Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Carbohydrate Arrays for Functional Studies of Carbohydrates

Author(s): Injae Shin, Jin Won Cho and Doo Wan Boo

Volume 7, Issue 6, 2004

Page: [565 - 574] Pages: 10

DOI: 10.2174/1386207043328472

Price: $65

Open Access Journals Promotions 2
Abstract

Carbohydrates, as components of glycoproteins, glycolipids and proteoglycans, play an important biological role as recognition markers through carbohydrate-protein interactions. For the most part, biophysical and biochemical methods have been used to analyze these biomolecular interactions. In contrast, less attention has been given to the development of high-throughput procedures to elucidate carbohydrateprotein recognition events. Recently, carbohydrate arrays were developed and employed as a novel highthroughput analytic tool for monitoring carbohydrate-protein interactions. This technique has been used to profile protein binding and enzymatic activity. The results have shown that carbohydrate binding to the corresponding lectins is highly selective and that the relative binding affinities are well correlated with those obtained from solution-based assays. In addition, this effort demonstrated that carbohydrate arrays could be also utilized to identify and characterize novel carbohydrate-binding proteins or carbohydrate-processing enzymes. Finally, the results of this investigation showed that lectin-carbohydrate binding affinities could be quantitatively assessed by determining IC50 values for soluble carbohydrates with the carbohydrate arrays. The results of these studies suggest that carbohydrate arrays have the potential of playing an important role in basic researches, the diagnoses of diseases and drug discovery.

Keywords: carbohydrate arrays, glycomics, glycoproteins, immobilization, lectins


Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy