Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Mini-Review Article

Biosynthesis and Anticancer Activity of Genistein Glycoside Derivatives

Author(s): Xing Zheng, Jun Zhang, Shun Liu, Yingzi Yu, Qingying Peng, Yaling Peng, Xu Yao*, Xingxing Peng* and Jing Zhou*

Volume 24, Issue 13, 2024

Published on: 18 April, 2024

Page: [961 - 968] Pages: 8

DOI: 10.2174/0118715206299272240409043726

Price: $65

Abstract

As a beneficial natural flavonoid, genistein has demonstrated a wide range of biological functions via regulating a number of targets and signaling pathways, such as anti-cancer, antioxidant, antibacterial, antiinflammatory, antifungal, antiviral, iron chelation, anti-obesity, anti-diabetes, and anti-hypertension. Pub- Med/Medline and Web of Science were searched using appropriate keywords until the end of December 2023. Despite its many potential benefits, genistein’s clinical application is limited by low hydrophilicity, poor solubility, and suboptimal bioavailability due to its structure. These challenges can be addressed through the conversion of genistein into glycosides. Glycosylation of active small molecules may enhance their solubility, stability, and biological activity. In recent years, extensive research has been conducted on the synthesis, properties, and anticancer activity of glycoconjugates. Previous reviews were devoted to discussing the biological activities of genistin, with a little summary of the biosynthesis and the structure-activity relationship for their anticancer activity of genistein glycoside derivatives. Therefore, we summarized recent advances in the biosynthesis of genistein glycosylation and discussed the antitumor activities of genistein glycoside derivatives in a structure-activity relationship, which may provide important information for further development of genistein derivatives.

Keywords: Genistein derivatives, glycoside, anti-cancer activity, synthesis, biosynthesis, genistin.

Graphical Abstract
[1]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod., 2007, 70(3), 461-477.
[http://dx.doi.org/10.1021/np068054v] [PMID: 17309302]
[2]
Cragg, G.M.; Newman, D.J. Natural products: A continuing source of novel drug leads. Biochim. Biophys. Acta, Gen. Subj., 2013, 1830(6), 3670-3695.
[http://dx.doi.org/10.1016/j.bbagen.2013.02.008] [PMID: 23428572]
[3]
Butler, M.S. Natural products to drugs: Natural product-derived compounds in clinical trials. Nat. Prod. Rep., 2008, 25(3), 475-516.
[http://dx.doi.org/10.1039/b514294f] [PMID: 18497896]
[4]
Liu, M.; Lv, Q.; Xu, J.; Liu, B.; Zhou, Y.; Zhang, S.; Shen, X.; Wang, L. Isoflavone glucoside genistin, an inhibitor targeting Sortase A and Listeriolysin O, attenuates the virulence of Listeria monocytogenes in vivo and in vitro. Biochem. Pharmacol., 2023, 209, 115447.
[http://dx.doi.org/10.1016/j.bcp.2023.115447] [PMID: 36746262]
[5]
Blanchard, S.; Thorson, J. Enzymatic tools for engineering natural product glycosylation. Curr. Opin. Chem. Biol., 2006, 10(3), 263-271.
[http://dx.doi.org/10.1016/j.cbpa.2006.04.001] [PMID: 16675288]
[6]
Luzhetskyy, A.; Bechthold, A. Features and applications of bacterial glycosyltransferases: Current state and prospects. Appl. Microbiol. Biotechnol., 2008, 80(6), 945-952.
[http://dx.doi.org/10.1007/s00253-008-1672-2] [PMID: 18777021]
[7]
Nagaraju, G.P.; Zafar, S.F.; El-Rayes, B.F. Pleiotropic effects of genistein in metabolic, inflammatory, and malignant diseases. Nutr. Rev., 2013, 71(8), 562-572.
[http://dx.doi.org/10.1111/nure.12044] [PMID: 23865800]
[8]
Ganai, A.A.; Farooqi, H. Bioactivity of genistein: A review of in vitro and in vivo studies. Biomed. Pharmacother., 2015, 76, 30-38.
[http://dx.doi.org/10.1016/j.biopha.2015.10.026] [PMID: 26653547]
[9]
Nabavi, S.; Daglia, M.; Tundis, R.; Loizzo, M.; Sobarzo-Sánchez, E.; Orhan, I.; Nabavi, S. Genistein: A boon for mitigating ischemic stroke. Curr. Top. Med. Chem., 2015, 15(17), 1714-1721.
[http://dx.doi.org/10.2174/1568026615666150427122709] [PMID: 25915610]
[10]
Lim, Y.J.; Lyu, J.I.; Kwon, S.J.; Eom, S.H. Effects of UV-A radiation on organ-specific accumulation and gene expression of isoflavones and flavonols in soybean sprout. Food Chem., 2021, 339, 128080.
[http://dx.doi.org/10.1016/j.foodchem.2020.128080] [PMID: 33152873]
[11]
Rahman Mazumder, M.A.; Hongsprabhas, P. Genistein as antioxidant and antibrowning agents in in vivo and in vitro: A review. Biomed. Pharmacother., 2016, 82, 379-392.
[http://dx.doi.org/10.1016/j.biopha.2016.05.023] [PMID: 27470376]
[12]
Saha, S.; Sadhukhan, P.; Sil, P. Genistein: A phytoestrogen with multifaceted therapeutic properties. Mini Rev. Med. Chem., 2014, 14(11), 920-940.
[http://dx.doi.org/10.2174/1389557514666141029233442] [PMID: 25355592]
[13]
Jeminiwa, B.O.; Knight, R.M.; Braden, T.D. espindola, C.C.; Boothe, D.M.; Akingbemi, B.T. Regulation of the neuroendocrine axis in male rats by soy-based diets is independent of age and due specifically to isoflavone action†. Biol. Reprod., 2020, 103(4), 892-906.
[http://dx.doi.org/10.1093/biolre/ioaa101] [PMID: 32520353]
[14]
Pavese, J.M.; Farmer, R.L.; Bergan, R.C. Inhibition of cancer cell invasion and metastasis by genistein. Cancer Metastasis Rev., 2010, 29(3), 465-482.
[http://dx.doi.org/10.1007/s10555-010-9238-z] [PMID: 20730632]
[15]
Russo, M.; Russo, G.L.; Daglia, M.; Kasi, P.D.; Ravi, S.; Nabavi, S.F.; Nabavi, S.M. Understanding genistein in cancer: The “good” and the “bad” effects: A review. Food Chem., 2016, 196, 589-600.
[http://dx.doi.org/10.1016/j.foodchem.2015.09.085] [PMID: 26593532]
[16]
Ardito, F.; Gioia, D.G.; Pellegrino, M.R.; Muzio, L.L. Genistein as a potential anticancer agent against head and neck squamous cell carcinoma. Curr. Top. Med. Chem., 2018, 18(3), 174-181.
[http://dx.doi.org/10.2174/1568026618666180116122650] [PMID: 29345579]
[17]
Bitto, A.; Polito, F.; Squadrito, F.; Marini, H.; D’Anna, R.; Irrera, N.; Minutoli, L.; Granese, R.; Altavilla, D. Genistein aglycone: A dual mode of action anti-osteoporotic soy isoflavone rebalancing bone turnover towards bone formation. Curr. Med. Chem., 2010, 17(27), 3007-3018.
[http://dx.doi.org/10.2174/092986710791959738] [PMID: 20629630]
[18]
Hemati, N.; Asis, M.; Moradi, S.; Mollica, A.; Stefanucci, A.; Nikfar, S.; Mohammadi, E.; Farzaei, M.H.; Abdollahi, M. Effects of genistein on blood pressure: A systematic review and meta-analysis. Food Res. Int., 2020, 128, 108764.
[http://dx.doi.org/10.1016/j.foodres.2019.108764] [PMID: 31955737]
[19]
Behloul, N.; Wu, G. Genistein: A promising therapeutic agent for obesity and diabetes treatment. Eur. J. Pharmacol., 2013, 698(1-3), 31-38.
[http://dx.doi.org/10.1016/j.ejphar.2012.11.013] [PMID: 23178528]
[20]
Weng, L.; Zhang, F.; Wang, R.; Ma, W.; Song, Y. A review on protective role of genistein against oxidative stress in diabetes and related complications. Chem. Biol. Interact., 2019, 310, 108665.
[http://dx.doi.org/10.1016/j.cbi.2019.05.031] [PMID: 31125535]
[21]
Li, J.; Gang, D.; Yu, X.; Hu, Y.; Yue, Y.; Cheng, W.; Pan, X.; Zhang, P. Genistein: The potential for efficacy in rheumatoid arthritis. Clin. Rheumatol., 2013, 32(5), 535-540.
[http://dx.doi.org/10.1007/s10067-012-2148-4] [PMID: 23307323]
[22]
Spagnuolo, C.; Russo, G.L.; Orhan, I.E.; Habtemariam, S.; Daglia, M.; Sureda, A.; Nabavi, S.F.; Devi, K.P.; Loizzo, M.R.; Tundis, R.; Nabavi, S.M. Genistein and cancer: Current status, challenges, and future directions. Adv. Nutr., 2015, 6(4), 408-419.
[http://dx.doi.org/10.3945/an.114.008052] [PMID: 26178025]
[23]
Devi, K.P.; Shanmuganathan, B.; Manayi, A.; Nabavi, S.F.; Nabavi, S.M. Molecular and therapeutic targets of genistein in Alzheimer’s Disease. Mol. Neurobiol., 2017, 54(9), 7028-7041.
[http://dx.doi.org/10.1007/s12035-016-0215-6] [PMID: 27796744]
[24]
Irrera, N.; Pizzino, G.; D’Anna, R.; Vaccaro, M.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Dietary management of skin health: The role of genistein. Nutrients, 2017, 9(6), 622.
[http://dx.doi.org/10.3390/nu9060622] [PMID: 28629129]
[25]
Tuli, H.S.; Tuorkey, M.J.; Thakral, F.; Sak, K.; Kumar, M.; Sharma, A.K.; Sharma, U.; Jain, A.; Aggarwal, V.; Bishayee, A. Molecular mechanisms of action of genistein in cancer: Recent advances. Front. Pharmacol., 2019, 10, 1336.
[http://dx.doi.org/10.3389/fphar.2019.01336] [PMID: 31866857]
[26]
Bosland, M.C.; Huang, J.; Schlicht, M.J.; Enk, E.; Xie, H.; Kato, I. Impact of 18-month soy protein supplementation on steroid hormones and serum biomarkers of angiogenesis, apoptosis, and the growth hormone/IGF-1 axis: Results of a randomized, placebo-controlled trial in males following prostatectomy. Nutr. Cancer, 2022, 74(1), 110-121.
[http://dx.doi.org/10.1080/01635581.2020.1870706] [PMID: 33432829]
[27]
Tang, J.; Xu, N.; Ji, H.; Liu, H.; Wang, Z.; Wu, L. Eudragit nanoparticles containing genistein: Formulation, development, and bioavailability assessment. Int. J. Nanomedicine, 2011, 6, 2429-2435.
[PMID: 22072878]
[28]
Danciu, C.; Soica, C.; Oltean, M.; Avram, S.; Borcan, F.; Csanyi, E.; Ambrus, R.; Zupko, I.; Muntean, D.; Dehelean, C.; Craina, M.; Popovici, R. Genistein in 1:1 inclusion complexes with ramified cyclodextrins: Theoretical, physicochemical and biological evaluation. Int. J. Mol. Sci., 2014, 15(2), 1962-1982.
[http://dx.doi.org/10.3390/ijms15021962] [PMID: 24473144]
[29]
Han, R.; Ge, B.; Jiang, M.; Xu, G.; Dong, J.; Ni, Y. High production of genistein diglucoside derivative using cyclodextrin glycosyltransferase from Paenibacillus macerans. J. Ind. Microbiol. Biotechnol., 2017, 44(9), 1343-1354.
[http://dx.doi.org/10.1007/s10295-017-1960-x] [PMID: 28660368]
[30]
Ferrado, J.B.; Perez, A.A.; Baravalle, M.E.; Renna, M.S.; Ortega, H.H.; Santiago, L.G. Genistein loaded in self-assembled bovine serum albumin nanovehicles and their effects on mouse mammary adenocarcinoma cells. Colloids Surf. B Biointerfaces, 2021, 204, 111777.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111777] [PMID: 33932891]
[31]
Zhang, X.; Zhu, Y.; Ye, J.; Ye, Z.; Zhu, R.; Xie, G.; Zhao, Y.; Qin, M. Iris domestica (iso)flavone 7- and 3′-O-glycosyltransferases can be induced by CuCl2. Front. Plant Sci., 2021, 12, 632557.
[http://dx.doi.org/10.3389/fpls.2021.632557] [PMID: 33633770]
[32]
Fujitaka, Y.; Hamada, H.; Uesugi, D.; Kuboki, A.; Shimoda, K.; Iwaki, T.; Kiriake, Y.; Saikawa, T. Synthesis of daidzein glycosides, α-tocopherol glycosides, hesperetin glycosides by bioconversion and their potential for anti-allergic functional-foods and cosmetics. Molecules, 2019, 24(16), 2975.
[http://dx.doi.org/10.3390/molecules24162975] [PMID: 31426346]
[33]
Choi, Y.; Shim, J.; Kim, M. Genistin: A novel potent anti-adipogenic and anti-lipogenic agent. Molecules, 2020, 25(9), 2042.
[http://dx.doi.org/10.3390/molecules25092042] [PMID: 32349444]
[34]
Harisna, A.H.; Nurdiansyah, R.; Syaifie, P.H.; Nugroho, D.W.; Saputro, K.E. Firdayani; Prakoso, C.D.; Rochman, N.T.; Maulana, N.N.; Noviyanto, A.; Mardliyati, E. In silico investigation of potential inhibitors to main protease and spike protein of SARS-CoV-2 in propolis. Biochem. Biophys. Rep., 2021, 26, 100969.
[http://dx.doi.org/10.1016/j.bbrep.2021.100969] [PMID: 33681482]
[35]
Yamamoto, T.; Nagata, Y.; Hayashi, S.; Kadowaki, M. Isoflavones suppress Cyp26b1 expression in the murine colonic lamina propria. Biol. Pharm. Bull., 2020, 43(12), 1945-1949.
[http://dx.doi.org/10.1248/bpb.b20-00355] [PMID: 33268713]
[36]
Takasugi, M.; Muta, E.; Yamada, K.; Arai, H. A new method to evaluate anti-allergic effect of food component by measuring leukotriene B4 from a mouse mast cell line. Cytotechnology, 2018, 70(1), 177-184.
[http://dx.doi.org/10.1007/s10616-017-0129-9] [PMID: 28852902]
[37]
Rusin, A.; Zawisza-Puchałka, J.; Kujawa, K.; Pigłowska, G.A.; Wietrzyk, J.; Świtalska, M.; Kosińska, G.M.; Gruca, A.; Szeja, W.; Krawczyk, Z.; Grynkiewicz, G. Synthetic conjugates of genistein affecting proliferation and mitosis of cancer cells. Bioorg. Med. Chem., 2011, 19(1), 295-305.
[http://dx.doi.org/10.1016/j.bmc.2010.11.024] [PMID: 21129977]
[38]
Li, X.; Wang, Y.; Park, J.T.; Gu, L.; Li, D. An extremely thermostable maltogenic amylase from Staphylothermus marinus: Bacillus expression of the gene and its application in genistin glycosylation. Int. J. Biol. Macromol., 2018, 107(Pt A), 413-417.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.09.007] [PMID: 28887188]
[39]
Amin, K.; Tranchimand, S.; Benvegnu, T.; Razzak, A.Z.; Chamieh, H. Glycoside hydrolases and glycosyltransferases from hyperthermophilic archaea: Insights on their characteristics and applications in biotechnology. Biomolecules, 2021, 11(11), 1557.
[http://dx.doi.org/10.3390/biom11111557] [PMID: 34827555]
[40]
Ko, J.H.; Kim, B.G.; Kim, J.H.; Kim, H.; Lim, C.E.; Lim, J.; Lee, C.; Lim, Y.; Ahn, J.H. Four glucosyltransferases from rice: cDNA cloning, expression, and characterization. J. Plant Physiol., 2008, 165(4), 435-444.
[http://dx.doi.org/10.1016/j.jplph.2007.01.006] [PMID: 17363107]
[41]
Kramer, C.M.; Prata, R.T.N.; Willits, M.G.; De Luca, V.; Steffens, J.C.; Graser, G. Cloning and regiospecificity studies of two flavonoid glucosyltransferases from Allium cepa. Phytochemistry, 2003, 64(6), 1069-1076.
[http://dx.doi.org/10.1016/S0031-9422(03)00507-7] [PMID: 14568073]
[42]
Cai, R.; Chen, C.; Li, Y.; Sun, K.; Zhou, F.; Chen, K.; Jia, H. Improved soluble bacterial expression and properties of the recombinant flavonoid glucosyltransferase UGT73G1 from Allium cepa. J. Biotechnol., 2017, 255, 9-15.
[http://dx.doi.org/10.1016/j.jbiotec.2017.06.011] [PMID: 28627388]
[43]
Li, D.; Roh, S.A.; Shim, J.H.; Mikami, B.; Baik, M.Y.; Park, C.S.; Park, K.H. Glycosylation of genistin into soluble inclusion complex form of cyclic glucans by enzymatic modification. J. Agric. Food Chem., 2005, 53(16), 6516-6524.
[http://dx.doi.org/10.1021/jf050732g] [PMID: 16076143]
[44]
Park, S. Cyclic glucans enhance solubility of bioavailable flavonoids. Molecules, 2016, 21(11), 1556.
[http://dx.doi.org/10.3390/molecules21111556] [PMID: 27854350]
[45]
Sordon, S.; Popłoński, J.; Tronina, T.; Huszcza, E. Microbial glycosylation of daidzein, genistein and biochanin A: Two new glucosides of biochanin A. Molecules, 2017, 22(1), 81.
[http://dx.doi.org/10.3390/molecules22010081] [PMID: 28054950]
[46]
Sordon, S.; Popłoński, J.; Tronina, T.; Huszcza, E. Regioselective o-glycosylation of flavonoids by fungi Beauveria bassiana, Absidia coerulea and Absidia glauca. Bioorg. Chem., 2019, 93, 102750.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.046] [PMID: 30755333]
[47]
Ruby, Kumar R.J.; Vishwakarma, R.K.; Singh, S.; Khan, B.M. Molecular cloning and characterization of genistein 4′-O-glucoside specific glycosyltransferase from Bacopa monniera. Mol. Biol. Rep., 2014, 41(7), 4675-4688.
[http://dx.doi.org/10.1007/s11033-014-3338-8] [PMID: 24664316]
[48]
Chai, B.; Jiang, Y.; Ni, Y.; Han, R. Engineering the 182 site of cyclodextrin glucosyltransferase for glycosylated genistein synthesis. Chin. J. Biotechnol., 2022, 38(2), 749-759.
[PMID: 35234395]
[49]
Pandey, R.P.; Parajuli, P.; Koirala, N.; Lee, J.H.; Park, Y.I.; Sohng, J.K. Glucosylation of isoflavonoids in engineered Escherichia coli. Mol. Cells, 2014, 37(2), 172-177.
[http://dx.doi.org/10.14348/molcells.2014.2348] [PMID: 24599002]
[50]
Koirala, N.; Pandey, R.P.; Van Thang, D.; Jung, H.J.; Sohng, J.K. Glycosylation and subsequent malonylation of isoflavonoids in E. coli: Strain development, production and insights into future metabolic perspectives. J. Ind. Microbiol. Biotechnol., 2014, 41(11), 1647-1658.
[http://dx.doi.org/10.1007/s10295-014-1504-6] [PMID: 25189810]
[51]
Shrestha, A.; Pandey, R.P.; Dhakal, D.; Parajuli, P.; Sohng, J.K. Biosynthesis of flavone C-glucosides in engineered Escherichia coli. Appl. Microbiol. Biotechnol., 2018, 102(3), 1251-1267.
[http://dx.doi.org/10.1007/s00253-017-8694-6] [PMID: 29308528]
[52]
Hwang, S.T.; Yang, M.H.; Baek, S.H.; Um, J.Y.; Ahn, K.S. Genistin attenuates cellular growth and promotes apoptotic cell death breast cancer cells through modulation of ERalpha signaling pathway. Life Sci., 2020, 263, 118594.
[http://dx.doi.org/10.1016/j.lfs.2020.118594] [PMID: 33075375]
[53]
Hooshmand, S.; Khalil, D.A.; Murillo, G.; Singletary, K.; Kamath, S.K.; Arjmandi, B.H. The combination of genistin and ipriflavone prevents mammary tumorigenesis and modulates lipid profile. Clin. Nutr., 2008, 27(4), 643-648.
[http://dx.doi.org/10.1016/j.clnu.2008.04.012] [PMID: 18571816]
[54]
Russo, A.; Cardile, V.; Lombardo, L.; Vanella, L.; Acquaviva, R. Genistin inhibits UV light-induced plasmid DNA damage and cell growth in human melanoma cells. J. Nutr. Biochem., 2006, 17(2), 103-108.
[http://dx.doi.org/10.1016/j.jnutbio.2005.05.011] [PMID: 16111876]
[55]
Saleh, M.A.; Antar, S.A.; Abdo, W.; Ashour, A.; Zaki, A.A. Genistin modulates high-mobility group box protein 1 (HMGB1) and nuclear factor kappa-B (NF-κB) in Ehrlich-ascites-carcinoma-bearing mice. Environ. Sci. Pollut. Res. Int., 2023, 30(1), 966-978.
[http://dx.doi.org/10.1007/s11356-022-22268-6] [PMID: 35907070]
[56]
Kato, K.; Takahashi, S.; Cui, L.; Toda, T.; Suzuki, S.; Futakuchi, M.; Sugiura, S.; Shirai, T. Suppressive effects of dietary genistin and daidzin on rat prostate carcinogenesis. Jpn. J. Cancer Res., 2000, 91(8), 786-791.
[http://dx.doi.org/10.1111/j.1349-7006.2000.tb01014.x] [PMID: 10965018]
[57]
Choi, E.J.; Kim, T.; Lee, M.S. Pro-apoptotic effect and cytotoxicity of genistein and genistin in human ovarian cancer SK-OV-3 cells. Life Sci., 2007, 80(15), 1403-1408.
[http://dx.doi.org/10.1016/j.lfs.2006.12.031] [PMID: 17291540]
[58]
Polkowski, K.; Popiołkiewicz, J.; Krzeczyński, P.; Ramza, J.; Pucko, W.; Stendel, Z.O.; Boryski, J.; Skierski, J.S.; Mazurek, A.P.; Grynkiewicz, G. Cytostatic and cytotoxic activity of synthetic genistein glycosides against human cancer cell lines. Cancer Lett., 2004, 203(1), 59-69.
[http://dx.doi.org/10.1016/j.canlet.2003.08.023] [PMID: 14670618]
[59]
Gogler-Pigłowska, A.; Rusin, A.; Bochenek, D.; Krawczyk, Z. Aneugenic effects of the genistein glycosidic derivative substituted at C7 with the unsaturated disaccharide. Cell Biol. Toxicol., 2012, 28(5), 331-342.
[http://dx.doi.org/10.1007/s10565-012-9227-9] [PMID: 22843076]
[60]
Gruca, A.; Krawczyk, Z.; Szeja, W.; Grynkiewicz, G.; Rusin, A. Synthetic genistein glycosides inhibiting EGFR phosphorylation enhance the effect of radiation in HCT 116 colon cancer cells. Molecules, 2014, 19(11), 18558-18573.
[http://dx.doi.org/10.3390/molecules191118558] [PMID: 25401399]
[61]
Szeja, W.; Grynkiewicz, G.; Bieg, T.; Swierk, P.; Byczek, A.; Papaj, K.; Kitel, R.; Rusin, A. Synthesis and cytotoxicity of 2,3-enopyranosyl C-linked conjugates of genistein. Molecules, 2014, 19(6), 7072-7093.
[http://dx.doi.org/10.3390/molecules19067072] [PMID: 24886936]
[62]
Liu, L.; Ahn, K.S.; Shanmugam, M.K.; Wang, H.; Shen, H.; Arfuso, F.; Chinnathambi, A.; Alharbi, S.A.; Chang, Y.; Sethi, G.; Tang, F.R. Oleuropein induces apoptosis via abrogating NF‐κB activation cascade in estrogen receptor–negative breast cancer cells. J. Cell. Biochem., 2019, 120(3), 4504-4513.
[http://dx.doi.org/10.1002/jcb.27738] [PMID: 30260018]
[63]
Garcia-Estevez, L.; Moreno-Bueno, G. Updating the role of obesity and cholesterol in breast cancer. Breast Cancer Res., 2019, 21(1), 35.
[http://dx.doi.org/10.1186/s13058-019-1124-1] [PMID: 30823902]
[64]
Allred, C.D.; Ju, Y.H.; Allred, K.F.; Chang, J.; Helferich, W.G. Dietary genistin stimulates growth of estrogen-dependent breast cancer tumors similar to that observed with genistein. Carcinogenesis, 2001, 22(10), 1667-1673.
[http://dx.doi.org/10.1093/carcin/22.10.1667] [PMID: 11577007]
[65]
Allred, C.D.; Allred, K.F.; Ju, Y.H.; Virant, S.M.; Helferich, W.G. Soy diets containing varying amounts of genistein stimulate growth of estrogen-dependent (MCF-7) tumors in a dose-dependent manner. Cancer Res., 2001, 61(13), 5045-5050.
[PMID: 11431339]
[66]
Hamdy, S.M.; Latif, A.K.M.A.; Drees, E.A.; Soliman, S.M. Prevention of rat breast cancer by genistin and selenium. Toxicol. Ind. Health, 2012, 28(8), 746-757.
[http://dx.doi.org/10.1177/0748233711422732] [PMID: 22089659]
[67]
Rigano, D.; Cardile, V.; Formisano, C.; Maldini, M.T.; Piacente, S.; Bevilacqua, J.; Russo, A.; Senatore, F. Genista sessilifolia DC. and Genista tinctoria L. inhibit UV light and nitric oxide-induced DNA damage and human melanoma cell growth. Chem. Biol. Interact., 2009, 180(2), 211-219.
[http://dx.doi.org/10.1016/j.cbi.2009.02.010] [PMID: 19497419]
[68]
Ozaslan, M.; Karagoz, I.D.; Kilic, I.H.; Guldur, M.E. Ehrlich ascites carcinoma. Afr. J. Biotechnol., 2011, 10(13), 2375-2378.
[69]
Raghavarao, T.; Nagavani, V. Anticancer potential of Nymphaea nouchali Brum flowers against Ehrlich ascites carcinoma cell lines. J. Cancer Res. Ther., 2023, 19(S8), 241.
[http://dx.doi.org/10.4103/jcrt.JCRT_160_18] [PMID: 37148001]
[70]
Antosiak, A.; Milowska, K.; Maczynska, K.; Rozalska, S.; Gabryelak, T. Cytotoxic activity of genistein-8-C-glucoside form Lupinus luteus L. and genistein against human SK-OV-3 ovarian carcinoma cell line. Med. Chem. Res., 2017, 26(1), 64-73.
[http://dx.doi.org/10.1007/s00044-016-1725-5] [PMID: 28111515]
[71]
Li, Y.; Mi, C. Proliferation inhibition and apoptosis onset in human ovarian carcinoma cell line SKOV3 induced by Genistein. Chin. J. Cancer, 2003, 22(6), 586-591.
[PMID: 12948406]
[72]
Popiołkiewicz, J.; Polkowski, K.; Skierski, J.S.; Mazurek, A.P. In vitro toxicity evaluation in the development of new anticancer drugs—genistein glycosides. Cancer Lett., 2005, 229(1), 67-75.
[http://dx.doi.org/10.1016/j.canlet.2005.01.014] [PMID: 16157220]
[73]
Rusin, A.; Krawczyk, Z.; Grynkiewicz, G.; Gogler, A.; Puchałka, Z.J.; Szeja, W. Synthetic derivatives of genistein, their properties and possible applications. Acta Biochim. Pol., 2010, 57(1), 23-34.
[http://dx.doi.org/10.18388/abp.2010_2368] [PMID: 20216977]
[74]
Zaczek, A.; Brandt, B.; Bielawski, K.P. The diverse signaling network of EGFR, HER2, HER3 and HER4 tyrosine kinase receptors and the consequences for therapeutic approaches. Histol. Histopathol., 2005, 20(3), 1005-1015.
[PMID: 15944951]
[75]
Roskoski, R., Jr The ErbB/HER receptor protein-tyrosine kinases and cancer. Biochem. Biophys. Res. Commun., 2004, 319(1), 1-11.
[http://dx.doi.org/10.1016/j.bbrc.2004.04.150] [PMID: 15158434]
[76]
Ono, M.; Kuwano, M. Molecular mechanisms of epidermal growth factor receptor (EGFR) activation and response to gefitinib and other EGFR-targeting drugs. Clin. Cancer Res., 2006, 12(24), 7242-7251.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0646] [PMID: 17189395]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy