Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Why have SGLT2 Inhibitors Failed to Achieve the Desired Success in COVID-19?

Author(s): Medine Cumhur Cure and Erkan Cure*

Volume 30, Issue 15, 2024

Published on: 02 April, 2024

Page: [1149 - 1156] Pages: 8

DOI: 10.2174/0113816128300162240322075423

Price: $65

Open Access Journals Promotions 2
Abstract

The SARS-CoV-2 virus emerged towards the end of 2019 and caused a major worldwide pandemic lasting at least 2 years, causing a disease called COVID-19. SARS-CoV-2 caused a severe infection with direct cellular toxicity, stimulation of cytokine release, increased oxidative stress, disruption of endothelial structure, and thromboinflammation, as well as angiotensin-converting enzyme 2 (ACE2) down-regulation-mediated renin-angiotensin system (RAS) activation. In addition to glucosuria and natriuresis, sodium-glucose transport protein 2 (SGLT2) inhibitors (SGLT2i) cause weight loss, a decrease in glucose levels with an insulin-independent mechanism, an increase in erythropoietin levels and erythropoiesis, an increase in autophagy and lysosomal degradation, Na+/H+-changer inhibition, prevention of ischemia/reperfusion injury, oxidative stress and they have many positive effects such as reducing inflammation and improving vascular function. There was great anticipation for SGLT2i in treating patients with diabetes with COVID-19, but current data suggest they are not very effective. Moreover, there has been great confusion in the literature about the effects of SGLT2i on COVID-19 patients with diabetes . Various factors, including increased SGLT1 activity, lack of angiotensin receptor blocker co-administration, the potential for ketoacidosis, kidney injury, and disruptions in fluid and electrolyte levels, may have hindered SGLT2i's effectiveness against COVID-19. In addition, the duration of use of SGLT2i and their impact on erythropoiesis, blood viscosity, cholesterol levels, and vitamin D levels may also have played a role in their failure to treat the virus. This article aims to uncover the reasons for the confusion in the literature and to unravel why SGLT2i failed to succeed in COVID-19 based on some solid evidence as well as speculative and personal perspectives.

Keywords: SGLT2 inhibitors, sodium-glucose transport protein 2 inhibitors, COVID-19, SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2), cellular toxicity.

[1]
Ionescu M, Stoian AP, Rizzo M, et al. The role of endothelium in COVID-19. Int J Mol Sci 2021; 22(21): 11920.
[http://dx.doi.org/10.3390/ijms222111920] [PMID: 34769350]
[2]
Ramos SG, Rattis BAC, Ottaviani G, Celes MRN, Dias EP. ACE2 down-regulation may act as a transient molecular disease causing RAAS dysregulation and tissue damage in the microcirculatory environment among COVID-19 patients. Am J Pathol 2021; 191(7): 1154-64.
[http://dx.doi.org/10.1016/j.ajpath.2021.04.010] [PMID: 33964216]
[3]
Higashikuni Y, Liu W, Obana T, Sata M. Pathogenic basis of thromboinflammation and endothelial injury in COVID-19: Current findings and therapeutic implications. Int J Mol Sci 2021; 22(21): 12081.
[http://dx.doi.org/10.3390/ijms222112081] [PMID: 34769508]
[4]
Bell RM, Yellon DM. SGLT2 inhibitors: Hypotheses on the mechanism of cardiovascular protection. Lancet Diabetes Endocrinol 2018; 6(6): 435-7.
[http://dx.doi.org/10.1016/S2213-8587(17)30314-5] [PMID: 29030201]
[5]
Vallon V, Verma S. Effects of SGLT2 inhibitors on kidney and cardiovascular function. Annu Rev Physiol 2021; 83(1): 503-28.
[http://dx.doi.org/10.1146/annurev-physiol-031620-095920] [PMID: 33197224]
[6]
Verma S. Potential mechanisms of sodium-glucose co-transporter 2 inhibitor-related cardiovascular benefits. Am J Cardiol 2019; 124 (Suppl. 1): S36-44.
[http://dx.doi.org/10.1016/j.amjcard.2019.10.028] [PMID: 31741439]
[7]
Gonikman D, Kustovs D. Antidiabetic drug efficacy in reduction of mortality during the COVID-19 pandemic. Medicina 2023; 59(10): 1810.
[http://dx.doi.org/10.3390/medicina59101810] [PMID: 37893528]
[8]
Zhan K, Weng L, Qi L, et al. Effect of antidiabetic therapy on clinical outcomes of COVID-19 patients with type 2 diabetes: A systematic review and meta-analysis. Ann Pharmacother 2023; 57(7): 776-86.
[http://dx.doi.org/10.1177/10600280221133577] [PMID: 36314281]
[9]
Ferrannini G, Lund LH, Benson L, et al. Association between use of novel glucose-lowering drugs and COVID-19 hospitalization and death in patients with type 2 diabetes: A nationwide registry analysis. Eur Heart J Cardiovasc Pharmacother 2022; 9(1): 10-7.
[http://dx.doi.org/10.1093/ehjcvp/pvac044] [PMID: 35963647]
[10]
Abani O, Abbas A, Abbas F, et al. Empagliflozin in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial. Lancet Diabetes Endocrinol 2023; 11(12): 905-14.
[http://dx.doi.org/10.1016/S2213-8587(23)00253-X] [PMID: 37865101]
[11]
Zimmermann P, Sourij H, Aberer F, Rilstone S, Schierbauer J, Moser O. SGLT2 inhibitors in long COVID syndrome: Is there a potential role? J Cardiovasc Dev Dis 2023; 10(12): 478.
[http://dx.doi.org/10.3390/jcdd10120478] [PMID: 38132646]
[12]
Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol 2022; 23(1): 3-20.
[http://dx.doi.org/10.1038/s41580-021-00418-x] [PMID: 34611326]
[13]
Fountain JH, Kaur J, Lappin SL. Physiology, renin angiotensin system. StatPearls. Treasure Island, FL: StatPearls Publishing 2023.
[14]
Garcia B, Zarbock A, Bellomo R, Legrand M. The alternative renin–angiotensin system in critically ill patients: pathophysiology and therapeutic implications. Crit Care 2023; 27(1): 453.
[http://dx.doi.org/10.1186/s13054-023-04739-5] [PMID: 37986086]
[15]
Sequeira-Lopez MLS, Gomez RA. Renin cells, the kidney, and hypertension. Circ Res 2021; 128(7): 887-907.
[http://dx.doi.org/10.1161/CIRCRESAHA.121.318064] [PMID: 33793334]
[16]
AlQudah M, Hale TM, Czubryt MP. Targeting the renin-angiotensin-aldosterone system in fibrosis. Matrix Biol 2020; 91-92: 92-108.
[http://dx.doi.org/10.1016/j.matbio.2020.04.005] [PMID: 32422329]
[17]
Dasgupta C, Zhang L. Angiotensin II receptors and drug discovery in cardiovascular disease. Drug Discov Today 2011; 16(1-2): 22-34.
[http://dx.doi.org/10.1016/j.drudis.2010.11.016] [PMID: 21147255]
[18]
Siragy HM, Angiotensin II. Angiotensin II subtype 2 receptor: Potential therapy. J Clin Hypertens 2009; 11(s12) (Suppl. 12): S26-9.
[http://dx.doi.org/10.1111/j.1751-7176.2009.00212.x]
[19]
Sansoè G, Aragno M. New viral diseases and new possible remedies by means of the pharmacology of the renin-angiotensin system. J Renin Angiotensin Aldosterone Syst 2023; 2023: 3362391.
[http://dx.doi.org/10.1155/2023/3362391] [PMID: 37476705]
[20]
Muhanna D, Arnipalli SR, Kumar SB, Ziouzenkova O. Osmotic adaptation by Na+-dependent transporters and ACE2: Correlation with hemostatic crisis in COVID-19. Biomedicines 2020; 8(11): 460.
[http://dx.doi.org/10.3390/biomedicines8110460] [PMID: 33142989]
[21]
Monteil V, Kwon H, Prado P, et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 2020; 181(4): 905-913.e7.
[http://dx.doi.org/10.1016/j.cell.2020.04.004] [PMID: 32333836]
[22]
Dutka M, Bobiński R, Ulman-Włodarz I, et al. Sodium glucose cotransporter 2 inhibitors: Mechanisms of action in heart failure. Heart Fail Rev 2021; 26(3): 603-22.
[http://dx.doi.org/10.1007/s10741-020-10041-1] [PMID: 33150520]
[23]
Ansary TM, Nakano D, Nishiyama A. Diuretic effects of sodium glucose cotransporter 2 inhibitors and their influence on the renin-angiotensin system. Int J Mol Sci 2019; 20(3): 629.
[http://dx.doi.org/10.3390/ijms20030629] [PMID: 30717173]
[24]
Puglisi S, Rossini A, Poli R, et al. Effects of SGLT2 inhibitors and GLP-1 receptor agonists on renin-angiotensin-aldosterone system. Front Endocrinol 2021; 12: 738848.
[http://dx.doi.org/10.3389/fendo.2021.738848] [PMID: 34745006]
[25]
Lopaschuk GD, Verma S. Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors. JACC Basic Transl Sci 2020; 5(6): 632-44.
[http://dx.doi.org/10.1016/j.jacbts.2020.02.004] [PMID: 32613148]
[26]
Mudaliar S, Polidori D, Zambrowicz B, Henry RR. Sodium–glucose cotransporter inhibitors: Effects on renal and intestinal glucose transport. Diabetes Care 2015; 38(12): 2344-53.
[http://dx.doi.org/10.2337/dc15-0642] [PMID: 26604280]
[27]
Zelniker TA, Braunwald E. Mechanisms of cardiorenal effects of sodium-glucose cotransporter 2 inhibitors. J Am Coll Cardiol 2020; 75(4): 422-34.
[http://dx.doi.org/10.1016/j.jacc.2019.11.031] [PMID: 32000955]
[28]
Martins CNG, Bau AA, Silva LM, Coelho OR. Possible mechanisms of action of SGLT2 inhibitors in heart failure. ABC: Heart Fail Cardiomyopathy 2021; 1(1): 33-43.
[http://dx.doi.org/10.36660/abchf.20210007]
[29]
Vaziri Z, Saleki K, Aram C, et al. Empagliflozin treatment of cardiotoxicity: A comprehensive review of clinical, immunobiological, neuroimmune, and therapeutic implications. Biomed Pharmacother 2023; 168: 115686.
[http://dx.doi.org/10.1016/j.biopha.2023.115686] [PMID: 37839109]
[30]
Sawamura T, Karashima S, Nagase S, et al. Effect of sodium–glucose cotransporter-2 inhibitors on aldosterone-to-renin ratio in diabetic patients with hypertension: A retrospective observational study. BMC Endocr Disord 2020; 20(1): 177.
[http://dx.doi.org/10.1186/s12902-020-00656-8] [PMID: 33256676]
[31]
Sarzani R, Giulietti F, Di Pentima C, Spannella F. Sodium-glucose co-transporter-2 inhibitors: peculiar “hybrid” diuretics that protect from target organ damage and cardiovascular events. Nutr Metab Cardiovasc Dis 2020; 30(10): 1622-32.
[http://dx.doi.org/10.1016/j.numecd.2020.05.030] [PMID: 32631704]
[32]
Kravtsova O, Bohovyk R, Levchenko V, et al. SGLT2 inhibition effect on salt-induced hypertension, RAAS, and Na+ transport in Dahl SS rats. Am J Physiol Renal Physiol 2022; 322(6): F692-707.
[http://dx.doi.org/10.1152/ajprenal.00053.2022] [PMID: 35466690]
[33]
Cherney DZI, Perkins BA, Soleymanlou N, et al. Sodium glucose cotransport-2 inhibition and intrarenal RAS activity in people with type 1 diabetes. Kidney Int 2014; 86(5): 1057-8.
[http://dx.doi.org/10.1038/ki.2014.246] [PMID: 25360497]
[34]
Nassar M, Abosheaishaa H, Singh AK, Misra A, Bloomgarden Z. Noninsulin-based antihyperglycemic medications in patients with diabetes and COVID-19: A systematic review and meta-analysis. J Diabetes 2023; 15(2): 86-96.
[http://dx.doi.org/10.1111/1753-0407.13359] [PMID: 36690377]
[35]
Li XT, Zhang MW, Zhang ZZ, et al. Abnormal apelin-ACE2 and SGLT2 signaling contribute to adverse cardiorenal injury in patients with COVID-19. Int J Cardiol 2021; 336: 123-9.
[http://dx.doi.org/10.1016/j.ijcard.2021.05.029] [PMID: 34000358]
[36]
Li HL, Tse YK, Chandramouli C. Sodium-glucose cotransporter 2 inhibitors and the risk of pneumonia and septic shock. J Clin Endocrinol Metab 2022; 107(12): 3442-51.
[http://dx.doi.org/10.1210/clinem/dgac558]
[37]
Kosiborod M, Berwanger O, Koch GG, et al. Effects of dapagliflozin on prevention of major clinical events and recovery in patients with respiratory failure because of COVID-19: Design and rationale for the DARE-19 study. Diabetes Obes Metab 2021; 23(4): 886-96.
[http://dx.doi.org/10.1111/dom.14296] [PMID: 33319454]
[38]
Koufakis T, Maltese G, Metallidis S, Zebekakis P, Kotsa K. Looking deeper into the findings of DARE-19: Failure or an open door to future success? Pharmacol Res 2021; 173: 105872.
[http://dx.doi.org/10.1016/j.phrs.2021.105872] [PMID: 34487851]
[39]
Jimbo M, Saito S, Uematsu T, et al. Risk analysis of COVID-19 hospitalization and critical care by race and region in the United States: A cohort study. BMC Public Health 2023; 23(1): 1489.
[http://dx.doi.org/10.1186/s12889-023-16401-4] [PMID: 37542210]
[40]
Foresta A, Ojeda-Fernandez L, Macaluso G, et al. Dipeptidyl peptidase-4 inhibitors, glucagon-like peptide-1 receptor agonists, and sodium-glucose cotransporter-2 inhibitors and COVID-19 outcomes. Clin Ther 2023; 45(4): e115-26.
[http://dx.doi.org/10.1016/j.clinthera.2023.02.007] [PMID: 36933975]
[41]
Nguyen NN, Ho DS, Nguyen HS, et al. Preadmission use of antidiabetic medications and mortality among patients with COVID-19 having type 2 diabetes: A meta-analysis. Metabolism 2022; 131: 155196.
[http://dx.doi.org/10.1016/j.metabol.2022.155196] [PMID: 35367460]
[42]
Gupta K, Kunal S. SGLT-2 inhibitors as cardioprotective agents in COVID-19. Heart Lung 2020; 49(6): 875-6.
[http://dx.doi.org/10.1016/j.hrtlng.2020.09.002] [PMID: 33010945]
[43]
Salgado-Barreira A, Seijas-Amigo J, Rodriguez-Mañero M, et al. Effect of dapagliflozin on COVID-19 infection and risk of hospitalization. J Antimicrob Chemother 2023; 78(9): 2335-42.
[http://dx.doi.org/10.1093/jac/dkad241] [PMID: 37549309]
[44]
Tisch C, Xourgia E, Exadaktylos A, Ziaka M. Potential use of sodium glucose co-transporter 2 inhibitors during acute illness: A systematic review based on COVID-19. Endocrine 2024.
[http://dx.doi.org/10.1007/s12020-024-03758-8] [PMID: 38448675]
[45]
Koufakis T, Metallidis S, Zebekakis P, Kotsa K. Intestinal SGLT1 as a therapeutic target in COVID-19-related diabetes: A “two-edged sword” hypothesis. Br J Clin Pharmacol 2021; 87(10): 3643-6.
[http://dx.doi.org/10.1111/bcp.14800] [PMID: 33684969]
[46]
Zhao M, Li N, Zhou H. SGLT1: A potential drug target for cardiovascular disease. Drug Des Devel Ther 2023; 17: 2011-23.
[http://dx.doi.org/10.2147/DDDT.S418321] [PMID: 37435096]
[47]
Park SH, Belcastro E, Hasan H, et al. Angiotensin II-induced upregulation of SGLT1 and 2 contributes to human microparticle-stimulated endothelial senescence and dysfunction: Protective effect of gliflozins. Cardiovasc Diabetol 2021; 20(1): 65.
[http://dx.doi.org/10.1186/s12933-021-01252-3] [PMID: 33726768]
[48]
Xie L, Zhang Z, Wang Q, Chen Y, Lu D, Wu W. COVID-19 and diabetes: A comprehensive review of angiotensin converting enzyme 2, mutual effects and pharmacotherapy. Front Endocrinol 2021; 12: 772865.
[http://dx.doi.org/10.3389/fendo.2021.772865] [PMID: 34867819]
[49]
Sumners C, de Kloet AD, Krause EG, Unger T, Steckelings UM. Angiotensin type 2 receptors: Blood pressure regulation and end organ damage. Curr Opin Pharmacol 2015; 21: 115-21.
[http://dx.doi.org/10.1016/j.coph.2015.01.004] [PMID: 25677800]
[50]
Hernandez AF, Green JB, Janmohamed S, et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): A double-blind, randomised placebo-controlled trial. Lancet 2018; 392(10157): 1519-29.
[http://dx.doi.org/10.1016/S0140-6736(18)32261-X] [PMID: 30291013]
[51]
Beyerstedt S, Casaro EB, Rangel ÉB. COVID-19: Angiotensin- converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur J Clin Microbiol Infect Dis 2021; 40(5): 905-19.
[http://dx.doi.org/10.1007/s10096-020-04138-6] [PMID: 33389262]
[52]
Zhang T, Wang X, Wang Z, et al. Canagliflozin ameliorates ventricular remodeling through apelin/angiotensin-converting enzyme 2 signaling in heart failure with preserved ejection fraction rats. Pharmacology 2023; 108(5): 478-91.
[http://dx.doi.org/10.1159/000533277] [PMID: 37611563]
[53]
Blau JE, Tella SH, Taylor SI, Rother KI. Ketoacidosis associated with SGLT2 inhibitor treatment: Analysis of FAERS data. Diabetes Metab Res Rev 2017; 33(8): e2924.
[http://dx.doi.org/10.1002/dmrr.2924]
[54]
Khedr A, Hennawi HA, Khan MK, et al. Sodium-glucose cotransporter-2 inhibitor-associated euglycemic diabetic ketoacidosis in COVID-19-infected patients: A systematic review of case reports. World J Clin Cases 2023; 11(24): 5700-9.
[http://dx.doi.org/10.12998/wjcc.v11.i24.5700] [PMID: 37727728]
[55]
Khunti K, Del Prato S, Mathieu C, Kahn SE, Gabbay RA, Buse JB. COVID-19, hyperglycemia, and new-onset diabetes. Diabetes Care 2021; 44(12): 2645-55.
[http://dx.doi.org/10.2337/dc21-1318] [PMID: 34625431]
[56]
Tsimihodimos V, Filippas-Ntekouan S, Elisaf M. SGLT1 inhibition: Pros and cons. Eur J Pharmacol 2018; 838: 153-6.
[http://dx.doi.org/10.1016/j.ejphar.2018.09.019] [PMID: 30240793]
[57]
Zou H, Zhou B, Xu G. SGLT2 inhibitors: A novel choice for the combination therapy in diabetic kidney disease. Cardiovasc Diabetol 2017; 16(1): 65.
[http://dx.doi.org/10.1186/s12933-017-0547-1] [PMID: 28511711]
[58]
Barreto EA, Cruz AS, Veras FP, et al. COVID-19-related hyperglycemia is associated with infection of hepatocytes and stimulation of gluconeogenesis. Proc Natl Acad Sci USA 2023; 120(21): e2217119120.
[http://dx.doi.org/10.1073/pnas.2217119120] [PMID: 37186819]
[59]
Khunti K, Ruan Y, Davies J, et al. Association between SGLT2 inhibitor treatment and diabetic ketoacidosis and mortality in people with type 2 diabetes admitted to hospital with COVID-19. Diabetes Care 2022; 45(12): 2838-43.
[http://dx.doi.org/10.2337/dc22-0357] [PMID: 36074663]
[60]
Selby NM, Forni LG, Laing CM, et al. COVID-19 and acute kidney injury in hospital: Summary of NICE guidelines. BMJ 2020; 369: m1963.
[http://dx.doi.org/10.1136/bmj.m1963] [PMID: 32457068]
[61]
Pourfridoni M, Abbasnia SM, Shafaei F, Razaviyan J, Heidari- Soureshjani R. Fluid and electrolyte disturbances in COVID-19 and their complications. BioMed Res Int 2021; 2021: 1-5.
[http://dx.doi.org/10.1155/2021/6667047] [PMID: 33937408]
[62]
Heerspink HJL, Furtado RHM, Berwanger O, et al. Dapagliflozin and kidney outcomes in hospitalized patients with COVID-19 infection. Clin J Am Soc Nephrol 2022; 17(5): 643-54.
[http://dx.doi.org/10.2215/CJN.14231021] [PMID: 35483733]
[63]
Vargas-Delgado AP, Arteaga Herrera E, Tumbaco Mite C, Delgado Cedeno P, Van Loon MC, Badimon JJ. Renal and cardiovascular metabolic impact caused by ketogenesis of the SGLT2 inhibitors. Int J Mol Sci 2023; 24(4): 4144.
[http://dx.doi.org/10.3390/ijms24044144] [PMID: 36835554]
[64]
Muskiet MHA, van Raalte DH, van Bommel EJM, Smits MM, Tonneijck L. Understanding EMPA-REG OUTCOME. Lancet Diabetes Endocrinol 2015; 3(12): 928-9.
[http://dx.doi.org/10.1016/S2213-8587(15)00424-6] [PMID: 26590679]
[65]
Permana H, Audi Yanto T, Ivan Hariyanto T. Pre-admission use of sodium glucose transporter-2 inhibitor (SGLT-2i) may significantly improves COVID-19 outcomes in patients with diabetes: A systematic review, meta-analysis, and meta-regression. Diabetes Res Clin Pract 2023; 195: 110205.
[http://dx.doi.org/10.1016/j.diabres.2022.110205] [PMID: 36502891]
[66]
Zhu Z, Zeng Q, Liu Q, Wen J, Chen G. Association of glucose-lowering drugs with outcomes in patients with diabetes before hospitalization for COVID-19. JAMA Netw Open 2022; 5(12): e2244652.
[http://dx.doi.org/10.1001/jamanetworkopen.2022.44652] [PMID: 36472874]
[67]
Woods TC, Satou R, Miyata K, et al. Canagliflozin prevents intrarenal angiotensinogen augmentation and mitigates kidney injury and hypertension in mouse model of type 2 diabetes mellitus. Am J Nephrol 2019; 49(4): 331-42.
[http://dx.doi.org/10.1159/000499597] [PMID: 30921791]
[68]
Burns KD, Cherney D. Renal angiotensinogen and sodium-glucose cotransporter-2 inhibition: Insights from experimental diabetic kidney disease. Am J Nephrol 2019; 49(4): 328-30.
[http://dx.doi.org/10.1159/000499598] [PMID: 30921790]
[69]
Bosch A, Poglitsch M, Kannenkeril D, et al. Angiotensin pathways under therapy with empagliflozin in patients with chronic heart failure. ESC Heart Fail 2023; 10(3): 1635-42.
[http://dx.doi.org/10.1002/ehf2.14313] [PMID: 36782339]
[70]
Shikuma J, Sakakura K, Sugiyama-Takahashi M, et al. Hematocrit elevation after SGLT2 inhibitor administration may be associated with the degree of proximal tubular damage. Medicine 2022; 101(42): e31122.
[http://dx.doi.org/10.1097/MD.0000000000031122] [PMID: 36281104]
[71]
Hadadi A, Mortezazadeh M, Kolahdouzan K, Alavian G. Does recombinant human erythropoietin administration in critically ill COVID-19 patients have miraculous therapeutic effects? J Med Virol 2020; 92(7): 915-8.
[http://dx.doi.org/10.1002/jmv.25839] [PMID: 32270515]
[72]
Al Sulaiman K, Aljuhani O, Korayem GB, et al. The impact of recombinant human erythropoietin administration in critically ill COVID-19 patients: A multicenter cohort study. Clin Appl Thromb Hemost 2023; 29: 10760296231218216.
[http://dx.doi.org/10.1177/10760296231218216] [PMID: 38073058]
[73]
Lim S, Bae JH, Kwon HS, Nauck MA. COVID-19 and diabetes mellitus: From pathophysiology to clinical management. Nat Rev Endocrinol 2021; 17(1): 11-30.
[http://dx.doi.org/10.1038/s41574-020-00435-4] [PMID: 33188364]
[74]
Al-kuraishy HM, Al-Gareeb AI, Al-Hamash SM, et al. Changes in the blood viscosity in patients with SARS-CoV-2 infection. Front Med 2022; 9: 876017.
[http://dx.doi.org/10.3389/fmed.2022.876017] [PMID: 35783600]
[75]
Mazer CD, Hare GMT, Connelly PW, et al. Effect of empagliflozin on erythropoietin levels, iron stores, and red blood cell morphology in patients with type 2 diabetes mellitus and coronary artery disease. Circulation 2020; 141(8): 704-7.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.119.044235] [PMID: 31707794]
[76]
Feingold KR. The bidirectional interaction of COVID-19 infections and lipoproteins. Best Pract Res Clin Endocrinol Metab 2023; 37(4): 101751.
[http://dx.doi.org/10.1016/j.beem.2023.101751] [PMID: 36894344]
[77]
Mink S, Saely CH, Frick M, Leiherer A, Drexel H, Fraunberger P. Association between lipid levels, anti-SARS-CoV-2 spike antibodies and COVID-19 mortality: A prospective cohort study. J Clin Med 2023; 12(15): 5068.
[http://dx.doi.org/10.3390/jcm12155068] [PMID: 37568470]
[78]
Inagaki N, Kondo K, Yoshinari T, Kuki H. Efficacy and safety of canagliflozin alone or as add-on to other oral antihyperglycemic drugs in Japanese patients with type 2 diabetes: A 52-week open-label study. J Diabetes Investig 2015; 6(2): 210-8.
[http://dx.doi.org/10.1111/jdi.12266] [PMID: 25802729]
[79]
Bechmann LE, Emanuelsson F, Nordestgaard BG, Benn M. SGLT2-inhibition increases total, LDL, and HDL cholesterol and lowers triglycerides: Meta-analyses of 60 randomized trials, overall and by dose, ethnicity, and drug type. Atherosclerosis 2023; 117236: 117236.
[http://dx.doi.org/10.1016/j.atherosclerosis.2023.117236] [PMID: 37582673]
[80]
Putnam K, Shoemaker R, Yiannikouris F, Cassis LA. The renin-angiotensin system: A target of and contributor to dyslipidemias, altered glucose homeostasis, and hypertension of the metabolic syndrome. Am J Physiol Heart Circ Physiol 2012; 302(6): H1219-30.
[http://dx.doi.org/10.1152/ajpheart.00796.2011] [PMID: 22227126]
[81]
Athanassiou L, Kostoglou-Athanassiou I, Nikolakopoulou S, et al. Vitamin D levels as a marker of severe SARS-CoV-2 infection. Life 2024; 14(2): 210.
[http://dx.doi.org/10.3390/life14020210] [PMID: 38398719]
[82]
Rachman A, Rahmaniyah R, Khomeini A, Iriani A. Impact of vitamin D deficiency in relation to the clinical outcomes of hospitalized COVID-19 patients. F1000 Res 2023; 12: 394.
[http://dx.doi.org/10.12688/f1000research.132214.3] [PMID: 38434628]
[83]
Singh A, Rastogi A, Puri GD, et al. Therapeutic high-dose vitamin D for vitamin D-deficient severe COVID-19 disease: randomized, double-blind, placebo-controlled study (SHADE-S). J Public Health 2024; fdae007.
[http://dx.doi.org/10.1093/pubmed/fdae007] [PMID: 38291897]
[84]
Dilokpattanamongkol P, Yan C, Jayanama K, Ngamjanyaporn P, Sungkanuparph S, Rotjanapan P. Impact of vitamin D supplementation on the clinical outcomes of COVID-19 pneumonia patients: A single-center randomized controlled trial. BMC Complement Med Ther 2024; 24(1): 97.
[http://dx.doi.org/10.1186/s12906-024-04393-6] [PMID: 38383361]
[85]
Blau JE, Bauman V, Conway EM, et al. Canagliflozin triggers the FGF23/1,25-dihydroxyvitamin D/PTH axis in healthy volunteers in a randomized crossover study. JCI Insight 2018; 3(8): e99123.
[http://dx.doi.org/10.1172/jci.insight.99123] [PMID: 29669938]
[86]
Kwiendacz H, Nabrdalik K, Wijata AM, et al. Relationship of vitamin D deficiency to cardiovascular disease and glycemic control in patients with type 2 diabetes mellitus: The Silesia Diabetes- Heart Project. Pol Arch Int Med 2023; 133(6): 16445.
[http://dx.doi.org/10.20452/pamw.16445] [PMID: 36856666]
[87]
Verdoia M, De Luca G. Is there an actual link between vitamin D deficiency, cardiovascular disease, and glycemic control in patients with type 2 diabetes mellitus? Pol Arch Int Med 2023; 133(6): 16516.
[http://dx.doi.org/10.20452/pamw.16516] [PMID: 37351588]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy