Generic placeholder image

Current Drug Research Reviews

Editor-in-Chief

ISSN (Print): 2589-9775
ISSN (Online): 2589-9783

Review Article

Peptide Drugs: Current Status and it's Applications in the Treatment of Various Diseases

Author(s): Chandni Chandarana*, Isha Juwarwala, Shravi Shetty and Anushree Bose

Volume 16, Issue 3, 2024

Published on: 17 April, 2024

Page: [381 - 394] Pages: 14

DOI: 10.2174/0125899775295960240406073630

Price: $65

Open Access Journals Promotions 2
Abstract

Peptides represent a class of natural molecules with diverse physiological functions, including hormone regulation, neurotransmission, and immune modulation. In recent years, peptide- based therapeutics have gained significant attention in pharmaceutical research and development due to their high specificity, efficacy, and relatively low toxicity. This review provides an overview of the current landscape of peptide drug development, highlighting the challenges faced in their formulation and delivery and the innovative strategies employed to overcome these hurdles. The review explores the wide range of applications of peptide drugs in treating various diseases, including HIV, multiple sclerosis, osteoporosis, chronic pain, diabetes, and cancer. Examples of FDA-approved peptide drugs and ongoing clinical trials are presented, showcasing the continuous advancements in peptide-based therapeutics across different therapeutic areas. This review underscores the promising potential of peptide drugs as targeted and effective treatments for a multitude of medical conditions, offering improved therapeutic outcomes and enhanced patient care.

Keywords: Peptide drugs, HIV, cancer, metabolic disorders, osteoporosis, diabetes.

Graphical Abstract
[1]
Hemanth Kumar NK, Poornachandra Rao K, Somashekaraiah R, Jagannath S, Sreenivasa MY. Recent advances and challenges in peptide drug development. Antimicrobial Peptides 2023; 1: 297-310.
[http://dx.doi.org/10.1016/B978-0-323-85682-9.00001-5]
[2]
Ganesh AN, Heusser C, Garad S, Sánchez-Félix MV. Patient-centric design for peptide delivery: Trends in routes of administration and advancement in drug delivery technologies. Med Drug Discov 2021; 9: 100079.
[http://dx.doi.org/10.1016/j.medidd.2020.100079]
[3]
Lau JL, Dunn MK. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg Med Chem 2018; 26(10): 2700-7.
[http://dx.doi.org/10.1016/j.bmc.2017.06.052] [PMID: 28720325]
[4]
Fosgerau K, Hoffmann T. Peptide therapeutics: Current status and future directions. Drug Discov Today 2015; 20(1): 122-8.
[http://dx.doi.org/10.1016/j.drudis.2014.10.003] [PMID: 25450771]
[5]
Cao S, Lv Z, Guo S, Jiang G, Liu H. An update - Prolonging the action of protein and peptide drugs. J Drug Deliv Sci Technol 2021; 61: 102124.
[http://dx.doi.org/10.1016/j.jddst.2020.102124]
[6]
Chupradit K, Moonmuang S, Nangola S, et al. Current peptide and protein candidates challenging HIV therapy beyond the vaccine era. Viruses 2017; 9(10): 281.
[http://dx.doi.org/10.3390/v9100281] [PMID: 28961190]
[7]
Mutaru AM, Ibrahim A, Wumpini Osuman A-N, Atanga Agana T, Sukerazu Alhassan A. Knowledge, attitude and clinical practice regarding HIV/AIDS among trainee nurses in north-eastern corridor, Ghana. Int J Afr Nurs Sci 2023; 18: 100545.
[http://dx.doi.org/10.1016/j.ijans.2023.100545]
[8]
Sharp PM, Hahn BH. Origins of HIV and the AIDS Pandemic. Cold Spring Harb Perspect Med 2011; 1(1): a006841.
[http://dx.doi.org/10.1101/cshperspect.a006841] [PMID: 22229120]
[9]
Ceña-Diez R, Narayanan A, Ray S, et al. Naturally occurring dipeptide from elite controllers with dual anti-HIV-1 mechanism. Int J Antimicrob Agents 2023; 61(5): 106792.
[http://dx.doi.org/10.1016/j.ijantimicag.2023.106792] [PMID: 36931610]
[10]
Shi S, Nguyen PK, Cabral HJ, et al. Development of peptide inhibitors of HIV transmission. Bioact Mater 2016; 1(2): 109-21.
[http://dx.doi.org/10.1016/j.bioactmat.2016.09.004] [PMID: 29744399]
[11]
Craik DJ, Fairlie DP, Liras S, Price D. The future of peptide-based drugs. Chem Biol Drug Des 2013; 81(1): 136-47.
[http://dx.doi.org/10.1111/cbdd.12055] [PMID: 23253135]
[12]
Akbulut EO. Protein-peptide interactions revolutionize drug development. Binding Protein 2012; 19: 49.
[13]
Choonara BF, Choonara YE, Kumar P, Bijukumar D, du Toit LC, Pillay V. A review of advanced oral drug delivery technologies facilitating the protection and absorption of protein and peptide molecules. Biotechnol Adv 2014; 32(7): 1269-82.
[http://dx.doi.org/10.1016/j.biotechadv.2014.07.006] [PMID: 25099657]
[14]
Kitchen C, Nuño M, Kitchen SG, Krogstad P. Enfuvirtide antiretroviral therapy in HIV-1 infection. Ther Clin Risk Manag 2008; 4(2): 433-9.
[http://dx.doi.org/10.2147/TCRM.S1962] [PMID: 18728846]
[15]
Wild CT, Shugars DC, Greenwell TK, McDanal CB, Matthews TJ. Peptides corresponding to a predictive alpha-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection. Proc Natl Acad Sci USA 1994; 91(21): 9770-4.
[http://dx.doi.org/10.1073/pnas.91.21.9770] [PMID: 7937889]
[16]
Chen CH, Matthews TJ, McDanal CB, Bolognesi DP, Greenberg ML. A molecular clasp in the human immunodeficiency virus (HIV) type 1 TM protein determines the anti-HIV activity of gp41 derivatives: implication for viral fusion. J Virol 1995; 69(6): 3771-7.
[http://dx.doi.org/10.1128/jvi.69.6.3771-3777.1995] [PMID: 7538176]
[17]
Drugbank Available from: https://go.drugbank.com/drugs/DB00109 (cited on 1 July 2023).
[18]
Pert CB, Hill JM, Ruff MR, et al. Octapeptides deduced from the neuropeptide receptor-like pattern of antigen T4 in brain potently inhibit human immunodeficiency virus receptor binding and T-cell infectivity. Proc Natl Acad Sci USA 1986; 83(23): 9254-8.
[http://dx.doi.org/10.1073/pnas.83.23.9254] [PMID: 3097649]
[19]
Alam SM, Paleos CA, Liao HX, Scearce R, Robinson J, Haynes BF. An inducible HIV type 1 gp41 HR-2 peptide-binding site on HIV type 1 envelope gp120. AIDS Res Hum Retroviruses 2004; 20(8): 836-45.
[http://dx.doi.org/10.1089/0889222041725181] [PMID: 15320988]
[20]
Weinstock-Guttman B, Jacobs LD. What is new in the treatment of multiple sclerosis? Drugs 2000; 59(3): 401-10.
[http://dx.doi.org/10.2165/00003495-200059030-00002] [PMID: 10776827]
[21]
Ebers GC. Randomised double-blind placebo-controlled study of interferon β-1a in relapsing/remitting multiple sclerosis. Lancet 1998; 352(9139): 1498-504.
[http://dx.doi.org/10.1016/S0140-6736(98)03334-0] [PMID: 9820297]
[22]
Del Gatto A, Saviano M, Zaccaro L. An overview of peptide-based molecules as potential drug candidates for multiple sclerosis. Molecules 2021; 26(17): 5227.
[http://dx.doi.org/10.3390/molecules26175227] [PMID: 34500662]
[23]
Baldassari LE, Feng J, Clayton BLL, et al. Developing therapeutic strategies to promote myelin repair in multiple sclerosis. Expert Rev Neurother 2019; 19(10): 997-1013.
[http://dx.doi.org/10.1080/14737175.2019.1632192] [PMID: 31215271]
[24]
Rayatpour A, Javan M. Targeting the brain lesions using peptides: A review focused on the possibility of targeted drug delivery to multiple sclerosis lesions. Pharmacol Res 2021; 167: 105441.
[http://dx.doi.org/10.1016/j.phrs.2021.105441] [PMID: 33503478]
[25]
Multiple sclerosis trust. Avaiable from: https://www.mstrust.org.uk/a-z/atx-ms-1467 [cited 2023 April 23].
[26]
Yuan R, Wang B, Lu W, Maeda Y, Dowling P. A distinct region in erythropoietin that induces immuno/inflammatory modulation and tissue protection. Neurotherapeutics 2015; 12(4): 850-61.
[http://dx.doi.org/10.1007/s13311-015-0379-1] [PMID: 26271954]
[27]
Miller SD, Turley DM, Podojil JR. Antigen-specific tolerance strategies for the prevention and treatment of autoimmune disease. Nat Rev Immunol 2007; 7(9): 665-77.
[http://dx.doi.org/10.1038/nri2153] [PMID: 17690713]
[28]
Kumar V, Urban JL, Horvath SJ, Hood L. Amino acid variations at a single residue in an autoimmune peptide profoundly affect its properties: T-cell activation, major histocompatibility complex binding, and ability to block experimental allergic encephalomyelitis. Proc Natl Acad Sci USA 1990; 87(4): 1337-41.
[http://dx.doi.org/10.1073/pnas.87.4.1337] [PMID: 1689484]
[29]
Aharoni R, Teitelbaum D, Arnon R, Sela M. Copolymer 1 acts against the immunodominant epitope 82–100 of myelin basic protein by T cell receptor antagonism in addition to major histocompatibility complex blocking. Proc Natl Acad Sci USA 1999; 96(2): 634-9.
[http://dx.doi.org/10.1073/pnas.96.2.634] [PMID: 9892685]
[30]
Ruiz PJ, DeVoss JJ, Nguyen LVT, et al. Immunomodulation of experimental autoimmune encephalomyelitis with ordered peptides based on MHC-TCR binding motifs. J Immunol 2001; 167(5): 2688-93.
[http://dx.doi.org/10.4049/jimmunol.167.5.2688] [PMID: 11509612]
[31]
Munari L, Lovati R, Boiko A. Therapy with glatiramer acetate for multiple sclerosis. Cochrane Database Syst Rev 2004; (1): CD004678.
[PMID: 14974077]
[32]
Jenkins MK, Johnson JG. Molecules involved in T-cell costimulation. Curr Opin Immunol 1993; 5(3): 361-7.
[http://dx.doi.org/10.1016/0952-7915(93)90054-V] [PMID: 7688514]
[33]
June CH, Bluestone JA, Nadler LM, Thompson CB. The B7 and CD28 receptor families. Immunol Today 1994; 15(7): 321-31.
[http://dx.doi.org/10.1016/0167-5699(94)90080-9] [PMID: 7522010]
[34]
Iyer S, Lahana R, Buelow R. Rational design and development of RDP58. Curr Pharm Des 2002; 8(24): 2217-29.
[http://dx.doi.org/10.2174/1381612023393170] [PMID: 12369864]
[35]
Liu Y, Zhu B, Luo L, Li P, Paty DW, Cynader MS. Heme oxygenase-1 plays an important protective role in experimental autoimmune encephalomyelitis. Neuroreport 2001; 12(9): 1841-5.
[http://dx.doi.org/10.1097/00001756-200107030-00016] [PMID: 11435909]
[36]
Liu Y, Zhu B, Wang X, et al. Bilirubin as a potent antioxidant suppresses experimental autoimmune encephalomyelitis: implications for the role of oxidative stress in the development of multiple sclerosis. J Neuroimmunol 2003; 139(1-2): 27-35.
[http://dx.doi.org/10.1016/S0165-5728(03)00132-2] [PMID: 12799017]
[37]
Cuturi MC, Christoph F, Woo J, et al. RDP1258, a new rationally designed immunosuppressive peptide, prolongs allograft survival in rats: Analysis of its mechanism of action. Mol Med 1999; 5(12): 820-32.
[http://dx.doi.org/10.1007/BF03401995] [PMID: 10666482]
[38]
Iyer S, Woo J, Cornejo MC, et al. Characterization and biological significance of immunosuppressive peptide D2702.75-84(E --> V) binding protein. Isolation of heme oxygenase-1. J Biol Chem 1998; 273(5): 2692-7.
[http://dx.doi.org/10.1074/jbc.273.5.2692] [PMID: 9446574]
[39]
Brodsky B, Erlangerrosengarten A, Proscura E, Shapira E, Wormser U. From topical antidote against skin irritants to a novel counter-irritating and anti-inflammatory peptide. Toxicol Appl Pharmacol 2008; 229(3): 342-50.
[http://dx.doi.org/10.1016/j.taap.2008.01.038] [PMID: 18400241]
[40]
Shapira E, Brodsky B, Proscura E, Nyska A, Erlanger-Rosengarten A, Wormser U. Amelioration of experimental autoimmune encephalitis by novel peptides: Involvement of T regulatory cells. J Autoimmun 2010; 35(1): 98-106.
[http://dx.doi.org/10.1016/j.jaut.2010.03.004] [PMID: 20434883]
[41]
Wood AJJ, Riggs BL, Melton LJ III. The prevention and treatment of osteoporosis. N Engl J Med 1992; 327(9): 620-7.
[http://dx.doi.org/10.1056/NEJM199208273270908] [PMID: 1640955]
[42]
Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: Now and the future. Lancet 2011; 377(9773): 1276-87.
[http://dx.doi.org/10.1016/S0140-6736(10)62349-5] [PMID: 21450337]
[43]
Klibanski A, Adams-Campbell L, Bassford T, Blair SN, Boden SD, Dickersin K, et al. Osteoporosis prevention, diagnosis, and therapy. JAMA 2001; 285(6): 785-95.
[http://dx.doi.org/10.1001/jama.285.6.785] [PMID: 11176917]
[44]
Unnanuntana A, Gladnick BP, Donnelly E, Lane JM. The assessment of fracture risk. J Bone Joint Surg Am 2010; 92(3): 743-53.
[http://dx.doi.org/10.2106/JBJS.I.00919] [PMID: 20194335]
[45]
Christodoulou C, Cooper C. What is osteoporosis? Postgrad Med J 2003; 79(929): 133-8.
[http://dx.doi.org/10.1136/pmj.79.929.133] [PMID: 12697910]
[46]
Chen Y, Chen J, Chen J, et al. Recent advances in seafood bioactive peptides and their potential for managing osteoporosis. Crit Rev Food Sci Nutr 2022; 62(5): 1187-203.
[http://dx.doi.org/10.1080/10408398.2020.1836606] [PMID: 33094645]
[47]
Cosman F, de Beur SJ, LeBoff MS, et al. Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int 2014; 25(10): 2359-81.
[http://dx.doi.org/10.1007/s00198-014-2794-2] [PMID: 25182228]
[48]
Tu KN, Lie JD, Wan CKV, et al. Osteoporosis: A review of treatment options. P&T 2018; 43(2): 92-104.
[PMID: 29386866]
[49]
Masi L, Brandi ML. Calcitonin and calcitonin receptors. Clin Cases Miner Bone Metab 2007; 4(2): 117-22.
[PMID: 22461211]
[50]
Felsenfeld AJ, Levine BS. Calcitonin, the forgotten hormone: Does it deserve to be forgotten? Clin Kidney J 2015; 8(2): 180-7.
[http://dx.doi.org/10.1093/ckj/sfv011] [PMID: 25815174]
[51]
Niall HD, Keutmann HT, Copp DH, Potts JT Jr. Amino acid sequence of salmon ultimobranchial calcitonin. Proc Natl Acad Sci USA 1969; 64(2): 771-8.
[http://dx.doi.org/10.1073/pnas.64.2.771] [PMID: 5261048]
[52]
Andreotti G, Méndez BL, Amodeo P, Morelli MAC, Nakamuta H, Motta A. Structural determinants of salmon calcitonin bioactivity: The role of the Leu-based amphipathic α-helix. J Biol Chem 2006; 281(34): 24193-203.
[http://dx.doi.org/10.1074/jbc.M603528200] [PMID: 16766525]
[53]
Nicholson GC, Moseley JM, Sexton PM, Mendelsohn FA, Martin TJ. Abundant calcitonin receptors in isolated rat osteoclasts. Biochemical and autoradiographic characterization. J Clin Invest 1986; 78(2): 355-60.
[http://dx.doi.org/10.1172/JCI112584] [PMID: 3016026]
[54]
Neer RM, Arnaud CD, Zanchetta JR, et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 2001; 344(19): 1434-41.
[http://dx.doi.org/10.1056/NEJM200105103441904] [PMID: 11346808]
[55]
Quattrocchi E, Kourlas H. Teriparatide: A review. Clin Ther 2004; 26(6): 841-54.
[http://dx.doi.org/10.1016/S0149-2918(04)90128-2] [PMID: 15262455]
[56]
Inderjeeth CA, Chan K, Glendenning P. Teriparatide: Its use in the treatment of osteoporosis. Clinical Medicine Insights: Therapeutics 2011; 3: CMT-S2358..
[http://dx.doi.org/10.4137/CMT.S2358]
[57]
McGivern JG. Ziconotide: A review of its pharmacology and use in the treatment of pain. Neuropsychiatr Dis Treat 2007; 3(1): 69-85.
[http://dx.doi.org/10.2147/nedt.2007.3.1.69] [PMID: 19300539]
[58]
Jones MR, Viswanath O, Peck J, Kaye AD, Gill JS, Simopoulos TT. A brief history of the opioid epidemic and strategies for pain medicine. Pain Ther 2018; 7(1): 13-21.
[http://dx.doi.org/10.1007/s40122-018-0097-6] [PMID: 29691801]
[59]
Drieu la Rochelle A, Guillemyn K, Dumitrascuta M, et al. A bifunctional-biased mu-opioid agonist–neuropeptide FF receptor antagonist as analgesic with improved acute and chronic side effects. Pain 2018; 159(9): 1705-18.
[http://dx.doi.org/10.1097/j.pain.0000000000001262] [PMID: 29708942]
[60]
Basso N, Marcelli M, Ginaldi A, De Marco M. Intrathecal dermorphine in postoperative analgesia. Peptides 1985; 6 (Suppl. 3): 177-9.
[http://dx.doi.org/10.1016/0196-9781(85)90371-7] [PMID: 3831962]
[61]
Muttenthaler M, King GF, Adams DJ, Alewood PF. Trends in peptide drug discovery. Nat Rev Drug Discov 2021; 20(4): 309-25.
[http://dx.doi.org/10.1038/s41573-020-00135-8] [PMID: 33536635]
[62]
Tyagi A, Daliri EBM, Kwami Ofosu F, Yeon SJ, Oh DH. Food-derived opioid peptides in human health: A review. Int J Mol Sci 2020; 21(22): 8825.
[http://dx.doi.org/10.3390/ijms21228825] [PMID: 33233481]
[63]
Dekan Z, Sianati S, Yousuf A, et al. A tetrapeptide class of biased analgesics from an Australian fungus targets the µ-opioid receptor. Proc Natl Acad Sci USA 2019; 116(44): 22353-8.
[http://dx.doi.org/10.1073/pnas.1908662116] [PMID: 31611414]
[64]
Sun H, Saeedi P, Karuranga S, et al. IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract 2022; 183: 109119.
[http://dx.doi.org/10.1016/j.diabres.2021.109119] [PMID: 34879977]
[65]
Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. Diabetes 1979; 28(12): 1039-57.
[66]
Bhuyan MH. A modern review of the non-invasive continuous blood glucose measuring devices and techniques for remote patient monitoring system. Int J Biol Biomed Eng 2022; 16(2): 1-21.
[67]
Use of glycated haemoglobin (HbA1c) in diagnosis of diabetes mellitus: Abbreviated report of a WHO consultation. World Health Organization 2011.
[68]
Shahriar SMS, An JM, Hasan MN, et al. Plasmid DNA nanoparticles for nonviral oral gene therapy. Nano Lett 2021; 21(11): 4666-75.
[http://dx.doi.org/10.1021/acs.nanolett.1c00832] [PMID: 34029475]
[69]
Lakkireddy HR, Urmann M, Besenius M, et al. Oral delivery of diabetes peptides — Comparing standard formulations incorporating functional excipients and nanotechnologies in the translational context. Adv Drug Deliv Rev 2016; 106(Pt B): 196-222.
[http://dx.doi.org/10.1016/j.addr.2016.02.011] [PMID: 26964477]
[70]
Craddy P, Palin HJ, Johnson KI. Comparative effectiveness of dipeptidylpeptidase-4 inhibitors in type 2 diabetes: A systematic review and mixed treatment comparison. Diabetes Ther 2014; 5(1): 1-41.
[http://dx.doi.org/10.1007/s13300-014-0061-3] [PMID: 24664619]
[71]
Lyseng-Williamson KA. Glucagon-like peptide-1 receptor analogues in type 2 diabetes: Their use and differential features. Clin Drug Investig 2019; 39(8): 805-19.
[http://dx.doi.org/10.1007/s40261-019-00826-0] [PMID: 31317516]
[72]
Hay DL, Chen S, Lutz TA, Parkes DG, Roth JD. Amylin: Pharmacology, physiology, and clinical potential. Pharmacol Rev 2015; 67(3): 564-600.
[http://dx.doi.org/10.1124/pr.115.010629] [PMID: 26071095]
[73]
Riddle MC, Yuen KCJ, de Bruin TW, et al. Fixed ratio dosing of pramlintide with regular insulin before a standard meal in patients with type 1 diabetes. Diabetes Obes Metab 2015; 17(9): 904-7.
[http://dx.doi.org/10.1111/dom.12504] [PMID: 26040429]
[74]
Lau J, Bloch P, Schäffer L, et al. Schäffer Let al. Discovery of the once-weekly glucagon-like peptide-1 (GLP-1) analogue semaglutide. J Med Chem 2015; 58(18): 7370-80.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00726] [PMID: 26308095]
[75]
De Block C, Bailey C, Wysham C, Hemmingway A, Allen SE, Peleshok J. Tirzepatide for the treatment of adults with type 2 diabetes: An endocrine perspective. Diabetes Obes Metab 2023; 25(1): 3-17.
[http://dx.doi.org/10.1111/dom.14831] [PMID: 35929488]
[76]
Coskun T, Sloop KW, Loghin C, et al. LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: From discovery to clinical proof of concept. Mol Metab 2018; 18: 3-14.
[http://dx.doi.org/10.1016/j.molmet.2018.09.009] [PMID: 30473097]
[77]
Anand P, Kunnumakara AB, Sundaram C, et al. Cancer is a preventable disease that requires major lifestyle changes. Pharm Res 2008; 25(9): 2097-116.
[http://dx.doi.org/10.1007/s11095-008-9661-9] [PMID: 18626751]
[78]
Agarwal SP, Rao YN, Gupta S. Fifty years of cancer control in India Directorate general of health services, Ministry of health and family welfare. New Delhi: Government of India 2002.
[79]
What is Cancer? Available from: https://www.cancer.gov/aboutcancer/understanding/what-is-cancer [cited 2023 May 03].
[80]
Cooper BM, Iegre J, O’ Donovan DH, Ölwegård Halvarsson M, Spring DR. Peptides as a platform for targeted therapeutics for cancer: peptide–drug conjugates (PDCs). Chem Soc Rev 2021; 50(3): 1480-94.
[http://dx.doi.org/10.1039/D0CS00556H] [PMID: 33346298]
[81]
Ruan H, Chen X, Xie C, et al. Stapled RGD peptide enables glioma-targeted drug delivery by overcoming multiple barriers. ACS Appl Mater Interfaces 2017; 9(21): 17745-56.
[http://dx.doi.org/10.1021/acsami.7b03682] [PMID: 28497694]
[82]
Bargh JD, Isidro-Llobet A, Parker JS, Spring DR. Cleavable linkers in antibody–drug conjugates. Chem Soc Rev 2019; 48(16): 4361-74.
[http://dx.doi.org/10.1039/C8CS00676H] [PMID: 31294429]
[83]
Majumdar S, Siahaan TJ. Peptide‐mediated targeted drug delivery. Med Res Rev 2012; 32(3): 637-58.
[http://dx.doi.org/10.1002/med.20225] [PMID: 20814957]
[84]
Wang L, Wang N, Zhang W, et al. Therapeutic peptides: Current applications and future directions. Signal Transduct Target Ther 2022; 7(1): 48.
[http://dx.doi.org/10.1038/s41392-022-00904-4] [PMID: 35165272]
[85]
Clinical trials. Available from: https://clinicaltrials.gov/ [cited 2023 May 08].

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy