonergic modulation of glutamate neurotransmission as a strategy for treating depression and cognitive dysfunction. CNS spectr, 2014, 19(2), 121–33.
[http://dx.doi.org/10.1017/S1092852913000540] [PMID: 23903233]
[93]
Ghasemi, M.; Phillips, C.; Fahimi, A.; McNerney, M.W.; Salehi, A. Mechanisms of action and clinical efficacy of NMDA receptor modulators in mood disorders. Neurosci. Biobehav Rev, 2017, 80, 555-72.
[http://dx.doi.org/10.1016/j.neubiorev.2017.07.002] [PMID: 28711661]
[94]
Yuksel, C.; Ongur, D. Magnetic resonance spectroscopy studies of glutamate-related abnormalities in mood disorders. Biol. Psychiatry, 2010, 68(9), 785-94.
[http://dx.doi.org/10.1016/j.biopsych. 2010.06.016] [PMID: 20728076]
[95]
Hasler, G.; van der Veen, J.W.; Tumonis, T.; Meyers, N.; Shen, J.; Drevets, W.C. Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch. Gen. Psychiatry, 2007, 64, 193–200.
[http://dx.doi.org/10.1001/archpsyc. 64.2.193]] [PMID: 17283286]
[96]
Mirza, Y.; Tang, J.; Russell, A.; Banerjee, S.P.; Bhandari, R.; Ivey, J.; Boyd, C.; Moore, G.J. Reduced anterior cingulate cortex glutamatergic concentrations in childhood major depression. J. Am. Acad. Child Adolesc. Psychiatry, 2004, 43, 341–48.
[http://dx.doi.org/10.1097/00004583-200403000-00017] [PMID: 15076268]
[97]
Wang, X.; Li, Y.H.; Li, M.H.; Lu, J.; Zhao, J.G.; Sun, X.J.; Zhang, B.; Ye, J.L. Glutamate level detection by magnetic resonance spectroscopy in patients with post-stroke depression. Eur. Arch. Psychiatry Clin. Neurosci, 2012, 262, 33-8.
[http://dx.doi.org/10.1007/s00406-011-0209-3] [PMID: 21424280]
[98]
Binesh, N.; Kumar, A.; Hwang, S.; Mintz, J.; Thomas, M.A. Neurochemistry of late-life major depression: a pilot two-dimensional MR spectroscopic study. J. Magn. Reson. Imaging, 2004, 20, 1039- 45.
[http://dx.doi.org/10.1002/jmri.20214] [PMID: 15558563]
[99]
Sanacora, G.; Gueorguieva, R.; Epperson, C.N.; Wu, Y-T.; Appel, M.; Rothman, D.L.; Krystal, J.H.; Mason, G.F. Subtype-specific alterations of GABA and glutamate in major depression. Arch. Gen. Psychiatry, 2004, 61, 705-713.
[http://dx.doi.org/10.1001/ archpsyc.61.7.705] [PMID: 15237082]
[100]
Rajkowska, G.; Stockmeier, C. Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue. Curr. Drug Targets, 2013, 14(11), 1225-36.
[http://dx.doi.org/10.1074/jbc.M212878200] [PMID: 23469922]
[101]
Kalra, J.; Brosnan, J.T. The subcellular localization of glutaminase isoenzymes in rat kidney cortex. J. Biol. Chem., 1974, 249(10), 3255-60. PMID: [4364419].
[102]
Hyder, F.; Rothman, D.L.; Bennett, M.R. Cortical energy demands of signaling and nonsignaling components in brain are conserved across mammalian species and activity levels. Proc. Natl. Acad. Sci. U.S.A, 2013, 110(9), 3549-54.
[http://dx.doi.org/10.1073/ pnas.1214912110] [PMID: 23319606]
[103]
Abdallah, C.G.; Jiang, L.; De Feyter, H.M.; Fasula, M.; Krystal, J.H.; Rothman, D.L.; Mason, G.F.; Sanacora, G. Glutamate metabolism in major depressive disorder. Am. J. Psychiatry, 2014, 171(12), 1320-7.
[http://dx.doi.org/10.1176/appi.ajp.2014. 14010067] [PMID: 25073688]
[104]
Velletri, T.; Romeo, F.; Tucci, P.; Peschiaroli, A.; Annicchiarico-Petruzzelli, M.; Niklison-Chirou, M.V.; Amelio, I.; Knight, R.A.; Mak, T.W.; Melino, G.; Agostini, M. GLS2 is transcriptionally regulated by p73 and contributes to neuronal differentiation. Cell Cycle, 2013, 12(22), 3564-73.
[http://dx.doi.org/10.4161/cc. 26771] [PMID: 24121633]
[105]
Hu, W.; Zhang, C.; Wu, R.; Sun, Y.; Levine, A.; Feng, Z. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc. Natl. Acad. Sci. USA, 2010, 107(16), 7455-60.
[http://dx.doi.org/10.1073/pnas.1001006107] [PMID: 20378837]
[106]
Burnstock, G.; Krugel, U.; Abbracchio, M.P.; Illes, P. Purinergic signalling: from normal behaviour to pathological brain function. Prog. Neurobiol, 2011, 95(2), 229-74.
[http://dx.doi.org/10. 1016/j.pneurobio.2011.08.006] [PMID: 21907261]
[107]
Schaefer, L. Complexity of danger: the diverse nature of damageassociated molecular patterns. J. Biol. Chem., 2014, 289(51), 35237-45.
[http://dx.doi.org/10.1074/jbc.R114.619304] [PMID: 25391648]
[108]
Ferrari, D.; Chiozzi, P.; Falzoni, S.; Dal Susino, M.; Melchiorri, L.; Baricordi, O.R.; di Virgilio, F. Extracellular ATP triggers IL-1beta release by activating the purinergic P2Z receptor of human macrophages. J. Immunol., 1997, 159(3), 1451-8. PMID: [9233643].
[109]
Fiebich, B.L.; Akter, S.; Akundi, R.S. The two-hit hypothesis for neuroinflammation: role of exogenous ATP in modulating inflammation in the brain. Front. Cell Neurosci., 2014, 8, 260.
[http://dx.doi.org/10.3389/fncel.2014.00260] [PMID: 25225473]
[110]
Lindberg, D.; Shan, D.; Ayers-Ringler, J.; Oliveros, A.; Benitez, J.; Prieto, M.; McCullumsmith, R.; Choi, D.S. Purinergic signaling and energy homeostasis in psychiatric disorders. Curr. Mol. Med., 2015, 15(3), 275-95.
[http://dx.doi.org/10.2174/ 1566524015666150330163724] [PMID: 25950756]
[111]
Rial, D.; Lemos, C.; Pinheiro, H.; Duarte, J.M.; Goncalves, F.Q.; Real, J.I.; Prediger, R.D.; Goncalves, N.; Gomes, C.A.; Canas, P.M.; Agostinho, P.; Cunha, R.A. Depression as a glial-based synaptic dysfunction. Front. Cell Neurosci, 2016, 9, 521.
[http://dx.doi.org/10.3389/fncel.2015.00521] [PMID: 26834566]
[112]
Cao, X.; Li, L.P.; Wang, Q.; Wu, Q.; Hu, H.H.; Zhang, M.; Fang, Y.Y.; Zhang, J.; Li, S.J.; Xiong, W.C.; Yan, H.C.; Gao, Y.B.; Liu, J.H.; Li, X.W.; Sun, L.R.; Zeng, Y.N.; Zhu, X.H.; Gao, T.M. Astrocyte- derived ATP modulates depressive-like behaviors. Nat. Med, 2013, 19(6), 773-7.
[http://dx.doi.org/10.1038/nm.3162]] [PMID: 23644515]
[113]
Krügel, U. Purinergic receptors in psychiatric disorders. Neuropharmacology, 2016, 104, 212-25.
[http://dx.doi.org/10.1016/ j.neuropharm.2015.10.032]] [PMID: 26518371]
[114]
Dziubina, A.; Szmyd, K.; Zygmunt, M.; Sapa, J.; Dudek, M.; Filipek, B.; Drabczynska, A.; Zaluski, M.; Pytka, K.; Kiec-Kononowicz, K. Evaluation of antidepressant-like and anxiolyticlike activity of purinedione-derivatives with affinity for adenosine A2A receptors in mice. Pharmacol. Rep, 2016, 68(6), 1285-92.
[http://dx.doi.org/10.1016/j.pharep.2016.07.008]] [PMID: 27689756]
[115]
López-Cruz, L.; Carbó-Gas, M.; Pardo, M.; Bayarri, P.; Valverde, O.; Ledent, C.; Salamone, J.D.; Correa, M. Adenosine A2A receptor deletion affects social behaviors and anxiety in mice: Involvement of anterior cingulate cortex and amygdala. Behav. Brain Res., 2017, 321, 8-17.
[http://dx.doi.org/10.1016/j.neuropharm.2011. 12.033] [PMID: 22261384]
[116]
Halmai, Z.; Dome, P.; Vereczkei, A.; Abdul-Rahman, O.; Szekely, A.; Gonda, X.; Faludi, G.; Sasvari-Szekely, M.; Nemoda, Z. Associations between depression severity and purinergic receptor P2RX7 gene polymorphisms. J. Affect. Disord., 2013, 150(1), 104-9.
[http://dx.doi.org/10.1016/j.jad.2013.02.033] [PMID: 23602648]
[117]
Lucae, S.; Salyakina, D.; Barden, N.; Harvey, M.; Gagné, B.; Labbé, M.; Binder, E.B.; Uhr, M.; Paez-Pereda, M.; Sillaber, I.; Ising, M.; Brückl, T.; Lieb, R.; Holsboer, F.; Müller-Myhsok, B. P2RX7, a gene coding for a purinergic ligand-gated ion channel, is associated with major depressive disorder. Hum. Mol. Genet, 2006, 15(16), 2438-45.
[http://dx.doi.org/10.1093/hmg/ddl166] [PMID: 16822851]
[118]
Basso, A.M.; Bratcher, N.A.; Harris, R.R.; Jarvis, M.F.; Decker, M.W.; Rueter, L.E. Behavioral profile of P2X7 receptor knockout mice in animal models of depression and anxiety: relevance for neuropsychiatric disorders. Behav. Brain Res, 2009, 198(1), 83-90.
[http://dx.doi.org/10.1016/j.bbr.2008.10.018] [PMID: 18996151]
[119]
Otrokocsi, L.; Kittel, A.; Sperlágh, B. P2X7 receptors drive spine synapse plasticity in the learned helplessness model of depression research. Int. J. Europsychopharmacol., 2017, Jun 13.
[http://dx.doi.org/10.1093/ijnp/pyx046] [PMID: 28633291]
[120]
Zhang, K.; Liu, J.; You, X.; Kong, P.; Song, Y.; Cao, L.; Yang, S.; Wang, W.; Fu, Q.; Ma, Z. P2X7 as a new target for chrysophanol to treat lipopolysaccharide-induced depression in mice. Neurosci. Lett, 2016, 613, 60-5.
[http://dx.doi.org/10.1016/j.neulet.2015. 12.043] [PMID: 26724370]
[121]
Yue, N.; Huang, H.; Zhu, X.; Han, Q.; Wang, Y.; Li, B.; Liu, Q.; Wu, G.; Zhang, Y.; Yu, J. Activation of P2X7 receptor and NLRP3 inflammasome assembly in hippocampal glial cells mediates chronic stress-induced depressive-like behaviors. J. Neuroinflammation, 2017, 14(1), 102.
[http://dx.doi.org/10.1186/s12974-017- 0865-y] [PMID: 28486969]
[122]
Csolle, C.; Baranyi, M.; Zsilla, G.; Kittel, A.; Goloncser, F.; Illes, P.; Papp, E.; Vizi, E.S.; Sperlagh, B. Neurochemical changes in the mouse hippocampus underlying the antidepressant effect of genetic deletion of P2X7 receptors PLoS One, 2013, 8(6), e66547.
[http://dx.doi.org/10.1371/journal.pone.0066547] [PMID: 23805233]
[123]
Ali-Sisto, T.; Tolmunen, T.; Toffol, E.; Viinamaki, H.; Mantyselka, P.; Valkonen-Korhonen, M.; Honkalampi, K.; Ruusunen, A.; Velagapudi, V.; Lehto, S.M. Purine metabolism is dysregulated in patients with major depressive disorder. Psychoneuroendocrinology, 2016, 70, 25-32.
[http://dx.doi.org/10.1016/j.psyneuen.2016.04. 017] [PMID: 27153521]
[124]
Moore, C.M.; Christensen, J.D.; Lafer, B.; Fava, M.; Renshaw, P.F. Lower levels of nucleoside triphosphate in the basal ganglia of depressed subjects: a phosphorus-31 magnetic resonance spectroscopy study. Am. J. Psychiatry, 1997, 154(1), 116-18.
[http://dx.doi.org/10.1176/ajp.154.1.116] [PMID: 8988971]
[125]
Manji, H.; Kato, T.; Di Prospero, N.A.; Ness, S.; Beal, M.F.; Krams, M.; Chen, G. Impaired mitochondrial function in psychiatric disorders. Nat. Rev. Neurosci, 2012, 13(5), 293-307.
[http://dx.doi.org/10.1038/nrn3229] [PMID: 22510887]
[126]
Sharma, R.K.; Candelario-Jalil, E.; Feineis, D.; Bringmann, G.; Fiebich, B.L.; Akundi, R.S. 1-trichloromethyl-1,2,3,4-tetrahydrobeta- carboline (TaClo) alters cell cycle progression in human neuroblastoma cell lines. Neurotox. Res, 2017, 32, 649-660.
[http://dx.doi.org/10.1007/s12640-017-9782-1] [PMID: 28721631]
[127]
Akundi, R.S.; Macho, A.; Munoz, E.; Lieb, K.; Bringmann, G.; Clement, H.W.; Hull, M.; Fiebich, B.L. 1-trichloromethyl-1,2,3,4- tetrahydro-beta-carboline-induced apoptosis in the human neuroblastoma cell line SK-N-SH. J. Neurochem, 2004, 91, 263-273.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02710.x] [PMID: 15447660]
[128]
Gash, D.M.; Rutland, K.; Hudson, N.L.; Sullivan, P.G.; Bing, G.; Cass, W.A.; Pandya, J.D.; Liu, M.; Choi, D.Y.; Hunter, R.L.; Gerhardt, G.A.; Smith, C.D.; Slevin, J.T.; Prince, T.S. Trichloroethylene: parkinsonism and complex I mitochondrial neurotoxicity. Ann. Neurol, 2008, 63, 184-192.
[http://dx.doi.org/10.1002/ana.21288] [PMID: 18157908]
[129]
Leemans, J.C.; Cassel, S.L.; Sutterwala, F.S. Sensing damage by the NLRP3 inflammasome. Immunol. Rev., 2011, 243(1), 152-62.
[http://dx.doi.org/10.1111/j.1600-065X.2011.01043.x] [PMID: 21884174]
[130]
Su, W.J.; Zhang, Y.; Chen, Y.; Gong, H.; Lian, Y.J.; Peng, W.; Liu, Y.Z.; Wang, Y.X.; You, Z.L.; Feng, S.J.; Zong, Y.; Lu, G.C.; Jiang, C.L. NLRP3 gene knockout blocks NF-κB and MAPK signaling pathway in CUMS-induced depression mouse model. Behav. Brain. Res., 2017, 322(Pt A), 1-8.
[http://dx.doi.org/10.1016/j.bbr.2017. 01.018] [PMID: 28093255]
[131]
Iwata, M.; Ota, K.T.; Li, X.Y.; Sakaue, F.; Li, N.; Dutheil, S.; Banasr, M.; Duric, V.; Yamanashi, T.; Kaneko, K.; Rasmussen, K.; Glasebrook, A.; Koester, A.; Song, D.; Jones, K.A.; Zorn, S.; Smagin, G.; Duman, R.S. Psychological stress activates the inflammasome via release of adenosine triphosphate and stimulation of the purinergic type 2 × 7 receptor. Biol. Psychiatry, 2016, 80(1), 12-22.
[http://dx.doi.org/10.1016/j.biopsych. 2015.11.026] [PMID: 26831917]
[132]
Tan, S.; Wang, Y.; Chen, K.; Long, Z.; Zou, J. Ketamine alleviates depressive-like behaviours via down-regulating inflammatory cytokines induced by chronic restrain stress in mice. Biol. Pharm. Bull, 2017, 40(8), 1260-67.
[http://dx.doi.org/10.1248/bpb.b17- 00131] [PMID: 28769008]
[133]
Chang, Y.; Lee, J.J.; Hsieh, C.Y.; Hsiao, G.; Chou, D.S.; Sheu, J.R. Inhibitory effects of ketamine on lipopolysaccharide-induced microglial activation. Mediators Inflamm, 2009, 2009, 705379.
[http://dx.doi.org/10.1155/2009/705379] [PMID: 19343193]
[134]
Chang, H.C.; Lin, K.H.; Tai, Y.T.; Chen, J.T.; Chen, R.M. Lipoteichoic acid-induced TNF-α and IL-6 gene expressions and oxidative stress production in macrophages are suppressed by ketamine through downregulating Toll-like receptor 2-mediated activation of ERK1/2 and NFκB. Shock, 2010, 33, 485-92.
[http://dx.doi.org/10.1097/SHK.0b013e3181c3cea5] [PMID: 19823118]
[135]
Yuhas, Y.; Ashkenazi, S.; Berent, E.; Weizmann, A. Immunomodulatory activity of ketamine in human astroglial A172 cells: possible relevance to its rapid antidepressant activity. J. Neuroimmunol, 2015, 282, 33-38.
[http://dx.doi.org/10.1016/j.jneuroim. 2015.03.012] [PMID: 25903726]
[136]
Sadatomi, D.; Nakashioya, K.; Mamiya, S.; Honda, S.; Kameyama, Y.; Yamamura, Y.; Tanimura, S.; Takeda, K. Mitochondrial function is required for extracellular ATP-induced NLRP3 inflammasome activation. J. Biochem, 2017, 161(6), 503-12.
[http://dx.doi.org/10.1093/jb/mvw098] [PMID: 28096454]
[137]
Zhou, R.; Yazdi, A.S.; Menu, P.; Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature, 2011, 469(7329), 221-5.
[http://dx.doi.org/10.1038/nature09663] [PMID: 21124315]
[138]
Tannahill, G.M.; Curtis, A.M.; Adamik, J.; Palsson-McDermott, E.M.; McGettrick, A.F.; Goel, G.; Frezza, C.; Bernard, N.J.; Kelly, B.; Foley, N.H.; Zheng, L.; Gardet, A.; Tong, Z.; Jany, S.S.; Corr, S.C.; Haneklaus, M.; Caffrey, B.E.; Pierce, K.; Walmsley, S.; Beasley, F.C.; Cummins, E.; Nizet, V.; Whyte, M.; Taylor, C.T.; Lin, H.; Masters, S.L.; Gottlieb, E.; Kelly, V.P.; Clish, C.; Auron, P.E.; Xavier, R.J.; O'Neill, L.A. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature, 2013, 496(7444), 238-42.
[http://dx.doi.org/10.1038/nature11986] [PMID: 23535595]
[139]
Lepine, J.P.; Briley, M. The increasing burden of depression. Neuropsychiatr. Dis. Treat., 2011, 7(Suppl 1), 3-7.
[http://dx.doi.org/10.2147/NDT.S19617] [PMID: 21750622]
[140]
Levy, M.; Faas, G.C.; Saggau, P.; Craigen, W.J.; Sweatt, J.D. Mitochondrial regulation of synaptic plasticity in the hippocampus J. Biol. Chem, 2003, 278(20), 17727-34.
[http://dx.doi.org/10.1074/ jbc.M212878200] [PMID: 12604600]
[141]
Kleinridders, A.; Cai, W.; Cappellucci, L.; Ghazarian, A.; Collins, W.R.; Vienberg, S.G.; Pothos, E.N.; Kahn, C.R. Insulin resistance in brain alters dopamine turnover and causes behavioural disorders. Proc. Natl. Acad. Sci. U.S.A., 2015, 112(11), 3463-8.
[http://dx.doi.org/10.1073/pnas1500877112] [PMID: 25733901]
[142]
Koizumi, S.; Shigemoto-Mogami, Y.; Nasu-Tada, K.; Shinozaki, Y.; Ohsawa, K.; Tsuda, M.; Joshi, B.V.; Jacobson, K.A.; Kohsaka, S.; Inoue, K. UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature, 2007, 446(7139), 1091-5.
[http://dx.doi.org/10.1038/nature05704] [PMID: 17410128]
[143]
Haynes, S.E.; Hollopeter, G.; Yang, G.; Kurpius, D.; Dailey, M.E.; Gan, W.B.; Julius, D. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat. Neurosci, 2006, 9(12), 1512-9.
[http://dx.doi.org/10.1038/nn1805] [PMID: 17115040]
[144]
Xia, M.; Zhu, Y. Signaling pathways of ATP-induced PGE2 release in spinal cord astrocytes are EGFR transactivation-dependent. Glia, 2011, 59(4), 664-74.
[http://dx.doi.org/10.1002/glia.21138] [PMID: 21294165]
[145]
Cavaliere, F.; Florenzano, F.; Amadio, S.; Fusco, F.R.; Viscomi, M.T.; D’Ambrosi, N.; Vacca, F.; Sancesario, G.; Bernardi, G.; Molinari, M.; Volonte, C. Upregulation of P2X2, P2X4 receptor and ischemic cell death: prevention by P2 antagonists. Neuroscience, 2003, 120(1), 85-98.
[http://dx.doi.org/10.1016/S0306- 4522(03)00228-8] [PMID: 12849743]
[146]
Verma, R.; Cronin, C.G.; Hudobenko, J.; Venna, V.R.; McCullough, L.D.; Liang, B.T. Deletion of P2X4 receptor is neuroprotective acutely.; but induces a depressive phenotype during recovery from ischemic stroke. Brain Behav. Immun, 2017.
[http://dx.doi.org/10.1016/j.bbi.2017.07.155] [PMID: 28751018]
[147]
Kaster, M.P.; Machado, N.J.; Silva, H.B.; Nunes, A.; Ardais, A.P.; Santana, M.; Baqi, Y.; Müller, C.E.; Rodrigues, A.L.; Porciúncula, L.O.; Chen, JF.; Tomé, Â.R.; Agostinho, P.; Canas, P.M.; Cunha, R.A. Caffeine acts through neuronal adenosine A2A receptors to prevent mood and memory dysfunction triggered by chronic stress. Proc. Natl. Acad. Sci. U.S.A., 2015, 112(25), 7833-8.
[http://dx.doi.org/10.1073/ pnas.1423088112] [PMID: 26056314]
[148]
Gonçalves, F.M.; Neis, V.B.; Rieger, D.K.; Lopes, M.W.; Heinrich, I.A.; Costa, A.P.; Rodrigues, A.L.S.; Kaster, M.P.; Leal, R.B. Signaling pathways underlying the antidepressant-like effect of inosine in mice. Purinergic. Signal, 2017, 13(2), 203-14.
[http://dx.doi.org/10.1007/s11302-016-9551-2] [PMID: 27966087]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy