Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Immunomodulatory Effect of Phytoactive Compounds on Human Health: A Narrative Review Integrated with Bioinformatics Approach

Author(s): Saumya Choudhary, Sheeba Khan, Shivani Rustagi, Vijay Rani Rajpal, Noor Saba Khan, Neeraj Kumar, George Thomas, Anamika Pandey, Mehmet Hamurcu, Sait Gezgin, Sajad Majeed Zargar and Mohd Kamran Khan*

Volume 24, Issue 12, 2024

Published on: 27 March, 2024

Page: [1075 - 1100] Pages: 26

DOI: 10.2174/0115680266274272240321065039

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Immunomodulation is the modification of immune responses to control disease progression. While the synthetic immunomodulators have proven efficacy, they are coupled with toxicity and other adverse effects, and hence, the efforts were to identify natural phytochemicals with immunomodulatory potential.

Objective: To understand the immunomodulatory properties of various phytochemicals and investigate them in Echinacea species extracts using an in silico approach.

Methodology: Several scientific database repositories were searched using different keywords: “Phytochemicals,” “Alkaloids,” “Polyphenols,” “Flavonoids,” “Lectins,” “Glycosides,” “Tannins,” “Terpenoids,” “Sterols,” “Immunomodulators,” and “Human Immune System” without any language restriction. Additionally, the study specifically investigated the immunomodulatory properties of Echinacea species extracts using gene expression analysis of GSE12259 from NCBI-GEO through the Bioconductor package GEOquery and limma.

Results: A total of 182 studies were comprehensively analyzed to understand immunomodulatory phytochemicals. The in silico analysis highlighted key biological processes (positive regulation of cytokine production, response to tumor necrosis factor) and molecular functions (cytokine receptor binding, receptor-ligand activity, and cytokine activity) among Echinacea species extracts contributing to immune responses. Further, it also indicated the association of various metabolic pathways, i.e., pathways in cancer, cytokine-cytokine receptor interaction, NF-kappa B, PI3K-Akt, TNF, MAPK, and NOD-like receptor signaling pathways, with immune responses. The study revealed various hub targets, including CCL20, CCL4, GCH1, SLC7A11, SOD2, EPB41L3, TNFAIP6, GCLM, EGR1, and FOS.

Conclusion: The present study presents a cumulative picture of phytochemicals with therapeutic benefits. Additionally, the study also reported a few novel genes and pathways in Echinacea extracts by re-analyzing GSE 12259 indicating its anti-inflammatory, anti-viral, and immunomodulatory properties.

Keywords: Phytochemicals, Bioactive compounds, Immunomodulatory, Echinacea species, Differential gene expression, Metabolic pathways.

« Previous
Graphical Abstract
[1]
Bascones-Martinez, A.; Mattila, R.; Gomez-Font, R.; Meurman, J.H. Immunomodulatory drugs: Oral and systemic adverse effects. Med. Oral Patol. Oral Cir. Bucal, 2014, 19(1), e24-e31.
[http://dx.doi.org/10.4317/medoral.19087] [PMID: 23986016]
[2]
Zebeaman, M.; Tadesse, M.G.; Bachheti, R.K.; Bachheti, A.; Gebeyhu, R.; Chaubey, K.K. Plants and plant-derived molecules as natural immunomodulators. BioMed Res. Int., 2023, 2023, 1-14.
[http://dx.doi.org/10.1155/2023/7711297] [PMID: 37313550]
[3]
Jantan, I.; Haque, M.A.; Ilangkovan, M.; Arshad, L. An insight into the modulatory effects and mechanisms of action of Phyllanthus species and their bioactive metabolites on the immune system. Front. Pharmacol., 2019, 10, 878.
[http://dx.doi.org/10.3389/fphar.2019.00878] [PMID: 31440162]
[4]
Swaroop, A.K.; Lalitha, C.M.V.N.; Shanmugam, M.; Subramanian, G.; Natarajan, J.; Selvaraj, J. Plant derived immunomodulators; A critical review. Adv. Pharm. Bull., 2022, 12(4), 712-729.
[PMID: 36415638]
[5]
Tieu, S.; Charchoglyan, A.; Lesperance, W.L.; Karimi, K.; Bridle, B.W.; Karrow, N.A.; Mallard, B.A. Immunoceuticals: Harnessing their immunomodulatory potential to promote health and wellness. Nutrients, 2022, 14(19), 4075.
[http://dx.doi.org/10.3390/nu14194075] [PMID: 36235727]
[6]
Pathak, S.; Fialho, J.; Nandi, D. Plant-based immunomodulators and their potential therapeutic actions. J. Explorat. Res. Pharmacol., 2022, 000(000), 000.
[http://dx.doi.org/10.14218/JERP.2022.00033]
[7]
Barnes, J.; Anderson, L.A.; Gibbons, S.; Phillipson, J.D. Echinacea species (Echinacea angustifolia (DC.) Hell., Echinacea pallida (Nutt.) Nutt., Echinacea purpurea (L.) Moench): A review of their chemistry, pharmacology and clinical properties. J. Pharm. Pharmacol., 2010, 57(8), 929-954.
[http://dx.doi.org/10.1211/0022357056127] [PMID: 16102249]
[8]
Paulovičová, E.; Paulovičová, L.; Graja, P.I.; Gancarz, R.; Kopáčová, M.; Capek, P. Effectivity of polyphenolic polysaccharide-proteins isolated from medicinal plants as potential cellular immune response modulators. Biologia, 2022, 77(12), 3581-3593.
[http://dx.doi.org/10.1007/s11756-022-01200-w] [PMID: 35990930]
[9]
Riemma, G.; Schettino, M.T.; Munno, G.M.; Fasulo, D.D.; Sandullo, L.; Amabile, E.; La Verde, M.; Torella, M. Echinacea angustifolia and Echinacea purpurea supplementation combined with vaginal hyaluronic acid to boost the remission of cervical low-grade squamous intraepithelial lesions (L-SILs): A randomized controlled trial. Medicina (Kaunas), 2022, 58(5), 646.
[http://dx.doi.org/10.3390/medicina58050646] [PMID: 35630063]
[10]
Vieira, S.F.; Gonçalves, V.M.F.; Llaguno, C.P.; Macías, F.; Tiritan, M.E.; Reis, R.L.; Ferreira, H.; Neves, N.M. On the bioactivity of Echinacea purpurea extracts to modulate the production of inflammatory mediators. Int. J. Mol. Sci., 2022, 23(21), 13616.
[http://dx.doi.org/10.3390/ijms232113616] [PMID: 36362404]
[11]
Gu, D.; Wang, H.; Yan, M.; Li, Y.; Yang, S.; Shi, D.; Guo, S.; Wu, L.; Liu, C. Echinacea purpurea (L.) Moench extract suppresses inflammation by inhibition of C3a/C3aR signaling pathway in TNBS-induced Ulcerative colitis rats. J. Ethnopharmacol., 2023, 307, 116221.
[http://dx.doi.org/10.1016/j.jep.2023.116221] [PMID: 36754188]
[12]
Ciganović, P.; Jakupović, L.; Momchev, P.; Nodilo, N.L.; Hafner, A.; Končić, Z.M. Extraction optimization, antioxidant, cosmeceutical and wound healing potential of Echinacea purpurea glycerolic extracts. Molecules, 2023, 28(3), 1177.
[http://dx.doi.org/10.3390/molecules28031177] [PMID: 36770844]
[13]
Onisei, T.; Tihăuan, B-M.; Dolete, G.; Axinie Bucos, M.; Răscol, M.; Isvoranu, G. In vivo acute toxicity and immunomodulation assessment of a novel nutraceutical in mice. Pharmaceutics, 2023, 15(4), 1292.
[http://dx.doi.org/10.3390/pharmaceutics15041292] [PMID: 37111777]
[14]
Melchart, D.; Linde, K.; Worku, F.; Bauer, R.; Wagner, H. Immunomodulation with echinacea — A systematic review of controlled clinical trials. Phytomedicine, 1994, 1(3), 245-254.
[http://dx.doi.org/10.1016/S0944-7113(11)80072-3] [PMID: 23195946]
[15]
Ritchie, M.R.; Gertsch, J.; Klein, P.; Schoop, R. Effects of Echinaforce® treatment on ex vivo-stimulated blood cells. Phytomedicine, 2011, 18(10), 826-831.
[http://dx.doi.org/10.1016/j.phymed.2011.05.011] [PMID: 21726792]
[16]
Schoop, R.; Klein, P.; Suter, A.; Johnston, S.L. Echinacea in the prevention of induced rhinovirus colds: A meta-analysis. Clin. Ther., 2006, 28(2), 174-183.
[http://dx.doi.org/10.1016/j.clinthera.2006.02.001] [PMID: 16678640]
[17]
Shah, S.A.; Sander, S.; White, C.M.; Rinaldi, M.; Coleman, C.I. Evaluation of echinacea for the prevention and treatment of the common cold: A meta-analysis. Lancet Infect. Dis., 2007, 7(7), 473-480.
[http://dx.doi.org/10.1016/S1473-3099(07)70160-3] [PMID: 17597571]
[18]
Sharma, M.; Arnason, J.T.; Burt, A.; Hudson, J.B. Echinacea extracts modulate the pattern of chemokine and cytokine secretion in rhinovirus‐infected and uninfected epithelial cells. Phytother. Res., 2006, 20(2), 147-152.
[http://dx.doi.org/10.1002/ptr.1824] [PMID: 16444669]
[19]
Di Pierro, F.; Rapacioli, G.; Ferrara, T.; Togni, S. Use of a standardized extract from Echinacea angustifolia (Polinacea) for the prevention of respiratory tract infections. Altern. Med. Rev., 2012, 17(1), 36-41.
[PMID: 22502621]
[20]
Wang, C.Y.; Staniforth, V.; Chiao, M.T.; Hou, C.C.; Wu, H.M.; Yeh, K.C.; Chen, C.H.; Hwang, P.I.; Wen, T.N.; Shyur, L.F.; Yang, N.S. Genomics and proteomics of immune modulatory effects of a butanol fraction of Echinacea purpurea in human dendritic cells. BMC Genomics, 2008, 9(1), 479.
[http://dx.doi.org/10.1186/1471-2164-9-479] [PMID: 18847511]
[21]
Behl, T.; Kumar, K.; Brisc, C.; Rus, M.; Cseppento, N.D.C.; Bustea, C.; Aron, R.A.C.; Pantis, C.; Zengin, G.; Sehgal, A.; Kaur, R.; Kumar, A.; Arora, S.; Setia, D.; Chandel, D.; Bungau, S. Exploring the multifocal role of phytochemicals as immunomodulators. Biomed. Pharmacother., 2021, 133, 110959.
[http://dx.doi.org/10.1016/j.biopha.2020.110959] [PMID: 33197758]
[22]
Clement, F.; Pramod, S.N.; Venkatesh, Y.P. Identity of the immunomodulatory proteins from garlic (Allium sativum) with the major garlic lectins or agglutinins. Int. Immunopharmacol., 2010, 10(3), 316-324.
[http://dx.doi.org/10.1016/j.intimp.2009.12.002] [PMID: 20004743]
[23]
Manu, K.A.; Kuttan, G. Immunomodulatory activities of Punarnavine, an alkaloid from Boerhaavia diffusa. Immunopharmacol. Immunotoxicol., 2009, 31(3), 377-387.
[http://dx.doi.org/10.1080/08923970802702036] [PMID: 19555203]
[24]
Florindo, H.F.; Lopes, J.; Silva, L.C.; Corvo, M.L.; Martins, M.B.; Gaspar, R. Regulatory development of nanotechnology-based vaccines. In: Micro and Nanotechnology in Vaccine Development; Skwarczynski, M.; Toth, I., Eds.; William Andrew Publishing, 2017; pp. 393-410.
[25]
Vergara-Jimenez, M.; Almatrafi, M.; Fernandez, M. Bioactive components in Moringa Oleifera Leaves protect against chronic disease. Antioxidants, 2017, 6(4), 91.
[http://dx.doi.org/10.3390/antiox6040091] [PMID: 29144438]
[26]
Li, D.; Jin, H.; Zhang, K.; Wang, Z.; Wang, F.; Zhao, Y.; Huo, N.; Liu, X.; Gu, Y.Q.; Wang, D.; Dong, L. Analysis of the Gli‐D2 locus identifies a genetic target for simultaneously improving the breadmaking and health‐related traits of common wheat. Plant J., 2018, 95(3), 414-426.
[http://dx.doi.org/10.1111/tpj.13956] [PMID: 29752764]
[27]
Roshanravan, B.; Yousefizadeh, S.; Yildirim, A.B.; Farkhondeh, T.; Amirabadizadeh, A.; Ashrafizadeh, M.; Talebi, M.; Samarghandian, S. The effects of Berberis vulgaris L. and Berberis aristata L. in metabolic syndrome patients: A systematic and meta-analysis study. Arch. Physiol. Biochem., 2023, 129(2), 393-404.
[http://dx.doi.org/10.1080/13813455.2020.1828482] [PMID: 33040642]
[28]
Khoshandam, A.; Imenshahidi, M.; Hosseinzadeh, H. Pharmacokinetic of berberine, the main constituent of Berberis vulgaris L.: A comprehensive review. Phytother. Res., 2022, 36(11), 4063-4079.
[http://dx.doi.org/10.1002/ptr.7589] [PMID: 36221815]
[29]
Bernaciak, G.J.; Mazur, O.; Nawrot, R. Functional studies of plant latex as a rich source of bioactive compounds: Focus on proteins and alkaloids. Int. J. Mol. Sci., 2021, 22(22), 12427.
[http://dx.doi.org/10.3390/ijms222212427] [PMID: 34830309]
[30]
Zhang, J.; Wu, C.; Gao, L.; Du, G.; Qin, X.; Astragaloside, I.V. Astragaloside IV derived from Astragalus membranaceus: A research review on the pharmacological effects. Adv. Pharmacol., 2020, 87, 89-112.
[http://dx.doi.org/10.1016/bs.apha.2019.08.002] [PMID: 32089240]
[31]
Xu, Y.K.; Liao, S.G.; Na, Z.; Hu, H.B.; Li, Y.; Luo, H.R. Gelsemium alkaloids, immunosuppressive agents from Gelsemium elegans. Fitoterapia, 2012, 83(6), 1120-1124.
[http://dx.doi.org/10.1016/j.fitote.2012.04.023] [PMID: 22579843]
[32]
Shi, X.Q.; Chen, G.; Tan, J.Q.; Li, Z.; Chen, S.M.; He, J.H.; Zhang, L.; Xu, H.X. Total alkaloid fraction of Leonurus japonicus Houtt. Promotes angiogenesis and wound healing through SRC/MEK/ERK signaling pathway. J. Ethnopharmacol., 2022, 295, 115396.
[http://dx.doi.org/10.1016/j.jep.2022.115396] [PMID: 35598796]
[33]
Adhikari, B.; Marasini, B.P.; Rayamajhee, B.; Bhattarai, B.R.; Lamichhane, G.; Khadayat, K.; Adhikari, A.; Khanal, S.; Parajuli, N. Potential roles of medicinal plants for the treatment of viral diseases focusing on COVID ‐19: A review. Phytother. Res., 2021, 35(3), 1298-1312.
[http://dx.doi.org/10.1002/ptr.6893] [PMID: 33037698]
[34]
Cheng, C.Y.; Yeh, C-C. Adaptive immunoregulation of luteolin and chlorogenic acid in lipopolysaccharide-induced interleukin-10 expression. Tzu-Chi Med. J., 2019, 32(2), 186-192.
[PMID: 32269953]
[35]
Sharma, K.; Kumar, M.; Waghmare, R.; Suhag, R.; Gupta, O.P.; Lorenzo, J.M.; Prakash, S. Radha, ; Rais, N.; Sampathrajan, V.; Thappa, C.; Anitha, T.; Sayed, A.A.S.; Wahab, A.B.A.; Senapathy, M.; Pandiselvam, R.; Dey, A.; Dhumal, S.; Amarowicz, R.; Kennedy, J.F. Moringa (Moringa oleifera Lam.) polysaccharides: Extraction, characterization, bioactivities, and industrial application. Int. J. Biol. Macromol., 2022, 209(Pt A), 763-778.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.04.047] [PMID: 35421412]
[36]
Kondapalli, N.B.; Hemalatha, R.; Uppala, S.; Yathapu, S.R.; Mohammed, S.; Surekha, V.M.; Rajendran, A.; Bharadwaj, D.K. Ocimum sanctum, Zingiber officinale, and Piper nigrum extracts and their effects on gut microbiota modulations (prebiotic potential), basal inflammatory markers and lipid levels: Oral supplementation study in healthy rats. Pharm. Biol., 2022, 60(1), 437-450.
[http://dx.doi.org/10.1080/13880209.2022.2033797] [PMID: 35188051]
[37]
Ashrafi, S.; Alam, S.; Sultana, A.; Raj, A.; Emon, N.U.; Richi, F.T.; Sharmin, T.; Moon, M.; Park, M.N.; Kim, B. Papaverine: A miraculous alkaloid from opium and its multimedicinal application. Molecules, 2023, 28(7), 3149.
[http://dx.doi.org/10.3390/molecules28073149] [PMID: 37049912]
[38]
Huang, W.; Kong, L.; Cao, Y.; Yan, L. Identification and quantification, metabolism and pharmacokinetics, pharmacological activities, and botanical preparations of protopine: A review. Molecules, 2021, 27(1), 215.
[http://dx.doi.org/10.3390/molecules27010215] [PMID: 35011447]
[39]
Yun, K.J.; Shin, J.S.; Choi, J.H.; Back, N.I.; Chung, H.G.; Lee, K.T. Quaternary alkaloid, pseudocoptisine isolated from tubers of Corydalis turtschaninovi inhibits LPS-induced nitric oxide, PGE2, and pro-inflammatory cytokines production via the down-regulation of NF-κB in RAW 264.7 murine macrophage cells. Int. Immunopharmacol., 2009, 9(11), 1323-1331.
[http://dx.doi.org/10.1016/j.intimp.2009.08.001] [PMID: 19666143]
[40]
Kallivalappil, G.G.; Kuttan, G. Efficacy of punarnavine in restraining organ-specific tumour progression in 4T1-induced murine breast tumour model. Inflammopharmacology, 2019, 27(4), 701-712.
[http://dx.doi.org/10.1007/s10787-018-0490-0] [PMID: 29770894]
[41]
Liu, E.Y.; Yang, C.L.; Tsai, J.C.; Cheng, H.Y.; Peng, W.H. Antidepressive mechanisms of rhynchophylline in mice with chronic unpredictable stress-induced depression. J. Ethnopharmacol., 2023, 309, 116302.
[http://dx.doi.org/10.1016/j.jep.2023.116302] [PMID: 36842720]
[42]
Zheng, X.; Li, W.; Xu, H.; Liu, J.; Ren, L.; Yang, Y.; Li, S.; Wang, J.; Ji, T.; Du, G. Sinomenine ester derivative inhibits glioblastoma by inducing mitochondria-dependent apoptosis and autophagy by PI3K/AKT/mTOR and AMPK/mTOR pathway. Acta Pharm. Sin. B, 2021, 11(11), 3465-3480.
[http://dx.doi.org/10.1016/j.apsb.2021.05.027] [PMID: 34900530]
[43]
Lei, L.; Zhao, Y.; Shi, K.; Liu, Y.; Hu, Y.; Shao, H. Phytotoxic activity of alkaloids in the desert plant Sophora alopecuroides. Toxins, 2021, 13(10), 706.
[http://dx.doi.org/10.3390/toxins13100706] [PMID: 34678999]
[44]
Chan, E.W.C.; Wong, S.K.; Chan, H.T. An overview on the chemistry, pharmacology and anticancer properties of tetrandrine and fangchinoline (alkaloids) from Stephania tetrandra roots. J. Integr. Med., 2021, 19(4), 311-316.
[http://dx.doi.org/10.1016/j.joim.2021.01.001] [PMID: 33583757]
[45]
Abd-Alla, H.I.; Moharram, F.A.; Gaara, A.H.; El-Safty, M.M. Phytoconstituents of Jatropha curcas L. leaves and their immunomodulatory activity on humoral and cell-mediated immune response in chicks. Z. Naturforsch. C J. Biosci., 2009, 64(7-8), 495-501.
[http://dx.doi.org/10.1515/znc-2009-7-805] [PMID: 19791499]
[46]
Murali, K.S.; Sivasubramanian, S.; Vincent, S.; Murugan, S.B.; Giridaran, B.; Dinesh, S.; Gunasekaran, P.; Krishnasamy, K.; Sathishkumar, R. Anti—chikungunya activity of luteolin and apigenin rich fraction from Cynodon dactylon. Asian Pac. J. Trop. Med., 2015, 8(5), 352-358.
[http://dx.doi.org/10.1016/S1995-7645(14)60343-6] [PMID: 26003593]
[47]
Pereira, O.; Catarino, M.; Afonso, A.; Silva, A.; Cardoso, S. Salvia elegans, Salvia greggii and Salvia officinalis decoctions: Antioxidant activities and inhibition of carbohydrate and lipid metabolic enzymes. Molecules, 2018, 23(12), 3169.
[http://dx.doi.org/10.3390/molecules23123169] [PMID: 30513773]
[48]
Calvo, M.M.; Tzamourani, A.; Alvarez, M.O. Halophytes as a potential source of melanosis-inhibiting compounds. Mechanism of inhibition of a characterized polyphenol extract of purslane (Portulaca oleracea). Food Chem., 2021, 355, 129649.
[http://dx.doi.org/10.1016/j.foodchem.2021.129649] [PMID: 33799263]
[49]
Ahmad, W.; Jantan, I.; Bukhari, S.N.A. Tinospora crispa (L.) Hook. f. & Thomson: A review of its ethnobotanical, phytochemical, and pharmacological aspects. Front. Pharmacol., 2016, 7, 59.
[http://dx.doi.org/10.3389/fphar.2016.00059] [PMID: 27047378]
[50]
Owumi, S.E.; Otunla, M.T.; Arunsi, U.O.; Oyelere, A.K. Apigeninidin-enriched Sorghum bicolor (L. Moench) extracts alleviate aflatoxin B 1 -induced dysregulation of male rat hypothalamic-reproductive axis. Exp. Biol. Med., 2022, 247(15), 1301-1316.
[http://dx.doi.org/10.1177/15353702221098060] [PMID: 35658587]
[51]
Georgieva, Y.P.; Gardjeva, P.A.; Katsarova, M.N.; Bozov, P.I.; Gercheva, K.P.; Murdjeva, M.A.; Dimitrova, S.Z. A study of flavonoid composition and antimicrobial activity of Scutellaria altissima L. from different floristic regions of Bulgaria. Folia Med., 2022, 64(4), 617-623.
[http://dx.doi.org/10.3897/folmed.64.e64795] [PMID: 36045477]
[52]
Wang, Z.; Lee, Y.; Eun, J.S.; Bae, E.J. Inhibition of adipocyte inflammation and macrophage chemotaxis by butein. Eur. J. Pharmacol., 2014, 738, 40-48.
[http://dx.doi.org/10.1016/j.ejphar.2014.05.031] [PMID: 24877688]
[53]
Chang, S.L.; Chiang, Y.M.; Chang, C.L.T.; Yeh, H.H.; Shyur, L.F.; Kuo, Y.H.; Wu, T.K.; Yang, W.C. Flavonoids, centaurein and centaureidin, from Bidens pilosa, stimulate IFN-γ expression. J. Ethnopharmacol., 2007, 112(2), 232-236.
[http://dx.doi.org/10.1016/j.jep.2007.03.001] [PMID: 17408892]
[54]
Bae, Y.; Lee, S.; Kim, S.H. Chrysin suppresses mast cell-mediated allergic inflammation: Involvement of calcium, caspase-1 and nuclear factor-κB. Toxicol. Appl. Pharmacol., 2011, 254(1), 56-64.
[http://dx.doi.org/10.1016/j.taap.2011.04.008] [PMID: 21515303]
[55]
Suntichaikamolkul, N.; Akashi, T.; Mahalapbutr, P.; Sanachai, K.; Rungrotmongkol, T.; Bassard, J.E.; Schaller, H.; De-Eknamkul, W.; Vimolmangkang, S.; Yamazaki, M.; Sirikantaramas, S. Daidzein hydroxylation by CYP81E63 Is involved in the biosynthesis of miroestrol in Pueraria mirifica. Plant Cell Physiol., 2023, 64(1), 64-79.
[http://dx.doi.org/10.1093/pcp/pcac140] [PMID: 36218384]
[56]
Chen, I.C.; Chang, K.H.; Chen, Y.J.; Chen, Y.C.; Lee-Chen, G.J.; Chen, C.M. Pueraria lobata and daidzein reduce cytotoxicity by enhancing ubiquitin-proteasome system function in SCA3-iPSC-derived neurons. Oxid. Med. Cell. Longev., 2019, 2019, 1-18.
[http://dx.doi.org/10.1155/2019/8130481] [PMID: 31687087]
[57]
Awad, E.; Awaad, A.S.; Esteban, M.A. Effects of dihydroquercetin obtained from deodar (Cedrus deodara) on immune status of gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol., 2015, 43(1), 43-50.
[http://dx.doi.org/10.1016/j.fsi.2014.12.009] [PMID: 25530582]
[58]
Paraiso, I.L.; Revel, J.S.; Choi, J.; Miranda, C.L.; Lak, P.; Kioussi, C.; Bobe, G.; Gombart, A.F.; Raber, J.; Maier, C.S.; Stevens, J.F. Targeting the liver‐brain axis with hop‐derived flavonoids improves lipid metabolism and cognitive performance in mice. Mol. Nutr. Food Res., 2020, 64(15), 2000341.
[http://dx.doi.org/10.1002/mnfr.202000341] [PMID: 32627931]
[59]
Lee, H.; Cho, H.; Lim, D.; Kang, Y.H.; Lee, K.; Park, J. Mechanisms by which licochalcone e exhibits potent anti-inflammatory properties: Studies with phorbol ester-treated mouse skin and lipopolysaccharide-stimulated murine macrophages. Int. J. Mol. Sci., 2013, 14(6), 10926-10943.
[http://dx.doi.org/10.3390/ijms140610926] [PMID: 23708096]
[60]
Xiang, M.X.; Xu, Z.; Su, H.W.; Hu, J.; Yan, Y.J. Emodin-8-O-β-D-glucoside from Polygonum amplexicaule D. Don var. sinense Forb. promotes proliferation and differentiation of osteoblastic MC3T3-E1 cells. Molecules, 2011, 16(1), 728-737.
[http://dx.doi.org/10.3390/molecules16010728] [PMID: 21245807]
[61]
Wu, Q.; Hu, Y. Integrated network pharmacology and molecular docking strategy to explore the mechanism of medicinal and edible astragali radix‐atractylodis macrocephalae rhizoma acting on pneumonia via immunomodulation. J. Food Biochem., 2020, 44(12), e13510.
[http://dx.doi.org/10.1111/jfbc.13510] [PMID: 33025599]
[62]
Kamboh, A.A.; Hang, S.Q.; Khan, M.A.; Zhu, W.Y. In vivo immunomodulatory effects of plant flavonoids in lipopolysaccharide-challenged broilers. Animal, 2016, 10(10), 1619-1625.
[http://dx.doi.org/10.1017/S1751731116000562] [PMID: 27079952]
[63]
Miles, E.A.; Calder, P.C. Effects of citrus fruit juices and their bioactive components on inflammation and immunity: A narrative review. Front. Immunol., 2021, 12, 712608.
[http://dx.doi.org/10.3389/fimmu.2021.712608] [PMID: 34249019]
[64]
Yuan, Y.; Zhai, Y.; Chen, J.; Xu, X.; Wang, H. Kaempferol ameliorates oxygen-glucose deprivation/reoxygenation-induced neuronal ferroptosis by activating Nrf2/SLC7A11/GPX4 axis. Biomolecules, 2021, 11(7), 923.
[http://dx.doi.org/10.3390/biom11070923] [PMID: 34206421]
[65]
Huang, G.C.; Lee, C.J.; Wang, K.T.; Weng, B.C.; Chien, T.Y.; Tseng, S.H.; Wang, C.C. Immunomodulatory effects of hedysarum polybotrys extract in mice macrophages, splenocytes and leucopenia. Molecules, 2013, 18(12), 14862-14875.
[http://dx.doi.org/10.3390/molecules181214862] [PMID: 24300120]
[66]
Daikonya, A.; Katsuki, S.; Kitanaka, S. Antiallergic agents from natural sources 9. Inhibition of nitric oxide production by novel chalcone derivatives from Mallotus philippinensis (Euphorbiaceae). Chem. Pharm. Bull., 2004, 52(11), 1326-1329.
[http://dx.doi.org/10.1248/cpb.52.1326] [PMID: 15516755]
[67]
Kang, S.R.; Park, K.I.; Park, H.S.; Lee, D.H.; Kim, J.A.; Nagappan, A.; Kim, E.H.; Lee, W.S.; Shin, S.C.; Park, M.K.; Han, D.Y.; Kim, G.S. Anti-inflammatory effect of flavonoids isolated from Korea Citrus aurantium L. on lipopolysaccharide-induced mouse macrophage RAW 264.7 cells by blocking of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signalling pathways. Food Chem., 2011, 129(4), 1721-1728.
[http://dx.doi.org/10.1016/j.foodchem.2011.06.039]
[68]
Xian, Y.; Su, Y.; Liang, J.; Long, F.; Feng, X.; Xiao, Y.; Lian, H.; Xu, J.; Zhao, J.; Liu, Q.; Song, F.; Oroxylin, A. Oroxylin A reduces osteoclast formation and bone resorption via suppressing RANKL-induced ROS and NFATc1 activation. Biochem. Pharmacol., 2021, 193, 114761.
[http://dx.doi.org/10.1016/j.bcp.2021.114761] [PMID: 34492273]
[69]
Liu, X.; Mei, Z.; Qian, J.; Zeng, Y.; Wang, M. Puerarin partly counteracts the inflammatory response after cerebral ischemia/reperfusion via activating the cholinergic anti-inflammatory pathway. Neural Regen. Res., 2013, 8(34), 3203-3215.
[PMID: 25206641]
[70]
Kleemann, R.; Verschuren, L.; Morrison, M.; Zadelaar, S.; van Erk, M.J.; Wielinga, P.Y.; Kooistra, T. Anti-inflammatory, anti-proliferative and anti-atherosclerotic effects of quercetin in human in vitro and in vivo models. Atherosclerosis, 2011, 218(1), 44-52.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.04.023] [PMID: 21601209]
[71]
Asgharian, S.; Hojjati, M.R.; Ahrari, M.; Bijad, E.; Deris, F.; Lorigooini, Z. Ruta graveolens and rutin, as its major compound: Investigating their effect on spatial memory and passive avoidance memory in rats. Pharm. Biol., 2020, 58(1), 447-453.
[http://dx.doi.org/10.1080/13880209.2020.1762669] [PMID: 32432948]
[72]
Tajmohammadi, A.; Razavi, B.M.; Hosseinzadeh, H. Silybum marianum (milk thistle) and its main constituent, silymarin, as a potential therapeutic plant in metabolic syndrome: A review. Phytother. Res., 2018, 32(10), 1933-1949.
[http://dx.doi.org/10.1002/ptr.6153] [PMID: 30015401]
[73]
Banik, K.; Khatoon, E.; Harsha, C.; Rana, V.; Parama, D.; Thakur, K.K.; Bishayee, A.; Kunnumakkara, A.B. Wogonin and its analogs for the prevention and treatment of cancer: A systematic review. Phytother. Res., 2022, 36(5), 1854-1883.
[http://dx.doi.org/10.1002/ptr.7386] [PMID: 35102626]
[74]
Jiang, M.; Sheng, F.; Zhang, Z.; Ma, X.; Gao, T.; Fu, C.; Li, P. Andrographis paniculata (Burm.f.) nees and its major constituent andrographolide as potential antiviral agents. J. Ethnopharmacol., 2021, 272, 113954.
[http://dx.doi.org/10.1016/j.jep.2021.113954] [PMID: 33610706]
[75]
Hartog, A.; Smit, H.F.; van der Kraan, P.M.; Hoijer, M.A.; Garssen, J. In vitro and in vivo modulation of cartilage degradation by a standardized Centella asiatica fraction. Exp. Biol. Med., 2009, 234(6), 617-623.
[http://dx.doi.org/10.3181/0810-RM-298] [PMID: 19307458]
[76]
Liu, Y.; Gao, J.; Peng, M.; Meng, H.; Ma, H.; Cai, P.; Xu, Y.; Zhao, Q.; Si, G. A review on central nervous system effects of gastrodin. Front. Pharmacol., 2018, 9, 24.
[http://dx.doi.org/10.3389/fphar.2018.00024] [PMID: 29456504]
[77]
Lee, J.H.; Lee, J.Y.; Park, J.H.; Jung, H.S.; Kim, J.S.; Kang, S.S.; Kim, Y.S.; Han, Y. Immunoregulatory activity by daucosterol, a β-sitosterol glycoside, induces protective Th1 immune response against disseminated Candidiasis in mice. Vaccine, 2007, 25(19), 3834-3840.
[http://dx.doi.org/10.1016/j.vaccine.2007.01.108] [PMID: 17335944]
[78]
Tewtrakul, S.; Itharat, A. Nitric oxide inhibitory substances from the rhizomes of Dioscorea membranacea. J. Ethnopharmacol., 2007, 109(3), 412-416.
[http://dx.doi.org/10.1016/j.jep.2006.08.009] [PMID: 16979312]
[79]
Khajuria, A.; Gupta, A.; Garai, S.; Wakhloo, B.P. Immunomodulatory effects of two sapogenins 1 and 2 isolated from Luffa cylindrica in Balb/C mice. Bioorg. Med. Chem. Lett., 2007, 17(6), 1608-1612.
[http://dx.doi.org/10.1016/j.bmcl.2006.12.091] [PMID: 17270438]
[80]
Song, J.Y.; Han, S.K.; Son, E.H.; Pyo, S.N.; Yun, Y.S.; Yi, S.Y. Induction of secretory and tumoricidal activities in peritoneal macrophages by ginsan. Int. Immunopharmacol., 2002, 2(7), 857-865.
[http://dx.doi.org/10.1016/S1567-5769(01)00211-9] [PMID: 12188027]
[81]
Agada, R.; Usman, W.A.; Shehu, S.; Thagariki, D. In vitro and in vivo inhibitory effects of Carica papaya seed on α-amylase and α-glucosidase enzymes. Heliyon, 2020, 6(3), e03618.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03618] [PMID: 32258473]
[82]
Lee, Y.; Choi, H.K.; N’deh, K.P.U.; Choi, Y.J.; Fan, M.; Kim, E.; Chung, K.H.; An, J.H. Inhibitory effect of centella asiatica extract on DNCB-induced atopic dermatitis in HaCaT cells and BALB/c mice. Nutrients, 2020, 12(2), 411.
[http://dx.doi.org/10.3390/nu12020411] [PMID: 32033291]
[83]
S, A.S.; Vellapandian, C. Phytochemical studies, antioxidant potential, and identification of bioactive compounds using GC–MS of the ethanolic extract of Luffa cylindrica (L.) fruit. Appl. Biochem. Biotechnol., 2022, 194(9), 4018-4032.
[http://dx.doi.org/10.1007/s12010-022-03961-1] [PMID: 35583705]
[84]
Brinker, A.M.; Ma, J.; Lipsky, P.E.; Raskin, I. Medicinal chemistry and pharmacology of genus Tripterygium (Celastraceae). Phytochemistry, 2007, 68(6), 732-766.
[http://dx.doi.org/10.1016/j.phytochem.2006.11.029] [PMID: 17250858]
[85]
Varikuti, S.; Shelton, A.B.; Kotha, S.R.; Gurney, T.; Gupta, G.; Hund, T.J.; Fuchs, J.R.; Kinghorn, A.D.; Srivastava, N.; Satoskar, A.R.; Parinandi, N.L. Pentalinonsterol, a phytosterol from Pentalinon andrieuxii, is immunomodulatory through phospholipase A2 in macrophages toward its antileishmanial action. Cell Biochem. Biophys., 2022, 80(1), 45-61.
[http://dx.doi.org/10.1007/s12013-021-01030-8] [PMID: 34387841]
[86]
Magedans, Y.V.S.; Yendo, A.C.A.; Costa, F.; Gosmann, G.; Neto, F.A.G. Foamy matters: An update on Quillaja saponins and their use as immunoadjuvants. Future Med. Chem., 2019, 11(12), 1485-1499.
[http://dx.doi.org/10.4155/fmc-2018-0438] [PMID: 31304830]
[87]
El Hazzam, K.; Hafsa, J.; Sobeh, M.; Mhada, M.; Taourirte, M.E.L.; Kacimi, K.; Yasri, A. An insight into saponins from quinoa (Chenopodium quinoa Willd): A review. Molecules, 2020, 25(5), 1059.
[http://dx.doi.org/10.3390/molecules25051059] [PMID: 32120971]
[88]
Harmatha, J.; Buděšínský, M.; Zídek, Z.; Kmoníčková, E. Spirostanol saponins from flowers of Allium Porrum and related compounds indicating cytotoxic activity and affecting nitric oxide production inhibitory effect in peritoneal macrophages. Molecules, 2021, 26(21), 6533.
[http://dx.doi.org/10.3390/molecules26216533] [PMID: 34770942]
[89]
Le, C.F.; Kailaivasan, T.H.; Chow, S.C.; Abdullah, Z.; Ling, S.K.; Fang, C.M. Phytosterols isolated from Clinacanthus nutans induce immunosuppressive activity in murine cells. Int. Immunopharmacol., 2017, 44, 203-210.
[http://dx.doi.org/10.1016/j.intimp.2017.01.013] [PMID: 28119186]
[90]
Mkolo, N.M.; Olaokun, O.O.; King, P.H.; van Rensburg, J.I.; Eloff, J.N.; Naidoo, V. Verification of the folkloric and anecdotal antidiabetic effects of Hypoxis hemerocallidea (Fisch., C.A. Mey. & Avé-Lall) and isolated, β-sitosterol using early-stage type II spontaneous diabetic mutant BKS-Leprdb mice. BMC Complementary Medicine and Therapies, 2022, 22(1), 163.
[http://dx.doi.org/10.1186/s12906-022-03640-y] [PMID: 35725532]
[91]
Kashyap, D.; Sharma, A.; Tuli, H.S.; Punia, S.; Sharma, A.K. Ursolic acid and oleanolic acid: Pentacyclic terpenoids with promising anti-inflammatory activities. Recent Pat. Inflamm. Allergy Drug Discov., 2016, 10(1), 21-33.
[http://dx.doi.org/10.2174/1872213X10666160711143904] [PMID: 27531153]
[92]
Paul, S.; Chakraborty, S.; Anand, U.; Dey, S.; Nandy, S.; Ghorai, M.; Saha, S.C.; Patil, M.T.; Kandimalla, R.; Proćków, J.; Dey, A. Withania somnifera (L.) dunal (Ashwagandha): A comprehensive review on ethnopharmacology, pharmacotherapeutics, biomedicinal and toxicological aspects. Biomed. Pharmacother., 2021, 143, 112175.
[http://dx.doi.org/10.1016/j.biopha.2021.112175] [PMID: 34649336]
[93]
Smith, M.J.; Germolec, D.R.; Frawley, R.P.; White, K.L. Jr Immunomodulatory effects of black cohosh (Actaea racemosa) extract in female B6C3F1/N mice. Toxicology, 2013, 308, 146-157.
[http://dx.doi.org/10.1016/j.tox.2013.03.017] [PMID: 23571075]
[94]
Cuc, N.T.; Yen, D.T.H.; Yen, P.H.; Hang, D.T.T.; Tai, B.H.; Seo, Y.; Namkung, W.; Kim, S.H.; Cuong, P.V.; Kiem, P.V.; Nhiem, N.X.; Ngoc, T.M. Dihydrostilbene glycosides from Camellia sinensis var. assamica and their cytotoxic activity. Nat. Prod. Res., 2022, 36(15), 3931-3937.
[http://dx.doi.org/10.1080/14786419.2021.1900844] [PMID: 33749416]
[95]
Pandey, R.; Maurya, R.; Singh, G.; Sathiamoorthy, B.; Naik, S. Immunosuppressive properties of flavonoids isolated from Boerhaavia diffusa Linn. Int. Immunopharmacol., 2005, 5(3), 541-553.
[http://dx.doi.org/10.1016/j.intimp.2004.11.001] [PMID: 15683850]
[96]
Elbagory, A.M.; Hussein, A.A.A.; Meyer, M. The in vitro immunomodulatory effects of gold nanoparticles synthesized from Hypoxis hemerocallidea aqueous extract and hypoxoside on macrophage and natural killer cells. Int. J. Nanomedicine, 2019, 14, 9007-9018.
[http://dx.doi.org/10.2147/IJN.S216972] [PMID: 31819415]
[97]
Akbay, P.; Basaran, A.A.; Undeger, U.; Basaran, N. In vitro immunomodulatory activity of flavonoid glycosides from Urtica dioica L. Phytother. Res., 2003, 17(1), 34-37.
[http://dx.doi.org/10.1002/ptr.1068] [PMID: 12557244]
[98]
Saviano, A.; Raucci, F.; Casillo, G.M.; Mansour, A.A.; Piccolo, V.; Montesano, C.; Smimmo, M.; Vellecco, V.; Capasso, G.; Boscaino, A.; Summa, V.; Mascolo, N.; Iqbal, A.J.; Sorrentino, R.; di Bianca, E.V.R.; Bucci, M.; Brancaleone, V.; Maione, F. Anti-inflammatory and immunomodulatory activity of Mangifera indica L. reveals the modulation of COX-2/mPGES-1 axis and Th17/Treg ratio. Pharmacol. Res., 2022, 182, 106283.
[http://dx.doi.org/10.1016/j.phrs.2022.106283] [PMID: 35662629]
[99]
Kouakou, K.; Schepetkin, I.A.; Jun, S.; Kirpotina, L.N.; Yapi, A.; Khramova, D.S.; Pascual, D.W.; Ovodov, Y.S.; Jutila, M.A.; Quinn, M.T. Immunomodulatory activity of polysaccharides isolated from Clerodendrum splendens: Beneficial effects in experimental autoimmune encephalomyelitis. BMC Complement. Altern. Med., 2013, 13(1), 149.
[http://dx.doi.org/10.1186/1472-6882-13-149] [PMID: 23806004]
[100]
Qu, D.; Lian, S.; Hu, H.; Sun, W.; Si, H. Characterization and macrophages immunomodulatory activity of two water-soluble polysaccharides from Abrus cantoniensis. Front. Nutr., 2022, 9, 969512.
[http://dx.doi.org/10.3389/fnut.2022.969512] [PMID: 36071932]
[101]
Fan, S.; Wang, Y.; Zhang, Y.; Wu, Y.; Chen, X. Achyranthes bidentata polysaccharide activates nuclear factor-kappa B and promotes cytokine production in J774A.1 cells through TLR4/MyD88 signaling pathway. Front. Pharmacol., 2021, 12, 753599.
[http://dx.doi.org/10.3389/fphar.2021.753599] [PMID: 34658894]
[102]
Qi, Y.; Duan, G.; Fan, G.; Peng, N. Effect of Lycium barbarum polysaccharides on cell signal transduction pathways. Biomed. Pharmacother., 2022, 147, 112620.
[http://dx.doi.org/10.1016/j.biopha.2022.112620] [PMID: 35032768]
[103]
Ahmad, R.; Riaz, M.; Khan, A.; Aljamea, A.; Algheryafi, M.; Sewaket, D.; Alqathama, A. Ganoderma lucidum (Reishi) an edible mushroom; a comprehensive and critical review of its nutritional, cosmeceutical, mycochemical, pharmacological, clinical, and toxicological properties. Phytother. Res., 2021, 35(11), 6030-6062.
[http://dx.doi.org/10.1002/ptr.7215] [PMID: 34411377]
[104]
Meng, F.Y.; Ning, Y.L.; Qi, J.; He, Z.; Jie, J.; Lin, J.J.; Huang, Y.J.; Li, F.S.; Li, X.H. Structure and antitumor and immunomodulatory activities of a water-soluble polysaccharide from Dimocarpus longan pulp. Int. J. Mol. Sci., 2014, 15(3), 5140-5162.
[http://dx.doi.org/10.3390/ijms15035140] [PMID: 24663085]
[105]
Wang, S.; Liu, Q.; Zeng, T.; Zhan, J.; Zhao, H.; Ho, C.T.; Xiao, Y.; Li, S. Immunomodulatory effects and associated mechanisms of Momordica charantia and its phytochemicals. Food Funct., 2022, 13(23), 11986-11998.
[http://dx.doi.org/10.1039/D2FO02096C] [PMID: 36350105]
[106]
Kim, S.H.; Seong, G.S.; Choung, S.Y. Fermented Morinda citrifolia (Noni) alleviates DNCB-induced atopic dermatitis in NC/Nga mice through modulating immune balance and skin barrier function. Nutrients, 2020, 12(1), 249.
[http://dx.doi.org/10.3390/nu12010249] [PMID: 31963703]
[107]
Devi, S.A.; Thongam, B.; Handique, P.J. Nymphaea rubra Roxb. ex andrews cultivated as an ornamental, food and vegetable in the North Eastern region of India. Genet. Resour. Crop Evol., 2015, 62(2), 315-320.
[http://dx.doi.org/10.1007/s10722-014-0177-3]
[108]
Andújar, I.; Recio, M.; Bacelli, T.; Giner, R.; Ríos, J. Shikonin reduces oedema induced by phorbol ester by interfering with IκBα degradation thus inhibiting translocation of NF-KB to the nucleus: Shikonin inhibits NF-KB translocation. Br. J. Pharmacol., 2010, 160, 376-388.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00696.x] [PMID: 20423347]
[109]
Jiang, R.; Xu, J.; Zhang, Y.; Liu, J.; Wang, Y.; Chen, M.; Chen, X.; Yin, M. Ligustrazine alleviates psoriasis-like inflammation through inhibiting TRAF6/c-JUN/NFκB signaling pathway in keratinocyte. Biomed. Pharmacother., 2022, 150, 113010.
[http://dx.doi.org/10.1016/j.biopha.2022.113010] [PMID: 35468584]
[110]
Gholamnezhad, Z.; Havakhah, S.; Boskabady, M.H. Preclinical and clinical effects of Nigella sativa and its constituent, thymoquinone: A review. J. Ethnopharmacol., 2016, 190, 372-386.
[http://dx.doi.org/10.1016/j.jep.2016.06.061] [PMID: 27364039]
[111]
Xie, Q.; Zhang, L.; Xie, L.; Zheng, Y.; Liu, K.; Tang, H.; Liao, Y.; Li, X. Z‐ligustilide: A review of its pharmacokinetics and pharmacology. Phytother. Res., 2020, 34(8), 1966-1991.
[http://dx.doi.org/10.1002/ptr.6662] [PMID: 32135035]
[112]
Bauer, J.; Koeberle, A.; Dehm, F.; Pollastro, F.; Appendino, G.; Northoff, H.; Rossi, A.; Sautebin, L.; Werz, O. Arzanol, a prenylated heterodimeric phloroglucinyl pyrone, inhibits eicosanoid biosynthesis and exhibits anti-inflammatory efficacy in vivo. Biochem. Pharmacol., 2011, 81(2), 259-268.
[http://dx.doi.org/10.1016/j.bcp.2010.09.025] [PMID: 20933508]
[113]
Nalbantsoy, A.; Nesil, T.; Yılmaz-Dilsiz, Ö.; Aksu, G.; Khan, S.; Bedir, E. Evaluation of the immunomodulatory properties in mice and in vitro anti-inflammatory activity of cycloartane type saponins from Astragalus species. J. Ethnopharmacol., 2012, 139(2), 574-581.
[http://dx.doi.org/10.1016/j.jep.2011.11.053] [PMID: 22155389]
[114]
Chiang, L.C.; Ng, L.T.; Chiang, W.; Chang, M.Y.; Lin, C.C. Immunomodulatory activities of flavonoids, monoterpenoids, triterpenoids, iridoid glycosides and phenolic compounds of Plantago species. Planta Med., 2003, 69(7), 600-604.
[http://dx.doi.org/10.1055/s-2003-41113] [PMID: 12898413]
[115]
Ho, G.; Bräunlich, M.; Austarheim, I.; Wangensteen, H.; Malterud, K.; Slimestad, R.; Barsett, H. Immunomodulating activity of Aronia melanocarpa polyphenols. Int. J. Mol. Sci., 2014, 15(7), 11626-11636.
[http://dx.doi.org/10.3390/ijms150711626] [PMID: 24983479]
[116]
Karunarathne, W.A.H.M.; Lee, K.T.; Choi, Y.H.; Jin, C.Y.; Kim, G.Y. Anthocyanins isolated from Hibiscus syriacus L. attenuate lipopolysaccharide-induced inflammation and endotoxic shock by inhibiting the TLR4/MD2-mediated NF-κB signaling pathway. Phytomedicine, 2020, 76, 153237.
[http://dx.doi.org/10.1016/j.phymed.2020.153237] [PMID: 32540784]
[117]
Gupta, S.C.; Patchva, S.; Aggarwal, B.B. Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J., 2013, 15(1), 195-218.
[http://dx.doi.org/10.1208/s12248-012-9432-8] [PMID: 23143785]
[118]
Mimche, P.N.; Taramelli, D.; Vivas, L. The plant-based immunomodulator curcumin as a potential candidate for the development of an adjunctive therapy for cerebral malaria. Malar. J., 2011, 10(S1), S10.
[http://dx.doi.org/10.1186/1475-2875-10-S1-S10] [PMID: 21411011]
[119]
Baptista, A.B.; Sarandy, M.M.; Gonçalves, R.V.; Novaes, R.D.; da Costa, G.C.; Leite, J.P.V.; Peluzio, M.C.G. Antioxidant and anti-inflammatory effects of Anacardium occidentale L. and Anacardium microcarpum D. extracts on the liver of IL-10 knockout mice. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-13.
[http://dx.doi.org/10.1155/2020/3054521] [PMID: 33376496]
[120]
Olugbami, J.O.; Damoiseaux, R.; France, B.; Onibiyo, E.M.; Gbadegesin, M.A.; Sharma, S.; Gimzewski, J.K.; Odunola, O.A. A comparative assessment of antiproliferative properties of resveratrol and ethanol leaf extract of Anogeissus leiocarpus (DC) Guill and Perr against HepG2 hepatocarcinoma cells. BMC Complement. Altern. Med., 2017, 17(1), 381.
[http://dx.doi.org/10.1186/s12906-017-1873-2] [PMID: 28768515]
[121]
Ilangkovan, M.; Jantan, I.; Mesaik, M.A.; Bukhari, S.N.A. Inhibitory effects of the standardized extract of Phyllanthus amarus on cellular and humoral immune responses in Balb/C mice. Phytother. Res., 2016, 30(8), 1330-1338.
[http://dx.doi.org/10.1002/ptr.5633] [PMID: 27137750]
[122]
Liu, Y.; Zhang, W.; Xu, C.; Li, X. Biological activities of extracts from loquat (Eriobotrya japonica Lindl.): A review. Int. J. Mol. Sci., 2016, 17(12), 1983.
[http://dx.doi.org/10.3390/ijms17121983] [PMID: 27929430]
[123]
Wu, P.; Gao, H.; Liu, J.X.; Liu, L.; Zhou, H.; Liu, Z.Q. Triterpenoid saponins with anti-inflammatory activities from Ilex pubescens roots. Phytochemistry, 2017, 134, 122-132.
[http://dx.doi.org/10.1016/j.phytochem.2016.11.012] [PMID: 27912969]
[124]
Hennia, A.; Miguel, M.; Nemmiche, S. Antioxidant activity of Myrtus communis L. and Myrtus nivellei Batt. & Trab. extracts: A brief review. Medicines, 2018, 5(3), 89.
[http://dx.doi.org/10.3390/medicines5030089] [PMID: 30103510]
[125]
Doligalska, M.; Joźwicka, K.; Laskowska, M.; Łysoniewska, D.K.; Pączkowski, C.; Janiszowska, W. Changes in heligmosomoides polygyrus glycoprotein pattern by saponins impact the BALB/c mice immune response. Exp. Parasitol., 2013, 135(3), 524-531.
[http://dx.doi.org/10.1016/j.exppara.2013.09.005] [PMID: 24036322]
[126]
Vang, O.; Ahmad, N.; Baile, C.A.; Baur, J.A.; Brown, K.; Csiszar, A.; Das, D.K.; Delmas, D.; Gottfried, C.; Lin, H.Y.; Ma, Q.Y.; Mukhopadhyay, P.; Nalini, N.; Pezzuto, J.M.; Richard, T.; Shukla, Y.; Surh, Y.J.; Szekeres, T.; Szkudelski, T.; Walle, T.; Wu, J.M. What is new for an old molecule? Systematic review and recommendations on the use of resveratrol. PLoS One, 2011, 6(6), e19881.
[http://dx.doi.org/10.1371/journal.pone.0019881] [PMID: 21698226]
[127]
Santos, J.; Brito, M.; Ferreira, R.; Moura, A.; Sousa, T.; Batista, T.; Mangueira, V.; Leite, F.; Cruz, R.; Vieira, G.; Lira, B.; Athayde-Filho, P.; Souza, H.; Costa, N.; Veras, R.; Filho, B.J.; Magalhães, H.; Sobral, M. Th1-biased immunomodulation and in vivo antitumor effect of a novel piperine analogue. Int. J. Mol. Sci., 2018, 19(9), 2594.
[http://dx.doi.org/10.3390/ijms19092594] [PMID: 30200386]
[128]
BenSaad, L.A.; Kim, K.H.; Quah, C.C.; Kim, W.R.; Shahimi, M. Anti-inflammatory potential of ellagic acid, gallic acid and punicalagin A&B isolated from Punica granatum. BMC Complement. Altern. Med., 2017, 17(1), 47.
[http://dx.doi.org/10.1186/s12906-017-1555-0] [PMID: 28088220]
[129]
Rad, S.M.; Mnayer, D.; Braga, M.M.F.B.; Carneiro, J.N.P.; Bezerra, C.F.; Coutinho, H.D.M.; Salehi, B.; Martorell, M.; del Mar Contreras, M.; Nejad, S.A.; Uribe, Y.A.H.; Yousaf, Z.; Iriti, M.; Sharifi-Rad, J. Echinacea plants as antioxidant and antibacterial agents: From traditional medicine to biotechnological applications. Phytother. Res., 2018, 32(9), 1653-1663.
[http://dx.doi.org/10.1002/ptr.6101] [PMID: 29749084]
[130]
Saeidnia, S.; Manayi, A.; Vazirian, M. Echinacea purpurea: Pharmacology, phytochemistry and analysis methods. Pharmacogn. Rev., 2015, 9(17), 63-72.
[http://dx.doi.org/10.4103/0973-7847.156353] [PMID: 26009695]
[131]
Thomsen, M.O.; Christensen, L.P.; Grevsen, K. Harvest strategies for optimization of the content of bioactive alkamides and caffeic acid derivatives in aerial parts and in roots of Echinacea purpurea. J. Agric. Food Chem., 2018, 66(44), 11630-11639.
[http://dx.doi.org/10.1021/acs.jafc.8b03420] [PMID: 30350973]
[132]
Xu, W.; Hu, B.; Cheng, Y.; Guo, Y.; Yao, W.; Qian, H. Echinacea purpurea suppresses the cell survival and metastasis of hepatocellular carcinoma through regulating the PI3K/Akt pathway. Int. J. Biochem. Cell Biol., 2022, 142, 106115.
[http://dx.doi.org/10.1016/j.biocel.2021.106115] [PMID: 34743003]
[133]
Burlou-Nagy, C.; Bănică, F.; Jurca, T.; Vicaș, L.G.; Marian, E.; Muresan, M.E.; Bácskay, I.; Kiss, R.; Fehér, P.; Pallag, A. Echinacea purpurea (L.) Moench: Biological and Pharmacological Properties. A Review. Plants, 2022, 11(9), 1244.
[http://dx.doi.org/10.3390/plants11091244] [PMID: 35567246]
[134]
Kim, H.R.; Oh, S.K.; Lim, W.; Lee, H.K.; Moon, B.I.; Seoh, J.Y. Immune enhancing effects of Echinacea purpurea root extract by reducing regulatory T cell number and function. Nat. Prod. Commun., 2014, 9(4), 1934578X1400900.
[http://dx.doi.org/10.1177/1934578X1400900422] [PMID: 24868871]
[135]
Coelho, J.; Barros, L.; Dias, M.I.; Finimundy, T.C.; Amaral, J.S.; Alves, M.J.; Calhelha, R.C.; Santos, P.F.; Ferreira, I.C.F.R. Echinacea purpurea (L.) moench: Chemical characterization and bioactivity of its extracts and fractions. Pharmaceuticals, 2020, 13(6), 125.
[http://dx.doi.org/10.3390/ph13060125] [PMID: 32575791]
[136]
Maleki, S.J.; Crespo, J.F.; Cabanillas, B. Anti-inflammatory effects of flavonoids. Food Chem., 2019, 299, 125124.
[http://dx.doi.org/10.1016/j.foodchem.2019.125124] [PMID: 31288163]
[137]
Vimalanathan, S.; Shehata, M.; Sadasivam, K.; Delbue, S.; Dolci, M.; Pariani, E.; D’Alessandro, S.; Pleschka, S. Broad antiviral effects of Echinacea purpurea against SARS-CoV-2 variants of concern and potential mechanism of action. Microorganisms, 2022, 10(11), 2145.
[http://dx.doi.org/10.3390/microorganisms10112145] [PMID: 36363737]
[138]
von Zepelin, H.H.H.; Nicken, P.; Naser, B.; Kuchernig, J.C.; Brien, N.; Holtdirk, A.; Schnitker, J.; Nolte, K.U. Non-interventional observational study broadens positive benefit-risk assessment of an immunomodulating herbal remedy in the common cold. Curr. Med. Res. Opin., 2019, 35(10), 1711-1719.
[http://dx.doi.org/10.1080/03007995.2019.1618252] [PMID: 31074674]
[139]
Sharma, M.; Anderson, S.A.; Schoop, R.; Hudson, J.B. Induction of multiple pro-inflammatory cytokines by respiratory viruses and reversal by standardized Echinacea, a potent antiviral herbal extract. Antiviral Res., 2009, 83(2), 165-170.
[http://dx.doi.org/10.1016/j.antiviral.2009.04.009] [PMID: 19409931]
[140]
Balciunaite, G.; Haimi, P.J.; Mikniene, Z.; Savickas, G.; Ragazinskiene, O.; Juodziukyniene, N.; Baniulis, D.; Pangonyte, D. Identification of Echinacea purpurea (L.) moench root LysM lectin with nephrotoxic properties. Toxins, 2020, 12(2), 88.
[http://dx.doi.org/10.3390/toxins12020088] [PMID: 32013058]
[141]
Yao, L.; Bai, L.; Tan, Y.; Sun, J.; Qu, Q.; Shi, D.; Guo, S.; Liu, C. The immunoregulatory effect of sulfated Echinacea purpurea polysaccharide on chicken bone marrow-derived dendritic cells. Int. J. Biol. Macromol., 2019, 139, 1123-1132.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.028] [PMID: 31394150]
[142]
Barrett, B.; Kiefer, D.; Rabago, D. Assessing the risks and benefits of herbal medicine: An overview of scientific evidence. Altern. Ther. Health Med., 1999, 5(4), 40-49.
[PMID: 10394673]
[143]
Roesler, J.; Emmendörffer, A.; Steinmüller, C.; Luettig, B.; Wagner, H.; Matthes, L.M.L. Application of purified polysaccharides from cell cultures of the plant Echinacea purpurea to test subjects mediates activation of the phagocyte system. Int. J. Immunopharmacol., 1991, 13(7), 931-941.
[http://dx.doi.org/10.1016/0192-0561(91)90046-A] [PMID: 1761359]
[144]
Luettig, B.; Steinmüller, C.; Gifford, G.E.; Wagner, H.; Matthes, L.M.L. Macrophage activation by the polysaccharide arabinogalactan isolated from plant cell cultures of Echinacea purpurea. J. Natl. Cancer Inst., 1989, 81(9), 669-675.
[http://dx.doi.org/10.1093/jnci/81.9.669] [PMID: 2785214]
[145]
Wang, C.Y.; Chiao, M.T.; Yen, P.J.; Huang, W.C.; Hou, C.C.; Chien, S.C.; Yeh, K.C.; Yang, W.C.; Shyur, L.F.; Yang, N.S. Modulatory effects of Echinacea purpurea extracts on human dendritic cells: A cell- and gene-based study. Genomics, 2006, 88(6), 801-808.
[http://dx.doi.org/10.1016/j.ygeno.2006.08.011] [PMID: 17011161]
[146]
Gautier, L.; Cope, L.; Bolstad, B.M.; Irizarry, R.A. affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics, 2004, 20(3), 307-315.
[http://dx.doi.org/10.1093/bioinformatics/btg405] [PMID: 14960456]
[147]
Sun, C.; Yuan, Q.; Wu, D.; Meng, X.; Wang, B. Identification of core genes and outcome in gastric cancer using bioinformatics analysis. Oncotarget, 2017, 8(41), 70271-70280.
[http://dx.doi.org/10.18632/oncotarget.20082] [PMID: 29050278]
[148]
Saxena, P.; Pradhan, D.; Verma, R.; Kumar, S.N.; Deval, R.; Jain, K.A. Up-regulation of fibroblast growth factor receptor 1 due to prenatal tobacco exposure can lead to developmental defects in new born. J. Matern. Fetal Neonatal Med., 2020, 33(10), 1732-1743.
[http://dx.doi.org/10.1080/14767058.2018.1529164] [PMID: 30428736]
[149]
Pandey, A.; Khan, M.K.; Hamurcu, M.; Gezgin, S. Natural plant products: A less focused aspect for the COVID-19 viral outbreak. Front. Plant Sci., 2020, 11, 568890.
[http://dx.doi.org/10.3389/fpls.2020.568890] [PMID: 33178237]
[150]
Taylor, D. Kinship and social structure of the island carib. Southwest. J. Anthropol., 1946, 2(2), 180-212.
[http://dx.doi.org/10.1086/soutjanth.2.2.3628680]
[151]
Barrett, B.; Brown, R.; Rakel, D.; Mundt, M.; Bone, K.; Barlow, S.; Ewers, T. Echinacea for treating the common cold: A randomized trial. Ann. Intern. Med., 2010, 153(12), 769-777.
[http://dx.doi.org/10.7326/0003-4819-153-12-201012210-00003] [PMID: 21173411]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy