Generic placeholder image

Central Nervous System Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5249
ISSN (Online): 1875-6166

Review Article

A Review on Tau Targeting Biomimetics Nano Formulations: Novel Approach for Targeting Alzheimer's Diseases

Author(s): Aditya Singh, Shubhrat Maheshwari, Jagat P. Yadav, Aditya P. Varshney, Sudarshan Singh* and Bhupendra G. Prajapati*

Volume 24, Issue 3, 2024

Published on: 25 March, 2024

Page: [294 - 303] Pages: 10

DOI: 10.2174/0118715249289120240321065936

Price: $65

Open Access Journals Promotions 2
Abstract

Central nervous system disorders are prevalent, profoundly debilitating, and poorly managed. Developing innovative treatments for these conditions, including Alzheimer's disease, could significantly improve patients' quality of life and reduce the future economic burden on healthcare systems. However, groundbreaking drugs for central nervous system disorders have been scarce in recent years, highlighting the pressing need for advancements in this field. One significant challenge in the realm of nanotherapeutics is ensuring the precise delivery of drugs to their intended targets due to the complex nature of Alzheimer's disease. Although numerous therapeutic approaches for Alzheimer's have been explored, most drug candidates targeting amyloid-β have failed in clinical trials. Recent research has revealed that tau pathology can occur independently of amyloid-β and is closely correlated with the clinical progression of Alzheimer's symptoms. This discovery suggests that tau could be a promising therapeutic target. One viable approach to managing central nervous system disorders is the administration of nanoparticles to neurons, intending to inhibit tau aggregation by directly targeting p-tau. In Alzheimer's disease, beta-amyloid plaques and neurofibrillary tau tangles hinder neuron transmission and function. The disease also triggers persistent inflammation, compromises the blood-brain barrier, leads to brain shrinkage, and causes neuronal loss. While current medications primarily manage symptoms and slow cognitive decline, there is no cure for Alzheimer's.

Keywords: Alzheimer's disease, tau targeting, nano-formulations, nanoparticles, neurofibrillary tau tangles, amyloid-β.

Graphical Abstract
[1]
Scotti, L.; Bassi, L.; Soranna, D.; Verde, F.; Silani, V.; Torsello, A.; Parati, G.; Zambon, A. Association between renin-angiotensin-aldosterone system inhibitors and risk of dementia: A meta-analysis. Pharmacol. Res., 2021, 166, 105515.
[http://dx.doi.org/10.1016/j.phrs.2021.105515] [PMID: 33636351]
[2]
Ou, Y.N.; Tan, C.C.; Shen, X.N.; Xu, W.; Hou, X.H.; Dong, Q.; Tan, L.; Yu, J.T. Blood pressure and risks of cognitive impairment and dementia: A systematic review and meta-analysis of 209 prospective studies. Hypertension, 2020, 76(1), 217-225.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.120.14993] [PMID: 32450739]
[3]
Mourao, R.J.; Mansur, G.; Malloy-Diniz, L.F.; Castro Costa, E.; Diniz, B.S. Depressive symptoms increase the risk of progression to dementia in subjects with mild cognitive impairment: Systematic review and meta‐analysis. Int. J. Geriatr. Psychiatry, 2016, 31(8), 905-911.
[http://dx.doi.org/10.1002/gps.4406] [PMID: 26680599]
[4]
Fu, C.; Wu, Y.; Liu, S.; Luo, C.; Lu, Y.; Liu, M.; Wang, L.; Zhang, Y.; Liu, X. Rehmannioside A improves cognitive impairment and alleviates ferroptosis via activating PI3K/AKT/Nrf2 and SLC7A11/GPX4 signaling pathway after ischemia. J. Ethnopharmacol., 2022, 289, 115021.
[http://dx.doi.org/10.1016/j.jep.2022.115021] [PMID: 35091012]
[5]
Aum, S.; Choe, S.; Cai, M.; Jerng, U.M.; Lee, J.H. Moxibustion for cognitive impairment: A systematic review and meta-analysis of animal studies. Integr. Med. Res., 2021, 10(2), 100680.
[http://dx.doi.org/10.1016/j.imr.2020.100680] [PMID: 33747784]
[6]
Schrag, M.; Mueller, C.; Zabel, M.; Crofton, A.; Kirsch, W.M.; Ghribi, O.; Squitti, R.; Perry, G. Oxidative stress in blood in Alzheimer’s disease and mild cognitive impairment: A meta-analysis. Neurobiol. Dis., 2013, 59, 100-110.
[http://dx.doi.org/10.1016/j.nbd.2013.07.005] [PMID: 23867235]
[7]
Zhu, L.N.; Mei, X.; Zhang, Z.G.; Xie, Y.; Lang, F. Curcumin intervention for cognitive function in different types of people: A systematic review and meta‐analysis. Phytother. Res., 2019, 33(3), 524-533.
[http://dx.doi.org/10.1002/ptr.6257] [PMID: 30575152]
[8]
Sexton, C.E.; Kalu, U.G.; Filippini, N.; Mackay, C.E.; Ebmeier, K.P. A meta-analysis of diffusion tensor imaging in mild cognitive impairment and Alzheimer’s disease. Neurobiol. Aging, 2011, 32(12), 2322.e5-2322.e18.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.05.019] [PMID: 20619504]
[9]
Hamilton, O.K.L.; Backhouse, E.V.; Janssen, E.; Jochems, A.C.C.; Maher, C.; Ritakari, T.E.; Stevenson, A.J.; Xia, L.; Deary, I.J.; Wardlaw, J.M. Cognitive impairment in sporadic cerebral small vessel disease: A systematic review and meta‐analysis. Alzheimers Dement., 2021, 17(4), 665-685.
[http://dx.doi.org/10.1002/alz.12221] [PMID: 33185327]
[10]
Hampel, H.; Caraci, F.; Cuello, A.C.; Caruso, G.; Nisticò, R.; Corbo, M.; Baldacci, F.; Toschi, N.; Garaci, F.; Chiesa, P.A.; Verdooner, S.R.; Akman-Anderson, L.; Hernández, F.; Ávila, J.; Emanuele, E.; Valenzuela, P.L.; Lucía, A.; Watling, M.; Imbimbo, B.P.; Vergallo, A.; Lista, S. A path toward precision medicine for neuroinflammatory mechanisms in Alzheimer’s disease. Front. Immunol., 2020, 11, 456.
[http://dx.doi.org/10.3389/fimmu.2020.00456] [PMID: 32296418]
[11]
Nguyen, H.D.; Kim, M.S. The effects of a mixture of cadmium, lead, and mercury on metabolic syndrome and its components, as well as cognitive impairment: Genes, micrornas, transcription factors, and sponge relationships: the effects of a mixture of cadmium, lead, and mercury on metabolic syndrome and its components, as well as cognitive impairment: genes, micrornas, transcription factors, and sponge relationships. Biol. Trace Elem. Res., 2022, 1-22.
[PMID: 35798913]
[12]
Lacour, A.; Espinosa, A.; Louwersheimer, E.; Heilmann, S.; Hernández, I.; Wolfsgruber, S.; Fernández, V.; Wagner, H.; Rosende-Roca, M.; Mauleón, A.; Moreno-Grau, S.; Vargas, L.; Pijnenburg, Y A L.; Koene, T.; Rodríguez-Gómez, O.; Ortega, G.; Ruiz, S.; Holstege, H.; Sotolongo-Grau, O.; Kornhuber, J.; Peters, O.; Frölich, L.; Hüll, M.; Rüther, E.; Wiltfang, J.; Scherer, M.; Riedel-Heller, S.; Alegret, M.; Nöthen, M.M.; Scheltens, P.; Wagner, M.; Tárraga, L.; Jessen, F.; Boada, M.; Maier, W.; van der Flier, W.M.; Becker, T.; Ramirez, A.; Ruiz, A. Genome-wide significant risk factors for Alzheimer’s disease: Role in progression to dementia due to Alzheimer’s disease among subjects with mild cognitive impairment. Mol. Psychiatry, 2017, 22(1), 153-160.
[http://dx.doi.org/10.1038/mp.2016.18] [PMID: 26976043]
[13]
Adani, G.; Filippini, T.; Michalke, B.; Vinceti, M. Selenium and other trace elements in the etiology of Parkinson’s disease: A systematic review and meta-analysis of case-control studies. Neuroepidemiology, 2020, 54(1), 1-23.
[http://dx.doi.org/10.1159/000502357] [PMID: 31454800]
[14]
Zhang, J.; Sun, P.; Zhou, C.; Zhang, X.; Ma, F.; Xu, Y.; Hamblin, M.H.; Yin, K.J. Regulatory microRNAs and vascular cognitive impairment and dementia. CNS Neurosci. Ther., 2020, 26(12), 1207-1218.
[http://dx.doi.org/10.1111/cns.13472] [PMID: 33459504]
[15]
Su, W.; Xie, M.; Li, Y.; Gong, X.; Li, J. Topiramate reverses physiological and behavioral alterations by postoperative cognitive dysfunction in rat model through inhibiting TNF signaling pathway. Neuromolecular Med., 2020, 22(2), 227-238.
[http://dx.doi.org/10.1007/s12017-019-08578-y] [PMID: 31758388]
[16]
Su, C.; Zhao, K.; Xia, H.; Xu, Y. Peripheral inflammatory biomarkers in Alzheimer’s disease and mild cognitive impairment: A systematic review and meta‐analysis. Psychogeriatrics, 2019, 19(4), 300-309.
[http://dx.doi.org/10.1111/psyg.12403] [PMID: 30790387]
[17]
Wang, J.; Zhang, T.; Liu, X.; Fan, H.; Wei, C. Aqueous extracts of se-enriched Auricularia auricular attenuates D-galactose-induced cognitive deficits, oxidative stress and neuroinflammation via suppressing RAGE/MAPK/NF-κB pathway. Neurosci. Lett., 2019, 704, 106-111.
[http://dx.doi.org/10.1016/j.neulet.2019.04.002] [PMID: 30953738]
[18]
Tan, M.M.X.; Lawton, M.A.; Jabbari, E.; Reynolds, R.H.; Iwaki, H.; Blauwendraat, C.; Kanavou, S.; Pollard, M.I.; Hubbard, L.; Malek, N.; Grosset, K.A.; Marrinan, S.L.; Bajaj, N.; Barker, R.A.; Burn, D.J.; Bresner, C.; Foltynie, T.; Wood, N.W.; Williams-Gray, C.H.; Hardy, J.; Nalls, M.A.; Singleton, A.B.; Williams, N.M.; Ben-Shlomo, Y.; Hu, M.T.M.; Grosset, D.G.; Shoai, M.; Morris, H.R. Genome‐wide association studies of cognitive and motor progression in Parkinson’s disease. Mov. Disord., 2021, 36(2), 424-433.
[http://dx.doi.org/10.1002/mds.28342] [PMID: 33111402]
[19]
Pang, S.; Li, J.; Zhang, Y.; Chen, J. Meta-analysis of the relationship between the APOE gene and the onset of parkinson’s disease dementia. Parkinsons Dis., 2018, 2018, 1-12.
[http://dx.doi.org/10.1155/2018/9497147] [PMID: 30405900]
[20]
Munteanu, C.; Munteanu, D.; Onose, G. Hydrogen sulfide (H2S) therapeutic relevance in rehabilitation and balneotherapy systematic literature review and meta-analysis based on the PRISMA paradig. Balneo and PRM Res. J., 2021, 12(3), 176-195.
[http://dx.doi.org/10.12680/balneo.2021.438]
[21]
Zhang, L.; Li, B.; Yang, J.; Wang, F.; Tang, Q.; Wang, S. Meta-analysis: Resistance training improves cognition in mild cognitive impairment. Int. J. Sports Med., 2020, 41(12), 815-823.
[http://dx.doi.org/10.1055/a-1186-1272] [PMID: 32599643]
[22]
Singh, A.; Ansari, V.A.; Mahmood, T.; Ahsan, F.; Wasim, R. Dendrimers: A neuroprotective lead in alzheimer disease: A review on its synthetic approach and applications. Drug Res., 2022, 72(8), 417-423.
[http://dx.doi.org/10.1055/a-1886-3208] [PMID: 35931069]
[23]
MahmoudianDehkordi, S.; Arnold, M.; Nho, K.; Ahmad, S.; Jia, W.; Xie, G.; Louie, G.; Kueider-Paisley, A.; Moseley, M.A.; Thompson, J.W.; St John Williams, L.; Tenenbaum, J.D.; Blach, C.; Baillie, R.; Han, X.; Bhattacharyya, S.; Toledo, J.B.; Schafferer, S.; Klein, S.; Koal, T.; Risacher, S.L.; Allan Kling, M.; Motsinger-Reif, A.; Rotroff, D.M.; Jack, J.; Hankemeier, T.; Bennett, D.A.; De Jager, P.L.; Trojanowski, J.Q.; Shaw, L.M.; Weiner, M.W.; Doraiswamy, P.M.; van Duijn, C.M.; Saykin, A.J.; Kastenmüller, G.; Kaddurah-Daouk, R. Altered bile acid profile associates with cognitive impairment in Alzheimer’s disease—An emerging role for gut microbiome. Alzheimers Dement., 2019, 15(1), 76-92.
[http://dx.doi.org/10.1016/j.jalz.2018.07.217] [PMID: 30337151]
[24]
Liu, P.P.; Xie, Y.; Meng, X.Y.; Kang, J.S. History and progress of hypotheses and clinical trials for Alzheimer’s disease. Signal Transduct. Target. Ther., 2019, 4(1), 29.
[http://dx.doi.org/10.1038/s41392-019-0063-8] [PMID: 31637009]
[25]
Hankey, G.J.; Ford, A.H.; Yi, Q.; Eikelboom, J.W.; Lees, K.R.; Chen, C.; Xavier, D.; Navarro, J.C.; Ranawaka, U.K.; Uddin, W.; Ricci, S.; Gommans, J.; Schmidt, R.; Almeida, O.P.; van Bockxmeer, F.M. Effect of B vitamins and lowering homocysteine on cognitive impairment in patients with previous stroke or transient ischemic attack: A prespecified secondary analysis of a randomized, placebo-controlled trial and meta-analysis. Stroke, 2013, 44(8), 2232-2239.
[http://dx.doi.org/10.1161/STROKEAHA.113.001886] [PMID: 23765945]
[26]
Emamian, F.; Khazaie, H.; Tahmasian, M.; Leschziner, G.D.; Morrell, M.J.; Hsiung, G.Y.R.; Rosenzweig, I.; Sepehry, A.A. The association between obstructive sleep apnea and Alzheimer’s disease: A meta-analysis perspective. Front. Aging Neurosci., 2016, 8, 78.
[http://dx.doi.org/10.3389/fnagi.2016.00078] [PMID: 27148046]
[27]
Tahmasbi, F.; Mirghafourvand, M.; Shamekh, A.; Mahmoodpoor, A.; Sanaie, S. Effects of probiotic supplementation on cognitive function in elderly: A systematic review and Meta-analysis. Aging Ment. Health, 2022, 26(9), 1778-1786.
[http://dx.doi.org/10.1080/13607863.2021.1966743] [PMID: 34428991]
[28]
Sherva, R.; Gross, A.; Mukherjee, S.; Koesterer, R.; Amouyel, P.; Bellenguez, C.; Dufouil, C.; Bennett, D.A.; Chibnik, L.; Cruchaga, C.; del-Aguila, J.; Farrer, L.A.; Mayeux, R.; Munsie, L.; Winslow, A.; Newhouse, S.; Saykin, A.J.; Kauwe, J.S.K.; Crane, P.K.; Green, R.C. Genome‐wide association study of rate of cognitive decline in Alzheimer’s disease patients identifies novel genes and pathways. Alzheimers Dement., 2020, 16(8), 1134-1145.
[http://dx.doi.org/10.1002/alz.12106] [PMID: 32573913]
[29]
Tang, C.Z.; Yang, J.T.; Liu, Q.H.; Wang, Y.R.; Wang, W.S. Up‐regulated miR‐192‐5p expression rescues cognitive impairment and restores neural function in mice with depression via the Fbln2 ‐mediated TGF‐β1 signaling pathway. FASEB J., 2019, 33(1), 606-618.
[http://dx.doi.org/10.1096/fj.201800210RR] [PMID: 30118321]
[30]
Sun, M.K.; Alkon, D.L. Neuro-regeneration therapeutic for Alzheimer’s dementia: Perspectives on neurotrophic activity. Trends Pharmacol. Sci., 2019, 40(9), 655-668.
[http://dx.doi.org/10.1016/j.tips.2019.07.008] [PMID: 31402121]
[31]
Wu, J.; Xiong, Y.; Xia, X.; Orsini, N.; Qiu, C.; Kivipelto, M.; Rizzuto, D.; Wang, R. Can dementia risk be reduced by following the American Heart Association’s Life’s Simple 7? A systematic review and dose-response meta-analysis. Ageing Res. Rev., 2023, 83, 101788.
[http://dx.doi.org/10.1016/j.arr.2022.101788] [PMID: 36371016]
[32]
Hampel, H.; Vergallo, A.; Caraci, F.; Cuello, A.C.; Lemercier, P.; Vellas, B.; Giudici, K.V.; Baldacci, F.; Hänisch, B.; Haberkamp, M.; Broich, K.; Nisticò, R.; Emanuele, E.; Llavero, F.; Zugaza, J.L.; Lucía, A.; Giacobini, E.; Lista, S. Future avenues for Alzheimer’s disease detection and therapy: Liquid biopsy, intracellular signaling modulation, systems pharmacology drug discovery. Neuropharmacology, 2021, 185, 108081.
[http://dx.doi.org/10.1016/j.neuropharm.2020.108081] [PMID: 32407924]
[33]
Hughes, D.; Judge, C.; Murphy, R.; Loughlin, E.; Costello, M.; Whiteley, W.; Bosch, J.; O’Donnell, M.J.; Canavan, M. Association of blood pressure lowering with incident dementia or cognitive impairment: A systematic review and meta-analysis. JAMA, 2020, 323(19), 1934-1944.
[http://dx.doi.org/10.1001/jama.2020.4249] [PMID: 32427305]
[34]
van Maurik, I.S.; Bakker, E.D.; van den Buuse, S.; Gillissen, F.; van de Beek, M.; Lemstra, E.; Mank, A.; van den Bosch, K.A.; van Leeuwenstijn, M.; Bouwman, F.H.; Scheltens, P.; van der Flier, W.M. Psychosocial effects of corona measures on patients with dementia, mild cognitive impairment and subjective cognitive decline. Front. Psychiatry, 2020, 11, 585686.
[http://dx.doi.org/10.3389/fpsyt.2020.585686] [PMID: 33192733]
[35]
Shang, X.; Zhu, Z.; Wang, W.; Ha, J.; He, M. The association between vision impairment and incidence of dementia and cognitive impairment: A systematic review and meta-analysis. Ophthalmology, 2021, 128(8), 1135-1149.
[http://dx.doi.org/10.1016/j.ophtha.2020.12.029] [PMID: 33422559]
[36]
Åhman, H.B.; Cedervall, Y.; Kilander, L.; Giedraitis, V.; Berglund, L.; McKee, K.J.; Rosendahl, E.; Ingelsson, M.; Åberg, A.C. Dual-task tests discriminate between dementia, mild cognitive impairment, subjective cognitive impairment, and healthy controls: A cross-sectional cohort study. BMC Geriatr., 2020, 20(1), 258.
[http://dx.doi.org/10.1186/s12877-020-01645-1] [PMID: 32727472]
[37]
Nafti, M.; Sirois, C.; Kröger, E.; Carmichael, P.H.; Laurin, D. Is benzodiazepine use associated with the risk of dementia and cognitive impairment–not dementia in older persons? The Canadian study of health and aging. Ann. Pharmacother., 2020, 54(3), 219-225.
[http://dx.doi.org/10.1177/1060028019882037] [PMID: 31595772]
[38]
Singh, A.; Ansari, V.A.; Mahmood, T.; Ahsan, F.; Wasim, R. Neurodegeneration: Microglia: Nf-kappab signaling pathways. Drug Res., 2022, 72(9), 496-499.
[http://dx.doi.org/10.1055/a-1915-4861] [PMID: 36055286]
[39]
Yim, D.; Yeo, T.Y.; Park, M.H. Mild cognitive impairment, dementia, and cognitive dysfunction screening using machine learning. J. Int. Med. Res., 2020, 48(7)
[http://dx.doi.org/10.1177/0300060520936881] [PMID: 32644870]
[40]
Qu, Y.; Hu, H.Y.; Ou, Y.N.; Shen, X.N.; Xu, W.; Wang, Z.T.; Dong, Q.; Tan, L.; Yu, J.T. Association of body mass index with risk of cognitive impairment and dementia: A systematic review and meta-analysis of prospective studies. Neurosci. Biobehav. Rev., 2020, 115, 189-198.
[http://dx.doi.org/10.1016/j.neubiorev.2020.05.012] [PMID: 32479774]
[41]
Uemura, M.T.; Maki, T.; Ihara, M.; Lee, V.M.Y.; Trojanowski, J.Q. Brain microvascular pericytes in vascular cognitive impairment and dementia. Front. Aging Neurosci., 2020, 12, 80.
[http://dx.doi.org/10.3389/fnagi.2020.00080] [PMID: 32317958]
[42]
Gibson, C.; Goeman, D.; Pond, D. What is the role of the practice nurse in the care of people living with dementia, or cognitive impairment, and their support person(s)?: a systematic review. BMC Fam. Pract., 2020, 21(1), 141.
[http://dx.doi.org/10.1186/s12875-020-01177-y] [PMID: 32660419]
[43]
Lyu, F.; Wu, D.; Wei, C.; Wu, A. Vascular cognitive impairment and dementia in type 2 diabetes mellitus: An overview. Life Sci., 2020, 254, 117771.
[http://dx.doi.org/10.1016/j.lfs.2020.117771] [PMID: 32437791]
[44]
Rajji, T.K.; Bowie, C.R.; Herrmann, N.; Pollock, B.G.; Bikson, M.; Blumberger, D.M.; Butters, M.A.; Daskalakis, Z.J.; Fischer, C.E.; Flint, A.J.; Golas, A.C.; Graff-Guerrero, A.; Kumar, S.; Lourenco, L.; Mah, L.; Ovaysikia, S.; Thorpe, K.E.; Voineskos, A.N.; Mulsant, B.H. Design and rationale of the PACt-MD randomized clinical trial: Prevention of alzheimer’s dementia with cognitive remediation plus transcranial direct current stimulation in mild cognitive impairment and depression. J. Alzheimers Dis., 2020, 76(2), 733-751.
[http://dx.doi.org/10.3233/JAD-200141] [PMID: 32568198]
[45]
Hemmy, L.S.; Linskens, E.J.; Silverman, P.C.; Miller, M.A.; Talley, K.M.; Taylor, B.C.; Ouellette, J.M.; Greer, N.L.; Wilt, T.J.; Butler, M.; Fink, H.A. Brief cognitive tests for distinguishing clinical alzheimer-type dementia from mild cognitive impairment or normal cognition in older adults with suspected cognitive impairment. Ann. Intern. Med., 2020, 172(10), 678-687.
[http://dx.doi.org/10.7326/M19-3889]
[46]
Neopane, D.; Ansari, V.A.; Singh, A. Ferulic acid: Signaling pathways in aging. drug research. 2023 May 23. Ann. Intern. Med., 2020, 172(10), 678-687.
[PMID: 32340040]
[47]
Meiner, Z; Ayers, E; Verghese, J Motoric cognitive risk syndrome: A risk factor for cognitive impairment and dementia in different populations. Annal. Geri. Med. Res., 2020, 24(1), 1-3.
[http://dx.doi.org/10.4235/agmr.20.0001]
[48]
Singh, A.; Ansari, V.A.; Mahmood, T.; Ahsan, F.; Wasim, R.; Shariq, M.; Parveen, S.; Maheshwari, S. Receptor for advanced glycation end products: Dementia and cognitive impairment. Drug Res., 2023, 73(5), 247-250.
[http://dx.doi.org/10.1055/a-2015-8041] [PMID: 36889338]
[49]
Singh, A.; Maheshwari, S. Dendrimers for neuro targeting. Intern.l J. Pharma Prof. Res., 2023, 14(1), 124-130. [IJPPR].
[50]
Singh, A.; Ansari, V.A.; Mahmood, T.; Ahsan, F.; Wasim, R.; Maheshwari, S.; Shariq, M.; Parveen, S.; Shamim, A. Emerging nanotechnology for the treatment of alzheimer’s disease. cns & neurological disorders-drug targets; Formerly Current Drug Targets-CNS & Neurological Disorders, 2023.
[51]
Singh, A.; Ansari, V.A.; Ansari, T.M.; Hasan, S.M.; Ahsan, F.; Singh, K.; Wasim, R.; Maheshwari, S.; Ahmad, A. Consequence of dementia and cognitive impairment by primary nucleation pathway. Horm. Metab. Res., 2023, 55(5), 304-314.
[http://dx.doi.org/10.1055/a-2052-8462] [PMID: 37130536]
[52]
Maheshwari, S. Annals of geriatric medicine and research. Drug Res., 2023, 73(5), 251-254.
[53]
Guo, Y.; Li, S.; Zeng, L.H.; Tan, J. Tau-targeting therapy in Alzheimer’s disease: Critical advances and future opportunities. Ageing Neurodegener. Dis, 2022, 2, 1-11.
[54]
Chen, Y.; Yu, Y. Tau and neuroinflammation in Alzheimer’s disease: Interplay mechanisms and clinical translation. J. Neuroinflammation, 2023, 20(1), 165.
[http://dx.doi.org/10.1186/s12974-023-02853-3] [PMID: 37452321]
[55]
Roy, R.G.; Mandal, P.K.; Maroon, J.C. Oxidative stress occurs prior to amyloid aβ plaque formation and tau phosphorylation in alzheimer’s disease: Role of glutathione and metal ions. ACS Chem. Neurosci., 2023, 14(17), 2944-2954.
[http://dx.doi.org/10.1021/acschemneuro.3c00486] [PMID: 37561556]
[56]
Bueno-Carrasco, M.T.; Cuéllar, J.; Flydal, M.I.; Santiago, C.; Kråkenes, T.A.; Kleppe, R.; López-Blanco, J.R.; Marcilla, M.; Teigen, K.; Alvira, S.; Chacón, P.; Martinez, A.; Valpuesta, J.M. Structural mechanism for tyrosine hydroxylase inhibition by dopamine and reactivation by Ser40 phosphorylation. Nat. Commun., 2022, 13(1), 74.
[http://dx.doi.org/10.1038/s41467-021-27657-y] [PMID: 35013193]
[57]
Hartz, R.A.; Ahuja, V.T.; Sivaprakasam, P.; Xiao, H.; Krause, C.M.; Clarke, W.J.; Kish, K.; Lewis, H.; Szapiel, N.; Ravirala, R.; Mutalik, S.; Nakmode, D.; Shah, D.; Burton, C.R.; Macor, J.E.; Dubowchik, G.M. Design, structure–activity relationships, and in vivo evaluation of potent and brain-penetrant imidazo[1,2- b]pyridazines as glycogen synthase kinase-3β (GSK-3β) inhibitors. J. Med. Chem., 2023, 66(6), 4231-4252.
[http://dx.doi.org/10.1021/acs.jmedchem.3c00133] [PMID: 36950863]
[58]
Balboni, B.; Masi, M.; Rocchia, W.; Girotto, S.; Cavalli, A. GSK-3β allosteric inhibition: A dead end or a new pharmacological frontier? Int. J. Mol. Sci., 2023, 24(8), 7541.
[http://dx.doi.org/10.3390/ijms24087541] [PMID: 37108703]
[59]
Yang, W.; Xu, Q.Q.; Yuan, Q.; Xian, Y.F.; Lin, Z.X. Sulforaphene, a CDK5 Inhibitor, attenuates cognitive deficits in a transgenic mouse model of Alzheimer’s disease via reducing Aβ Deposition, tau hyperphosphorylation and synaptic dysfunction. Int. Immunopharmacol., 2023, 114, 109504.
[http://dx.doi.org/10.1016/j.intimp.2022.109504] [PMID: 36508924]
[60]
Pao, P.C.; Seo, J.; Lee, A.; Kritskiy, O.; Patnaik, D.; Penney, J.; Raju, R.M.; Geigenmuller, U.; Silva, M.C.; Lucente, D.E.; Gusella, J.F.; Dickerson, B.C.; Loon, A.; Yu, M.X.; Bula, M.; Yu, M.; Haggarty, S.J.; Tsai, L.H.A. Cdk5-derived peptide inhibits Cdk5/p25 activity and improves neurodegenerative phenotypes. Proc. Natl. Acad. Sci., 2023, 120(16), e2217864120.
[http://dx.doi.org/10.1073/pnas.2217864120] [PMID: 37043533]
[61]
Tang, W.; Lin, C.; Yu, Q.; Zhang, D.; Liu, Y.; Zhang, L.; Zhou, Z.; Zhang, J.; Ouyang, L. Novel medicinal chemistry strategies targeting CDK5 for drug discovery. J. Med. Chem., 2023, 66(11), 7140-7161.
[http://dx.doi.org/10.1021/acs.jmedchem.3c00566] [PMID: 37234044]
[62]
Batra, S.; Jahan, S.; Ashraf, A.; Alharby, B.; Jawaid, T.; Islam, A.; Hassan, I. A review on cyclin-dependent kinase 5: An emerging drug target for neurodegenerative diseases. Int. J. Biol. Macromol., 2023, 230, 123259.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.123259] [PMID: 36641018]
[63]
Jahan, I.; Adachi, R.; Egawa, R.; Nomura, H.; Kuba, H. CDK5/p35-dependent microtubule reorganization contributes to homeostatic shortening of the axon initial segment. J. Neurosci., 2023, 43(3), 359-372.
[http://dx.doi.org/10.1523/JNEUROSCI.0917-22.2022] [PMID: 36639893]
[64]
Li, H.; Zhao, H.; Hu, T.; Meng, L.; Mo, X.; Gong, M.; Liao, Y. The Cdk5 inhibitor β‐butyrolactone impairs reconsolidation of heroin‐associated memory in the rat basolateral amygdala. Addict. Biol., 2023, 28(9), e13326.
[http://dx.doi.org/10.1111/adb.13326] [PMID: 37644892]
[65]
Requejo-Aguilar, R. Cdk5 and aberrant cell cycle activation at the core of neurodegeneration. Neural Regen. Res., 2023, 18(6), 1186-1190.
[http://dx.doi.org/10.4103/1673-5374.360165] [PMID: 36453392]
[66]
López-Grueso, M.J.; Padilla, C.A.; Bárcena, J.A.; Requejo-Aguilar, R. Deficiency of Parkinson’s related protein DJ-1 alters Cdk5 Signalling and induces neuronal death by aberrant cell cycle re-entry. Cell. Mol. Neurobiol., 2023, 43(2), 757-769.
[http://dx.doi.org/10.1007/s10571-022-01206-7] [PMID: 35182267]
[67]
Eteläinen, T.S.; Silva, M.C.; Uhari-Väänänen, J.K.; De Lorenzo, F.; Jäntti, M.H.; Cui, H.; Chavero-Pieres, M.; Kilpeläinen, T.; Mechtler, C.; Svarcbahs, R.; Seppälä, E.; Savinainen, J.R.; Puris, E.; Fricker, G.; Gynther, M.; Julku, U.H.; Huttunen, H.J.; Haggarty, S.J.; Myöhänen, T.T. A prolyl oligopeptidase inhibitor reduces tau pathology in cellular models and in mice with tauopathy. Sci. Transl. Med., 2023, 15(691), eabq2915.
[http://dx.doi.org/10.1126/scitranslmed.abq2915] [PMID: 37043557]
[68]
Kaur, P.; Khera, A.; Alajangi, H.K.; Sharma, A.; Jaiswal, P.K.; Singh, G.; Barnwal, R.P. Role of tau in various tauopathies, treatment approaches, and emerging role of nanotechnology in neurodegenerative disorders. Mol. Neurobiol., 2023, 60(3), 1690-1720.
[http://dx.doi.org/10.1007/s12035-022-03164-z] [PMID: 36562884]
[69]
Christensen, K.R.; Combs, B.; Richards, C.; Grabinski, T.; Alhadidy, M.M.; Kanaan, N.M. Phosphomimetics at Ser199/Ser202/Thr205 in tau impairs axonal transport in rat hippocampal neurons. Mol. Neurobiol., 2023, 60(6), 3423-3438.
[http://dx.doi.org/10.1007/s12035-023-03281-3] [PMID: 36859689]
[70]
Lv, J.; Shen, X.; Shen, X.; Zhao, S.; Xu, R.; Yan, Q.; Lu, J.; Zhu, D.; Zhao, Y.; Dong, J.; Wang, J.; Shen, X. NPLC0393 from Gynostemma pentaphyllum ameliorates Alzheimer’s disease‐like pathology in mice by targeting protein phosphatase magnesium‐dependent 1A phosphatase. Phytother. Res., 2023, 37(10), 4771-4790.
[http://dx.doi.org/10.1002/ptr.7945] [PMID: 37434441]
[71]
Mir Najib Ullah, S.N.; Afzal, O.; Altamimi, A.S.A.; Ather, H.; Sultana, S.; Almalki, W.H.; Bharti, P.; Sahoo, A.; Dwivedi, K.; Khan, G.; Sultana, S.; Alzahrani, A.; Rahman, M. Nanomedicine in the management of Alzheimer’s Disease: State-of-the-art. Biomedicines, 2023, 11(6), 1752.
[http://dx.doi.org/10.3390/biomedicines11061752] [PMID: 37371847]
[72]
Mikitsh, J.L.; Chacko, A.M. Pathways for small molecule delivery to the central nervous system across the blood-brain barrier. Perspect. Medicin. Chem., 2014, 6, 11-24.
[http://dx.doi.org/10.4137/PMC.S13384]
[73]
Hamadani, C.M.; Dasanayake, G.S.; Gorniak, M.E.; Pride, M.C.; Monroe, W.; Chism, C.M.; Heintz, R.; Jarrett, E.; Singh, G.; Edgecomb, S.X.; Tanner, E.E.L. Development of ionic liquid-coated PLGA nanoparticles for applications in intravenous drug delivery. Nat. Protoc., 2023, 18(8), 2509-2557.
[http://dx.doi.org/10.1038/s41596-023-00843-6] [PMID: 37468651]
[74]
More, S.; Pawar, A. Brain targeted curcumin loaded turmeric oil microemulsion protects against trimethyltin induced neurodegeneration in adult zebrafish: A pharmacokinetic and pharmacodynamic insight. Pharm. Res., 2023, 40(3), 675-687.
[http://dx.doi.org/10.1007/s11095-022-03467-9] [PMID: 36703027]
[75]
Shamsabadipour, A.; Pourmadadi, M.; Rashedi, H.; Yazdian, F.; Navaei-Nigjeh, M. Nanoemulsion carriers of porous γ-alumina modified by polyvinylpyrrolidone and carboxymethyl cellulose for pH-sensitive delivery of 5-fluorouracil. Int. J. Biol. Macromol., 2023, 233, 123621.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.123621] [PMID: 36773864]
[76]
Nemeth, C.L.; Gӧk, Ö.; Tomlinson, S.N.; Sharma, A.; Moser, A.B.; Kannan, S.; Kannan, R.M.; Fatemi, A. Targeted brain delivery of dendrimer-4-phenylbutyrate ameliorates neurological deficits in a long-term abcd1-deficient mouse model of x-linked adrenoleukodystrophy. Neurotherapeutics, 2023, 20(1), 272-283.
[http://dx.doi.org/10.1007/s13311-022-01311-x] [PMID: 36207570]
[77]
Kenyaga, J.M.; Oteino, S.A.; Sun, Y.; Qiang, W. In-cell 31P solid-state NMR measurements of the lipid dynamics and influence of exogeneous β-amyloid peptides on live neuroblastoma neuro-2a cells. Biophys. Chem., 2023, 297, 107008.
[http://dx.doi.org/10.1016/j.bpc.2023.107008] [PMID: 36989875]
[78]
Reddy, T.S.; Zomer, R.; Mantri, N. Nanoformulations as a strategy to overcome the delivery limitations of cannabinoids. Phytother. Res., 2023, 37(4), 1526-1538.
[http://dx.doi.org/10.1002/ptr.7742] [PMID: 36748949]
[79]
Mehta, N.; Shetty, S.; Prajapati, B.G.; Shetty, S. Regulatory and ethical concerns in the use of nanomaterials. In: InAlzheimer’s Disease and Advanced Drug Delivery Strategies; Academic Press, 2024; pp. 197-212.
[http://dx.doi.org/10.1016/B978-0-443-13205-6.00002-9]
[80]
Kaushal, M.A.; Patel, N.A.; Xavier, G.; Prajapati, B.G. Roles of nano medicine in diagnosis of Alzheimer’s disease. In: InAlzheimer’s Disease and Advanced Drug Delivery Strategies; Academic Press, 2024; pp. 115-138.
[http://dx.doi.org/10.1016/B978-0-443-13205-6.00017-0]
[81]
Khunt, D.; Salave, S.; Rana, D.; Benival, D.; Gayakvad, B.; Prajapati, B.G. Nose to brain delivery for the treatment of Alzheimer’s disease; InAlzheimer's Disease and Advanced Drug Delivery Strategies, 2024, pp. 61-71.
[http://dx.doi.org/10.1016/B978-0-443-13205-6.00001-7]
[82]
Chauhan, B.; Patel, S.; Prajapati, B.G. Singh, S Drug delivery for Alzheimer’s disease using nanotechnology: Challenges and advancements. In: InAlzheimer’s Disease and Advanced Drug Delivery Strategies; Academic Press, 2024; pp. 361-371.
[83]
Kendre, P.N.; Pote, A.; Bhalke, R.; Prajapati, B.G.; Jain, S.P.; Kapoor, D. Lipid nanoparticles in targeting Alzheimer’s disease. In: InAlzheimer’s Disease and Advanced Drug Delivery Strategies; Academic Press, 2024; pp. 283-295.
[http://dx.doi.org/10.1016/B978-0-443-13205-6.00021-2]
[84]
Wu, Y.; Angelova, A. Recent uses of lipid nanoparticles, cell-penetrating and bioactive peptides for the development of brain-targeted nanomedicines against neurodegenerative disorders. Nanomaterials, 2023, 13(23), 3004.
[http://dx.doi.org/10.3390/nano13233004] [PMID: 38063700]
[85]
Agrawal, M.; Singhal, M.; Prajapati, B.G.; Chaudhary, H.; Jasoria, Y.; Kumar, B.; Arora, M.K. Sahoo, J Neuroinflammation in Alzheimer’s disease. In: InAlzheimer’s Disease and Advanced Drug Delivery Strategies; Academic Press, 2024; pp. 13-32.
[http://dx.doi.org/10.1016/B978-0-443-13205-6.00003-0]
[86]
Parikh, N.H.; Parikh, P.K.; Rao, H.J.; Shah, K.; Dave, B.P.; Prajapati, B.G. Current trends and updates in the treatment of Alzheimer’s disease. In: InAlzheimer’s Disease and Advanced Drug Delivery Strategies; Academic Press, 2024; pp. 373-390.
[http://dx.doi.org/10.1016/B978-0-443-13205-6.00014-5]
[87]
Rawal, S.; Khodakiya, A.; Prajapati, B.G. Nanotechnology-based delivery for CRISPR-Cas 9 cargo in Alzheimer’s disease. In: InAlzheimer’s Disease and Advanced Drug Delivery Strategies; Academic Press, 2024; pp. 139-152.
[88]
Khodakiya, A.; Chaudhary, S.; Chaudhary, A.; Prajapati, B.G. Novel therapeutic approaches for targeting Alzheimer’s disease. In: InAlzheimer’s Disease and Advanced Drug Delivery Strategies; Academic Press, 2024; pp. 297-318.
[http://dx.doi.org/10.1016/B978-0-443-13205-6.00020-0]
[89]
Patel, M.; Prajapati, B.G.; Yadav, M.R. Microbubbles-based drug delivery for antiAlzheimer’s drugs. In: InAlzheimer’s Disease and Advanced Drug Delivery Strategies; Academic Press, 2024; pp. 403-419.
[http://dx.doi.org/10.1016/B978-0-443-13205-6.00006-6]
[90]
Pandya, T.; Kulkarni, M.; Acharya, S.; Prajapati, B.G. PLGA mediated drug delivery for Alzheimer’s disease. In: InAlzheimer’s Disease and Advanced Drug Delivery Strategies; Academic Press, 2024; pp. 181-196.
[http://dx.doi.org/10.1016/B978-0-443-13205-6.00024-8]
[91]
Prajapati, V.; Shinde, S.; Shrivastav, P.; Prajapati, B.G. New biologicals and biomaterials in the therapy of Alzheimer’s disease. In: InAlzheimer’s Disease and Advanced Drug Delivery Strategies; Academic Press, 2024; pp. 93-114.
[http://dx.doi.org/10.1016/B978-0-443-13205-6.00016-9]
[92]
Patel, A.; Paliwal, H.; Sawant, K.; Prajapati, B.G. Micro and nanoemulsion as drug carriers in Alzheimer’s disease. In: InAlzheimer’s Disease and Advanced Drug Delivery Strategies; Academic Press, 2024; pp. 319-345.
[http://dx.doi.org/10.1016/B978-0-443-13205-6.00013-3]
[93]
Vyas, J.; Raytthatha, N.; Prajapati, B.G. Amyloid cascade hypothesis, tau synthesis, and role of oxidative stress in AD. In: InAlzheimer’s Disease and Advanced Drug Delivery Strategies; Academic Press, 2024; pp. 73-92.
[http://dx.doi.org/10.1016/B978-0-443-13205-6.00023-6]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy