Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Predicting the Pharmacological Targets of Astragalus membranaceus against Hypertensive Nephropathy

Author(s): Ningxin Zhang, Chen Guan, Lingyu Xu, Zengying Liu, Chenyu Li, Quandong Bu, Xuefei Shen and Yan Xu*

Volume 21, Issue 16, 2024

Published on: 26 February, 2024

Page: [3493 - 3505] Pages: 13

DOI: 10.2174/0115701808285471240216040105

Price: $65

Abstract

Objective: Hypertension is one of the main causes of chronic kidney disease. Astragalus membranaceus (AM), an important traditional Chinese medicine for treating hypertensive nephropathy, has a complex composition that makes it challenging to explore its mechanism of action and limits its clinical application. This study aims to investigate the underlying mechanism of AM in treating hypertensive nephropathy.

Methods: We retrieved all the compound data of AM from the Traditional Chinese Medicine Systems Pharmacology database and screened out the active compounds and their target proteins. Then, a network of candidate compounds and target compounds of AM was constructed using Cytoscape software. Furthermore, hypertensive nephropathy-related genes from the DisGeNET and GeneCards databases were intersected with AM target proteins and hypertensive nephropathy-related genes to determine the potential targets of AM in treating hypertensive nephropathy. Finally, after performing Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, we conducted molecular docking to verify the interaction between the main active ingredients of AM and the core targets.

Results: A total of 87 effective components of AM were obtained from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. According to the network of active compounds and their target proteins, 18 of the 20 effective compounds in AM could act on 210 proteins. Taking the intersection of 274 hypertensive nephropathy-related genes and AM target proteins, 49 potential targets of AM in treating hypertensive nephropathy were identified. Using the median degree value, we determined 25 core targets of AM in treating hypertensive nephropathy. GO enrichment analysis showed that the biological processes of AM on hypertensive nephropathy mainly focused on the inflammatory response, hypoxia response, angiogenesis, cell proliferation, and cell migration. KEGG pathway enrichment analysis mainly involved cancer pathways, the AGE-RAGE signaling pathway in diabetic complications, blood flow shear stress, and atherosclerosis. Molecular docking results showed that quercetin, kaempferol, and 7-O-methylisomucronulatol had strong binding activity with several target proteins and may exert protective effects by stabilizing the interaction between molecules through the intermolecular forces of hydrogen bonds.

Conclusion: This study reveals the targets of AM in treating hypertensive nephropathy using network pharmacology and molecular docking, providing new clues for developing novel drugs for hypertensive nephropathy and basic research development.

Keywords: Hypertensive nephropathy, Astragalus membranaceus, network pharmacology, molecular docking, quercetin, kaempferol.

Graphical Abstract
[1]
Zhou, B.; Carrillo-Larco, R.M.; Danaei, G.; Riley, L.M.; Paciorek, C.J.; Stevens, G.A. Gregg, E.W.; Bennett, J.E.; Solomon, B.; Singleton, R.K.; Sophiea, M.K.; Iurilli, M.L.C.; Lhoste, V.P.F.; Cowan, M.J.; Savin, S.; Woodward, M.; Balanova, Y.; Cifkova, R.; Damasceno, A.; Elliott, P.; Farzadfar, F.; He, J.; Ikeda, N.; Kengne, A.P.; Khang, Y-H.; Kim, H.C.; Laxmaiah, A.; Lin, H-H.; Margozzini Maira, P.; Miranda, J.J.; Neuhauser, H.; Sundström, J.; Varghese, C.; Widyahening, I.S.; Zdrojewski, T.; Abarca-Gómez, L.; Abdeen, Z.A.; Abdul Rahim, H.F.; Abu-Rmeileh, N.M.; Acosta-Cazares, B.; Adams, R.J.; Aekplakorn, W.; Afsana, K.; Afzal, S.; Agdeppa, I.A.; Aghazadeh-Attari, J.; Aguilar-Salinas, C.A.; Agyemang, C.; Ahmad, N.A.; Ahmadi, A.; Ahmadi, N.; Ahmadi, N.; Ahmadizar, F.; Ahmed, S.H.; Ahrens, W.; Ajlouni, K.; Al-Raddadi, R.; Alarouj, M.; AlBuhairan, F.; AlDhukair, S.; Ali, M.M.; Alkandari, A.; Alkerwi, A.; Allin, K.; Aly, E.; Amarapurkar, D.N.; Amougou, N.; Amouyel, P.; Andersen, L.B.; Anderssen, S.A.; Anjana, R.M.; Ansari-Moghaddam, A.; Ansong, D.; Aounallah-Skhiri, H.; Araújo, J.; Ariansen, I.; Aris, T.; Arku, R.E.; Arlappa, N.; Aryal, K.K.; Aspelund, T.; Assah, F.K.; Assunção, M.C.F.; Auvinen, J.; Avdićová, M.; Azevedo, A.; Azimi-Nezhad, M.; Azizi, F.; Azmin, M.; Babu, B.V.; Bahijri, S.; Balakrishna, N.; Bamoshmoosh, M.; Banach, M.; Banadinović, M.; Bandosz, P.; Banegas, J.R.; Baran, J.; Barbagallo, C.M.; Barceló, A.; Barkat, A.; Barreto, M.; Barros, A.J.D.; Barros, M.V.G.; Bartosiewicz, A.; Basit, A.; Bastos, J.L.D.; Bata, I.; Batieha, A.M.; Batyrbek, A.; Baur, L.A.; Beaglehole, R.; Belavendra, A.; Ben Romdhane, H.; Benet, M.; Benson, L.S.; Berkinbayev, S.; Bernabe-Ortiz, A.; Bernotiene, G.; Bettiol, H.; Bezerra, J.; Bhagyalaxmi, A.; Bhargava, S.K.; Bia, D.; Biasch, K.; Bika Lele, E.C.; Bikbov, M.M.; Bista, B.; Bjerregaard, P.; Bjertness, E.; Bjertness, M.B.; Björkelund, C.; Bloch, K.V.; Blokstra, A.; Bo, S.; Bobak, M.; Boeing, H.; Boggia, J.G.; Boissonnet, C.P.; Bojesen, S.E.; Bongard, V.; Bonilla-Vargas, A.; Bopp, M.; Borghs, H.; Bovet, P.; Boyer, C.B.; Braeckman, L.; Brajkovich, I.; Branca, F.; Breckenkamp, J.; Brenner, H.; Brewster, L.M.; Briceño, Y.; Brito, M.; Bruno, G.; Bueno-de-Mesquita, H.B.; Bueno, G.; Bugge, A.; Burns, C.; Bursztyn, M.; Cabrera de León, A.; Cacciottolo, J.; Cameron, C.; Can, G.; Cândido, A.P.C.; Capanzana, M.V.; Čapková, N.; Capuano, E.; Capuano, V.; Cardoso, V.C.; Carlsson, A.C.; Carvalho, J.; Casanueva, F.F.; Censi, L.; Cervantes-Loaiza, M.; Chadjigeorgiou, C.A.; Chamukuttan, S.; Chan, A.W.; Chan, Q.; Chaturvedi, H.K.; Chaturvedi, N.; Chee, M.L.; Chen, C-J.; Chen, F.; Chen, H.; Chen, S.; Chen, Z.; Cheng, C-Y.; Cheraghian, B.; Cherkaoui Dekkaki, I.; Chetrit, A.; Chien, K-L.; Chiolero, A.; Chiou, S-T.; Chirita-Emandi, A.; Chirlaque, M-D.; Cho, B.; Christensen, K.; Christofaro, D.G.; Chudek, J.; Cinteza, E.; Claessens, F.; Clarke, J.; Clays, E.; Cohen, E.; Concin, H.; Cooper, C.; Coppinger, T.C.; Costanzo, S.; Cottel, D.; Cowell, C.; Craig, C.L.; Crampin, A.C.; Crujeiras, A.B.; Cruz, J.J.; Csilla, S.; Cui, L.; Cureau, F.V.; Cuschieri, S.; D’Arrigo, G.; d’Orsi, E.; Dallongeville, J.; Dankner, R.; Dantoft, T.M.; Dauchet, L.; Davletov, K.; De Backer, G.; De Bacquer, D.; De Curtis, A.; de Gaetano, G.; De Henauw, S.; de Oliveira, P.D.; De Ridder, D.; De Smedt, D.; Deepa, M.; Deev, A.D.; DeGennaro, V.J.; Delisle, H.; Demarest, S.; Dennison, E.; Deschamps, V.; Dhimal, M.; Di Castelnuovo, A.F.; Dias-da-Costa, J.S.; Diaz, A.; Dickerson, T.T.; Dika, Z.; Djalalinia, S.; Do, H.T.P.; Dobson, A.J.; Donfrancesco, C.; Donoso, S.P.; Döring, A.; Dorobantu, M.; Dörr, M.; Doua, K.; Dragano, N.; Drygas, W.; Duante, C.A.; Duboz, P.; Duda, R.B.; Dulskiene, V.; Dushpanova, A.; Džakula, A.; Dzerve, V.; Dziankowska-Zaborszczyk, E.; Eddie, R.; Eftekhar, E.; Eggertsen, R.; Eghtesad, S.; Eiben, G.; Ekelund, U.; El-Khateeb, M.; El Ati, J.; Eldemire-Shearer, D.; Eliasen, M.; Elosua, R.; Erasmus, R.T.; Erbel, R.; Erem, C.; Eriksen, L.; Eriksson, J.G.; Escobedo-de la Peña, J.; Eslami, S.; Esmaeili, A.; Evans, A.; Faeh, D.; Fakhretdinova, A.A.; Fall, C.H.; Faramarzi, E.; Farjam, M.; Fattahi, M.R.; Fawwad, A.; Felix-Redondo, F.J.; Felix, S.B.; Ferguson, T.S.; Fernandes, R.A.; Fernández-Bergés, D.; Ferrante, D.; Ferrao, T.; Ferrari, M.; Ferrario, M.M.; Ferreccio, C.; Ferreira, H.S.; Ferrer, E.; Ferrieres, J.; Figueiró, T.H.; Fink, G.; Fischer, K.; Foo, L.H.; Forsner, M.; Fouad, H.M.; Francis, D.K.; Franco, M.C.; Frikke-Schmidt, R.; Frontera, G.; Fuchs, F.D.; Fuchs, S.C.; Fujita, Y.; Fumihiko, M.; Furdela, V.; Furer, A.; Furusawa, T.; Gaciong, Z.; Galbarczyk, A.; Galenkamp, H.; Galvano, F.; Gao, J.; Gao, P.; Garcia-de-la-Hera, M.; Garcia, P.; Gareta, D.; Garnett, S.P.; Gaspoz, J-M.; Gasull, M.; Gazzinelli, A.; Gehring, U.; Geleijnse, J.M.; George, R.; Ghanbari, A.; Ghasemi, E.; Gheorghe-Fronea, OF.; Ghimire, A.; Gialluisi, A.; Giampaoli, S.; Gieger, C.; Gill, T.K.; Giovannelli, J.; Gironella, G.; Giwercman, A.; Gkiouras, K.; Goldberg, M.; Goldsmith, R.A.; Gomez, L.F.; Gomula, A.; Gonçalves, H.; Gonçalves, M.; Gonçalves Cordeiro da Silva, B.; Gonzalez-Chica, D.A.; Gonzalez-Gross, M.; González-Rivas, J.P.; González-Villalpando, C.; González-Villalpando, M-E.; Gonzalez, A.R.; Gorbea, M.B.; Gottrand, F.; Graff-Iversen, S.; Grafnetter, D.; Grajda, A.; Grammatikopoulou, M.G.; Gregor, R.D.; Grodzicki, T.; Grosso, G.; Gruden, G.; Gu, D.; Guan, O.P.; Gudmundsson, E.F.; Gudnason, V.; Guerrero, R.; Guessous, I.; Guimaraes, A.L.; Gulliford, M.C.; Gunnlaugsdottir, J.; Gunter, M.J.; Gupta, P.C.; Gupta, R.; Gureje, O.; Gurzkowska, B.; Gutierrez, L.; Gutzwiller, F.; Ha, S.; Hadaegh, F.; Haghshenas, R.; Hakimi, H.; Halkjær, J.; Hambleton, I.R.; Hamzeh, B.; Hange, D.; Hanif, A.A.M.; Hantunen, S.; Hao, J.; Hardman, C.M.; Hari Kumar, R.; Hashemi-Shahri, S.M.; Hata, J.; Haugsgjerd, T.; Hayes, A.J.; He, Y.; Heier, M.; Hendriks, M.E.; Henrique, R.S.; Henriques, A.; Hernandez Cadena, L.; Herqutanto, ; Herrala, S.; Heshmat, R.; Hill, A.G.; Ho, S.Y.; Ho, S.C.; Hobbs, M.; Holdsworth, M.; Homayounfar, R.; Horasan Dinc, G.; Horimoto, A.R.V.R.; Hormiga, C.M.; Horta, B.L.; Houti, L.; Howitt, C.; Htay, T.T.; Htet, A.S.; Htike, M.M.T.; Hu, Y.; Huerta, J.M.; Huhtaniemi, I.T.; Huiart, L.; Huisman, M.; Husseini, A.S.; Huybrechts, I.; Hwalla, N.; Iacoviello, L.; Iannone, A.G.; Ibrahim, M.M.; Ibrahim Wong, N.; Ikram, M.A.; Iotova, V.; Irazola, V.E.; Ishida, T.; Isiguzo, G.C.; Islam, M.; Islam, S.M.S.; Iwasaki, M.; Jackson, R.T.; Jacobs, J.M.; Jaddou, H.Y.; Jafar, T.; James, K.; Jamrozik, K.; Janszky, I.; Janus, E.; Jarvelin, M-R.; Jasienska, G.; Jelaković, A.; Jelaković, B.; Jennings, G.; Jha, A.K.; Jiang, C.Q.; Jimenez, R.O.; Jöckel, K-H.; Joffres, M.; Johansson, M.; Jokelainen, J.J.; Jonas, J.B.; Jørgensen, T.; Joshi, P.; Joukar, F.; Jóżwiak, J.; Juolevi, A.; Jurak, G.; Jureša, V.; Kaaks, R.; Kafatos, A.; Kajantie, E.O.; Kalmatayeva, Z.; Kalpourtzi, N.; Kalter-Leibovici, O.; Kampmann, F.B.; Kannan, S.; Karaglani, E.; Kårhus, L.L.; Karki, K.B.; Katibeh, M.; Katz, J.; Kauhanen, J.; Kaur, P.; Kavousi, M.; Kazakbaeva, G.M.; Keil, U.; Keinan Boker, L.; Keinänen-Kiukaanniemi, S.; Kelishadi, R.; Kemper, H.C.G.; Keramati, M.; Kerimkulova, A.; Kersting, M.; Key, T.; Khader, Y.S.; Khalili, D.; Khaw, K-T.; Kheiri, B.; Kheradmand, M.; Khosravi, A.; Kiechl-Kohlendorfer, U.; Kiechl, S.; Killewo, J.; Kim, D.W.; Kim, J.; Klakk, H.; Klimek, M.; Klumbiene, J.; Knoflach, M.; Kolle, E.; Kolsteren, P.; Kontto, J.P.; Korpelainen, R.; Korrovits, P.; Kos, J.; Koskinen, S.; Kouda, K.; Kowlessur, S.; Koziel, S.; Kratenova, J.; Kriaucioniene, V.; Kristensen, P.L.; Krokstad, S.; Kromhout, D.; Kruger, H.S.; Kubinova, R.; Kuciene, R.; Kujala, U.M.; Kulaga, Z.; Kumar, R.K.; Kurjata, P.; Kusuma, Y.S.; Kutsenko, V.; Kuulasmaa, K.; Kyobutungi, C.; Laatikainen, T.; Lachat, C.; Laid, Y.; Lam, T.H.; Landrove, O.; Lanska, V.; Lappas, G.; Larijani, B.; Latt, T.S.; Le Coroller, G.; Le Nguyen Bao, K.; Le, T.D.; Lee, J.; Lee, J.; Lehmann, N.; Lehtimäki, T.; Lemogoum, D.; Levitt, N.S.; Li, Y.; Lilly, C.L.; Lim, W-Y.; Lima-Costa, M.F.; Lin, X.; Lin, Y-T.; Lind, L.; Lingam, V.; Linneberg, A.; Lissner, L.; Litwin, M.; Lo, W-C.; Loit, H-M.; Lopez-Garcia, E.; Lopez, T.; Lotufo, P.A.; Lozano, J.E.; Lukačević Lovrenčić, I.; Lukrafka, J.L.; Luksiene, D.; Lundqvist, A.; Lundqvist, R.; Lunet, N.; Lustigová, M.; Luszczki, E.; Ma, G.; Ma, J.; Machado-Coelho, G.L.L.; Machado-Rodrigues, A.M.; Macia, E.; Macieira, L.M.; Madar, A.A.; Maggi, S.; Magliano, D.J.; Magriplis, E.; Mahasampath, G.; Maire, B.; Majer, M.; Makdisse, M.; Malekzadeh, F.; Malekzadeh, R.; Malhotra, R.; Mallikharjuna Rao, K.; Malyutina, S.K.; Maniego, L.V.; Manios, Y.; Mann, J.I.; Mansour-Ghanaei, F.; Manzato, E.; Marcil, A.; Mårild, S.B.; Marinović Glavić, M.; Marques-Vidal, P.; Marques, L.P.; Marrugat, J.; Martorell, R.; Mascarenhas, L.P.; Matasin, M.; Mathiesen, E.B.; Mathur, P.; Matijasevich, A.; Matlosz, P.; Matsha, T.E.; Mavrogianni, C.; Mbanya, J.C.N.; Mc Donald Posso, A.J.; McFarlane, S.R.; McGarvey, S.T.; McLachlan, S.; McLean, R.M.; McLean, S.B.; McNulty, B.A.; Mediene Benchekor, S.; Medzioniene, J.; Mehdipour, P.; Mehlig, K.; Mehrparvar, A.H.; Meirhaeghe, A.; Meisinger, C.; Mendoza Montano, C.; Menezes, A.M.B.; Menon, G.R.; Mereke, A.; Meshram, I.I.; Metspalu, A.; Meyer, H.E.; Mi, J.; Michels, N.; Mikkel, K.; Milkowska, K.; Miller, J.C.; Minderico, C.S.; Mini, G.K.; Mirjalili, M.R.; Mirrakhimov, E.; Mišigoj-Duraković, M.; Modesti, P.A.; Moghaddam, S.S.; Mohajer, B.; Mohamed, M.K.; Mohamed, S.F.; Mohammad, K.; Mohammadi, M.R.; Mohammadi, Z.; Mohammadifard, N.; Mohammadpourhodki, R.; Mohan, V.; Mohanna, S.; Mohd Yusoff, M.F.; Mohebbi, I.; Mohebi, F.; Moitry, M.; Møllehave, L.T.; Molnár, D.; Momenan, A.; Mondo, C.K.; Monterrubio-Flores, E.; Monyeki, K.D.K.; Moon, J.S.; Moosazadeh, M.; Moreira, L.B.; Morejon, A.; Moreno, L.A.; Morgan, K.; Moschonis, G.; Mossakowska, M.; Mostafa, A.; Mostafavi, S-A.; Mota, J.; Motlagh, M.E.; Motta, J.; Moura-dos-Santos, M.A.; Mridha, M.K.; Msyamboza, K.P.; Mu, T.T.; Muhihi, A.J.; Muiesan, M.L.; Müller-Nurasyid, M.; Murphy, N.; Mursu, J.; Musa, K.I.; Musić Milanović, S.; Musil, V.; Mustafa, N.; Nabipour, I.; Naderimagham, S.; Nagel, G.; Naidu, B.M.; Najafi, F.; Nakamura, H.; Námešná, J.; Nang, E.E.K.; Nangia, V.B.; Narake, S.; Ndiaye, N.C.; Neal, W.A.; Nejatizadeh, A.; Nenko, I.; Neovius, M.; Nguyen, C.T.; Nguyen, N.D.; Nguyen, Q.V.; Nguyen, Q.N.; Nieto-Martínez, R.E.; Niiranen, T.J.; Nikitin, Y.P.; Ninomiya, T.; Nishtar, S.; Njelekela, M.A.; Noale, M.; Noboa, O.A.; Noorbala, A.A.; Norat, T.; Nordendahl, M.; Nordestgaard, B.G.; Noto, D.; Nowak-Szczepanska, N.; Nsour, M.A.; Nunes, B.; O’Neill, T.W.; O’Reilly, D.; Ochimana, C.; Oda, E.; Odili, A.N.; Oh, K.; Ohara, K.; Ohtsuka, R.; Olié, V.; Olinto, M.T.A.; Oliveira, I.O.; Omar, M.A.; Onat, A.; Ong, S.K.; Ono, L.M.; Ordunez, P.; Ornelas, R.; Ortiz, P.J.; Osmond, C.; Ostojic, S.M.; Ostovar, A.; Otero, J.A.; Overvad, K.; Owusu-Dabo, E.; Paccaud, F.M.; Padez, C.; Pahomova, E.; Paiva, K.M.; Pająk, A.; Palli, D.; Palmieri, L.; Pan, W-H.; Panda-Jonas, S.; Panza, F.; Paoli, M.; Papandreou, D.; Park, S-W.; Park, S.; Parnell, W.R.; Parsaeian, M.; Pasquet, P.; Patel, N.D.; Pavlyshyn, H.; Pećin, I.; Pednekar, M.S.; Pedro, J.M.; Peer, N.; Peixoto, S.V.; Peltonen, M.; Pereira, A.C.; Peres, K.G.D.A.; Peres, M.A.; Peters, A.; Petkeviciene, J.; Peykari, N.; Pham, S.T.; Pichardo, R.N.; Pigeot, I.; Pikhart, H.; Pilav, A.; Pilotto, L.; Pitakaka, F.; Piwonska, A.; Pizarro, A.; Plans-Rubió, P.; Polašek, O.; Porta, M.; Poudyal, A.; Pourfarzi, F.; Pourshams, A.; Poustchi, H.; Pradeepa, R.; Price, A.J.; Price, J.F.; Providencia, R.; Puhakka, S.E.; Puiu, M.; Punab, M.; Qasrawi, R.F.; Qorbani, M.; Queiroz, D.; Quoc Bao, T.; Radić, I.; Radisauskas, R.; Rahimikazerooni, S.; Rahman, M.; Raitakari, O.; Raj, M.; Rakhimova, E.M.; Ramachandra Rao, S.; Ramachandran, A.; Ramos, E.; Rampal, L.; Rampal, S.; Rangel Reina, D.A.; Rarra, V.; Rech, C.R.; Redon, J.; Reganit, P.F.M.; Regecová, V.; Revilla, L.; Rezaianzadeh, A.; Ribeiro, R.; Riboli, E.; Richter, A.; Rigo, F.; Rinke de Wit, T.F.; Ritti-Dias, R.M.; Robitaille, C.; Rodríguez-Artalejo, F.; Rodriguez-Perez, M.C.; Rodríguez-Villamizar, L.A.; Roggenbuck, U.; Rojas-Martinez, R.; Romaguera, D.; Romeo, E.L.; Rosengren, A.; Roy, J.G.R.; Rubinstein, A.; Ruidavets, J-B.; Ruiz-Betancourt, B.S.; Ruiz-Castell, M.; Rusakova, I.A.; Russo, P.; Rutkowski, M.; Sabanayagam, C.; Sabbaghi, H.; Sachdev, H.S.; Sadjadi, A.; Safarpour, A.R.; Safi, S.; Safiri, S.; Saidi, O.; Sakarya, S.; Saki, N.; Salanave, B.; Salazar Martinez, E.; Salmerón, D.; Salomaa, V.; Salonen, J.T.; Salvetti, M.; Sánchez-Abanto, J.; Sans, S.; Santos, D.A.; Santos, I.S.; Santos, L.C.; Santos, M.P.; Santos, R.; Saramies, J.L.; Sardinha, L.B.; Sarganas, G.; Sarrafzadegan, N.; Sathish, T.; Saum, K-U.; Savva, S.; Sawada, N.; Sbaraini, M.; Scazufca, M.; Schaan, B.D.; Schargrodsky, H.; Schipf, S.; Schmidt, C.O.; Schnohr, P.; Schöttker, B.; Schramm, S.; Schultsz, C.; Schutte, A.E.; Sebert, S.; Sein, A.A.; Sen, A.; Senbanjo, I.O.; Sepanlou, S.G.; Servais, J.; Shalnova, S.A.; Shamah-Levy, T.; Shamshirgaran, M.; Shanthirani, C.S.; Sharafkhah, M.; Sharma, S.K.; Shaw, J.E.; Shayanrad, A.; Shayesteh, A.A.; Shi, Z.; Shibuya, K.; Shimizu-Furusawa, H.; Shin, D.W.; Shirani, M.; Shiri, R.; Shrestha, N.; Si-Ramlee, K.; Siani, A.; Siantar, R.; Sibai, A.M.; Silva, C.R.M.; Silva, D.A.S.; Simon, M.; Simons, J.; Simons, L.A.; Sjöström, M.; Slowikowska-Hilczer, J.; Slusarczyk, P.; Smeeth, L.; So, H-K.; Soares, F.C.; Sobngwi, E.; Söderberg, S.; Soemantri, A.; Sofat, R.; Solfrizzi, V.; Somi, M.H.; Sonestedt, E.; Song, Y.; Sørensen, T.I.A.; Sørgjerd, E.P.; Sorić, M.; Sossa Jérome, C.; Soumaré, A.; Sparboe-Nilsen, B.; Sparrenberger, K.; Staessen, J.A.; Starc, G.; Stavreski, B.; Steene-Johannessen, J.; Stehle, P.; Stein, A.D.; Stergiou, G.S.; Stessman, J.; Stieber, J.; Stöckl, D.; Stocks, T.; Stokwiszewski, J.; Stronks, K.; Strufaldi, M.W.; Suka, M.; Sun, C-A.; Sung, Y-T.; Suriyawongpaisal, P.; Sy, R.G.; Syddall, H.E.; Sylva, R.C.; Szklo, M.; Tai, E.S.; Tammesoo, M-L.; Tamosiunas, A.; Tan, E.J.; Tang, X.; Tanser, F.; Tao, Y.; Tarawneh, M.R.; Tarqui-Mamani, C.B.; Taylor, A.; Taylor, J.; Tebar, W.R.; Tell, G.S.; Tello, T.; Tham, Y.C.; Thankappan, K.R.; Theobald, H.; Theodoridis, X.; Thijs, L.; Thinggaard, M.; Thomas, N.; Thorand, B.; Thuesen, B.H.; Timmermans, E.J.; Tjandrarini, D.H.; Tjonneland, A.; Toft, U.; Tolonen, H.K.; Tolstrup, J.S.; Topbas, M.; Topór-Madry, R.; Tormo, M.J.; Tornaritis, M.J.; Torrent, M.; Torres-Collado, L.; Touloumi, G.; Traissac, P.; Triantafyllou, A.; Trichopoulos, D.; Trichopoulou, A.; Trinh, O.T.H.; Trivedi, A.; Tshepo, L.; Tsugane, S.; Tuliakova, A.M.; Tulloch-Reid, M.K.; Tullu, F.; Tuomainen, T-P.; Tuomilehto, J.; Turley, M.L.; Twig, G.; Tynelius, P.; Tzourio, C.; Ueda, P.; Ugel, E.; Ulmer, H.; Uusitalo, H.M.T.; Valdivia, G.; Valvi, D.; van Dam, R.M.; van den Born, B-J.; Van der Heyden, J.; van der Schouw, Y.T.; Van Herck, K.; Van Minh, H.; Van Schoor, N.M.; van Valkengoed, I.G.M.; van Zutphen, E.M.; Vanderschueren, D.; Vanuzzo, D.; Varbo, A.; Vasan, S.K.; Vega, T.; Veidebaum, T.; Velasquez-Melendez, G.; Veronesi, G.; Verschuren, W.M.M.; Verstraeten, R.; Victora, C.G.; Viet, L.; Villalpando, S.; Vineis, P.; Vioque, J.; Virtanen, J.K.; Visvikis-Siest, S.; Viswanathan, B.; Vlasoff, T.; Vollenweider, P.; Voutilainen, A.; Wade, A.N.; Walton, J.; Wambiya, E.O.A.; Wan Bebakar, W.M.; Wan Mohamud, W.N.; Wanderley Júnior, R.S.; Wang, M-D.; Wang, N.; Wang, Q.; Wang, X.; Wang, Y.X.; Wang, Y-W.; Wannamethee, S.G.; Wareham, N.; Wei, W.; Weres, A.; Werner, B.; Whincup, P.H.; Widhalm, K.; Wiecek, A.; Wilks, R.J.; Willeit, J.; Willeit, P.; Williams, E.A.; Wilsgaard, T.; Wojtyniak, B.; Wong-McClure, R.A.; Wong, A.; Wong, T.Y.; Woo, J.; Wu, F.C.; Wu, S.; Wyszynska, J.; Xu, H.; Xu, L.; Yaacob, N.A.; Yan, W.; Yang, L.; Yang, X.; Yang, Y.; Yasuharu, T.; Ye, X.; Yiallouros, P.K.; Yoosefi, M.; Yoshihara, A.; You, S-L.; Younger-Coleman, N.O.; Yusoff, A.F.; Zainuddin, A.A.; Zakavi, S.R.; Zamani, F.; Zambon, S.; Zampelas, A.; Zapata, M.E.; Zaw, K.K.; Zejglicova, K.; Zeljkovic Vrkic, T.; Zeng, Y.; Zhang, L.; Zhang, Z-Y.; Zhao, D.; Zhao, M-H.; Zhen, S.; Zheng, Y.; Zholdin, B.; Zhu, D.; Zins, M.; Zitt, E.; Zocalo, Y.; Zoghlami, N.; Zuñiga Cisneros, J.; Ezzati, M. Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: A pooled analysis of 1201 population-representative studies with 104 million participants. Lancet, 2021, 398(10304), 957-980.
[http://dx.doi.org/10.1016/S0140-6736(21)01330-1] [PMID: 34450083]
[2]
Wu, P.; Green, M.; Myers, J.E. Hypertensive disorders of pregnancy. BMJ, 2023, 381, e071653.
[http://dx.doi.org/10.1136/bmj-2022-071653] [PMID: 37391211]
[3]
Whelton, P.K.; Carey, R.M.; Mancia, G.; Kreutz, R.; Bundy, J.D.; Williams, B. Harmonization of the American College of Cardiology/American Heart Association and European Society of Cardiology/European Society of Hypertension Blood pressure/Hypertension guidelines: Comparisons, reflections, and recommendations. Circulation, 2022, 146(11), 868-877.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.121.054602] [PMID: 35950927]
[4]
Ungvari, Z.; Toth, P.; Tarantini, S.; Prodan, C.I.; Sorond, F.; Merkely, B.; Csiszar, A. Hypertension-induced cognitive impairment: From pathophysiology to public health. Nat. Rev. Nephrol., 2021, 17(10), 639-654.
[http://dx.doi.org/10.1038/s41581-021-00430-6] [PMID: 34127835]
[5]
Khoury, M.; Urbina, E.M. Hypertension in adolescents: Diagnosis, treatment, and implications. Lancet Child Adolesc. Health, 2021, 5(5), 357-366.
[http://dx.doi.org/10.1016/S2352-4642(20)30344-8] [PMID: 33711291]
[6]
He, F.J.; Tan, M.; Ma, Y.; MacGregor, G.A. Salt reduction to prevent hypertension and cardiovascular disease. J. Am. Coll. Cardiol., 2020, 75(6), 632-647.
[http://dx.doi.org/10.1016/j.jacc.2019.11.055] [PMID: 32057379]
[7]
Burnier, M.; Damianaki, A. Hypertension as cardiovascular risk factor in chronic kidney disease. Circ. Res., 2023, 132(8), 1050-1063.
[http://dx.doi.org/10.1161/CIRCRESAHA.122.321762] [PMID: 37053276]
[8]
Sequeira-Lopez, M.L.S.; Gomez, R.A. Renin cells, the kidney, and hypertension. Circ. Res., 2021, 128(7), 887-907.
[http://dx.doi.org/10.1161/CIRCRESAHA.121.318064] [PMID: 33793334]
[9]
Freedman, B.I.; Cohen, A.H. Hypertension-attributed nephropathy: What’s in a name? Nat. Rev. Nephrol., 2016, 12(1), 27-36.
[http://dx.doi.org/10.1038/nrneph.2015.172] [PMID: 26553514]
[10]
Udani, S.; Lazich, I.; Bakris, G.L. Epidemiology of hypertensive kidney disease. Nat. Rev. Nephrol., 2011, 7(1), 11-21.
[http://dx.doi.org/10.1038/nrneph.2010.154] [PMID: 21079654]
[11]
Lucero, C.M.; Prieto-Villalobos, J.; Marambio-Ruiz, L.; Balmazabal, J.; Alvear, T.F.; Vega, M.; Barra, P.; Retamal, M.A.; Orellana, J.A.; Gómez, G.I. Hypertensive nephropathy: Unveiling the possible involvement of hemichannels and pannexons. Int. J. Mol. Sci., 2022, 23(24), 15936.
[http://dx.doi.org/10.3390/ijms232415936] [PMID: 36555574]
[12]
Stompór, T.; Perkowska-Ptasińska, A. Hypertensive kidney disease: True epidemic or rare disease? Pol. Arch. Intern. Med., 2020, 130(2), 130-139.
[http://dx.doi.org/10.20452/pamw.15150] [PMID: 31964856]
[13]
Koopman, J.J.E.; van Essen, M.F.; Rennke, H.G.; de Vries, A.P.J.; van Kooten, C. Deposition of the membrane attack complex in healthy and diseased human kidneys. Front. Immunol., 2021, 11, 599974.
[http://dx.doi.org/10.3389/fimmu.2020.599974] [PMID: 33643288]
[14]
Fay, K.S.; Cohen, D.L. Resistant hypertension in people with CKD: A review. Am. J. Kidney Dis., 2021, 77(1), 110-121.
[http://dx.doi.org/10.1053/j.ajkd.2020.04.017] [PMID: 32712185]
[15]
Yang, C.; Gao, B.; Zhao, X.; Su, Z.; Sun, X.; Wang, H.Y.; Zhang, P.; Wang, R.; Liu, J.; Tang, W.; Zhang, D.; Chu, H.; Wang, J.; Wang, F.; Wang, S.; Zuo, L.; Wang, Y.; Yu, F.; Wang, H.; Zhang, L.; Zhang, H.; Yang, L.; Chen, J.; Zhao, M.H. Executive summary for China kidney disease network (CK-NET) 2016 Annual Data Report. Kidney Int., 2020, 98(6), 1419-1423.
[http://dx.doi.org/10.1016/j.kint.2020.09.003] [PMID: 33276868]
[16]
Jia, Q.; Wang, L.; Zhang, X.; Ding, Y.; Li, H.; Yang, Y.; Zhang, A.; Li, Y.; Lv, S.; Zhang, J. Prevention and treatment of chronic heart failure through Traditional Chinese Medicine: Role of the gut microbiota. Pharmacol. Res., 2020, 151, 104552.
[http://dx.doi.org/10.1016/j.phrs.2019.104552] [PMID: 31747557]
[17]
Hu, Y.W. Chinese herbal medicine use and risk of end-stage renal disease in patients with chronic kidney disease: Is there an immortal time bias? Kidney Int., 2016, 90(1), 227-228.
[http://dx.doi.org/10.1016/j.kint.2016.03.044] [PMID: 27312455]
[18]
Zhang, H.W.; Lin, Z.X.; Xu, C.; Leung, C.; Chan, L.S. Astragalus (A Traditional Chinese Medicine) for treating chronic kidney disease. Cochrane Libr., 2014, 2014(10), CD008369.
[http://dx.doi.org/10.1002/14651858.CD008369.pub2] [PMID: 25335553]
[19]
Zhong, Y.; Deng, Y.; Chen, Y.; Chuang, P.Y.; Cijiang, He J. Therapeutic use of traditional Chinese herbal medications for chronic kidney diseases. Kidney Int., 2013, 84(6), 1108-1118.
[http://dx.doi.org/10.1038/ki.2013.276] [PMID: 23868014]
[20]
Cui, X.; Trinh, K.; Wang, Y.J. Chinese herbal medicine for chronic neck pain due to cervical degenerative disc disease. Cochrane Libr., 2010, 2010(1), CD006556.
[http://dx.doi.org/10.1002/14651858.CD006556.pub2] [PMID: 20091597]
[21]
Chen, Z.; Liu, L.; Gao, C.; Chen, W.; Vong, C.T.; Yao, P.; Yang, Y.; Li, X.; Tang, X.; Wang, S.; Wang, Y. Astragali Radix (Huangqi): A promising edible immunomodulatory herbal medicine. J. Ethnopharmacol., 2020, 258, 112895.
[http://dx.doi.org/10.1016/j.jep.2020.112895] [PMID: 32330511]
[22]
Zhang, W.; Cui, Y.; Zhang, J. Multi metabolomics-based analysis of application of Astragalus membranaceus in the treatment of hyperuricemia. Front. Pharmacol., 2022, 13, 948939.
[http://dx.doi.org/10.3389/fphar.2022.948939] [PMID: 35935868]
[23]
Xue, B.; Li, J.; Chai, Q.; Liu, Z.; Chen, L. Effect of total flavonoid fraction of Astragalus complanatus R. Brown on angiotensin II-induced portal-vein contraction in hypertensive rats. Phytomedicine, 2008, 15(9), 759-762.
[http://dx.doi.org/10.1016/j.phymed.2007.11.030] [PMID: 18406589]
[24]
Li, N.Y.; Li, X.L.; Zhai, X.P.; Wang, Q.Y.; Zhang, X.W.; Zhao, F.; Wang, X.F.; Fan, J.Y.; Bai, F.; Yu, J. Effects of Mongolia Astragali Radix in protecting early cardiac and nephritic functions of patients of hypertension with metabolic syndrome. Zhongguo Zhong Yao Za Zhi, 2016, 41(21), 4051-4059.
[PMID: 28929695]
[25]
Hou, G.; Jiang, Y.; Zheng, Y. Mechanism of Radix Astragali and Radix SalviaeMiltiorrhizae ameliorates hypertensive renal damage. BioMed Res. Int., 2021, 2021, 5598351.
[http://dx.doi.org/10.1155/2021/5598351]
[26]
Hopkins, A.L. Network pharmacology. Nat. Biotechnol., 2007, 25(10), 1110-1111.
[http://dx.doi.org/10.1038/nbt1007-1110] [PMID: 17921993]
[27]
Zhang, R.; Zhu, X.; Bai, H.; Ning, K. Network pharmacology databases for Traditional Chinese Medicine: Review and assessment. Front. Pharmacol., 2019, 10, 123.
[http://dx.doi.org/10.3389/fphar.2019.00123] [PMID: 30846939]
[28]
Nogales, C.; Mamdouh, Z.M.; List, M.; Kiel, C.; Casas, A.I.; Schmidt, H.H.H.W. Network pharmacology: Curing causal mechanisms instead of treating symptoms. Trends Pharmacol. Sci., 2022, 43(2), 136-150.
[http://dx.doi.org/10.1016/j.tips.2021.11.004] [PMID: 34895945]
[29]
Zhao, L.; Zhang, H.; Li, N.; Chen, J.; Xu, H.; Wang, Y.; Liang, Q. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula. J. Ethnopharmacol., 2023, 309, 116306.
[http://dx.doi.org/10.1016/j.jep.2023.116306] [PMID: 36858276]
[30]
Yuan, Z.; Pan, Y.; Leng, T.; Chu, Y.; Zhang, H.; Ma, J.; Ma, X. Progress and prospects of research ideas and methods in the network pharmacology of Traditional Chinese Medicine. J. Pharm. Pharm. Sci., 2022, 25, 218-226.
[http://dx.doi.org/10.18433/jpps32911] [PMID: 35760072]
[31]
Li, X.; Wei, S.; Niu, S.; Ma, X.; Li, H.; Jing, M.; Zhao, Y. Network pharmacology prediction and molecular docking-based strategy to explore the potential mechanism of Huanglian Jiedu Decoction against sepsis. Comput. Biol. Med., 2022, 144, 105389.
[http://dx.doi.org/10.1016/j.compbiomed.2022.105389] [PMID: 35303581]
[32]
Jiashuo, W.U.; Fangqing, Z.; Zhuangzhuang, L.I.; Weiyi, J.; Yue, S. Integration strategy of network pharmacology in Traditional Chinese Medicine: A narrative review. J. Tradit. Chin. Med., 2022, 42(3), 479-486.
[PMID: 35610020]
[33]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[34]
Xu, X.; Zhang, W.; Huang, C.; Li, Y.; Yu, H.; Wang, Y.; Duan, J.; Ling, Y. A novel chemometric method for the prediction of human oral bioavailability. Int. J. Mol. Sci., 2012, 13(6), 6964-6982.
[http://dx.doi.org/10.3390/ijms13066964] [PMID: 22837674]
[35]
Stelzer, G.; Rosen, N.; Plaschkes, I. The genecards suite: From gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics., 2016, 54, 1.30.1-1.30.33.
[36]
Piñero, J.; Queralt-Rosinach, N.; Bravo, A.; Deu-Pons, J.; Bauer-Mehren, A.; Baron, M.; Sanz, F.; Furlong, L.I. DisGeNET: A discovery platform for the dynamical exploration of human diseases and their genes. Database, 2015, 2015, bav028.
[http://dx.doi.org/10.1093/database/bav028] [PMID: 25877637]
[37]
Piñero, J.; Ramírez-Anguita, J.M.; Saüch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L.I. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res., 2020, 48(D1), D845-D855.
[PMID: 31680165]
[38]
Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res., 2022, 50(W1), W216-W221.
[http://dx.doi.org/10.1093/nar/gkac194] [PMID: 35325185]
[39]
Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res., 2023, 51(D1), D638-D646.
[http://dx.doi.org/10.1093/nar/gkac1000] [PMID: 36370105]
[40]
Bai, G.; Pan, Y.; Zhang, Y.; Li, Y.; Wang, J.; Wang, Y.; Teng, W.; Jin, G.; Geng, F.; Cao, J. Research advances of molecular docking and molecular dynamic simulation in recognizing interaction between muscle proteins and exogenous additives. Food Chem., 2023, 429, 136836.
[http://dx.doi.org/10.1016/j.foodchem.2023.136836] [PMID: 37453331]
[41]
Crampon, K.; Giorkallos, A.; Deldossi, M.; Baud, S.; Steffenel, L.A. Machine-learning methods for ligand–protein molecular docking. Drug Discov. Today, 2022, 27(1), 151-164.
[http://dx.doi.org/10.1016/j.drudis.2021.09.007] [PMID: 34560276]
[42]
Pinzi, L.; Rastelli, G. Molecular docking: Shifting paradigms in drug discovery. Int. J. Mol. Sci., 2019, 20(18), 4331.
[http://dx.doi.org/10.3390/ijms20184331] [PMID: 31487867]
[43]
Wang, Q.; Lin, J.; Li, C.; Lin, M.; Zhang, Q.; Zhang, X.; Yao, K. Traditional Chinese medicine method of tonifying kidney for hypertension: Clinical evidence and molecular mechanisms. Front. Cardiovasc. Med., 2022, 9, 1038480.
[http://dx.doi.org/10.3389/fcvm.2022.1038480] [PMID: 36465462]
[44]
Xu, Z.; Qian, L.; Niu, R.; Yang, Y.; Liu, C.; Lin, X. Efficacy of huangqi injection in the treatment of hypertensive nephropathy: A systematic review and meta-analysis. Front. Med., 2022, 9, 838256.
[http://dx.doi.org/10.3389/fmed.2022.838256] [PMID: 35547210]
[45]
Wu, J.S.; Li, J.M.; Lo, H.Y.; Hsiang, C.Y.; Ho, T.Y. Anti-hypertensive and angiotensin-converting enzyme inhibitory effects of Radix Astragali and its bioactive peptide AM-1. J. Ethnopharmacol., 2020, 254, 112724.
[http://dx.doi.org/10.1016/j.jep.2020.112724] [PMID: 32119952]
[46]
Li, N.Y.; Yu, H.; Li, X.L.; Wang, Q.Y.; Zhang, X.W.; Ma, R.X.; Zhao, Y.; Xu, H.; Liang, W.; Bai, F.; Yu, J. Astragalus membranaceus improving asymptomatic left ventricular diastolic dysfunction in postmenopausal hypertensive women with metabolic syndrome. Chin. Med. J., 2018, 131(5), 516-526.
[http://dx.doi.org/10.4103/0366-6999.226077] [PMID: 29483384]
[47]
Hu, J.Y.; Han, J.; Chu, Z.G.; Song, H.P.; Zhang, D.X.; Zhang, Q.; Huang, Y.S. Astragaloside IV attenuates hypoxia-induced cardiomyocyte damage in rats by upregulating superoxide dismutase-1 levels. Clin. Exp. Pharmacol. Physiol., 2009, 36(4), 351-357.
[http://dx.doi.org/10.1111/j.1440-1681.2008.05059.x] [PMID: 18986331]
[48]
Tan, Y.Q.; Chen, H.W.; Li, J.; Astragaloside, I.V.; Astragaloside, I.V. An effective drug for the treatment of cardiovascular diseases. Drug Des. Devel. Ther., 2020, 14, 3731-3746.
[http://dx.doi.org/10.2147/DDDT.S272355] [PMID: 32982178]
[49]
Wegiel, B.; Persson, J.L. Effect of a novel botanical agent drynol cibotin on human osteoblast cells and implications for osteoporosis: Promotion of cell growth, calcium uptake and collagen production. Phytother. Res., 2010, 24(S2), S139-S147.
[http://dx.doi.org/10.1002/ptr.3026] [PMID: 19953582]
[50]
Li, S.; Nong, Y.; Gao, Q.; Liu, J.; Li, Y.; Cui, X.; Wan, J.; Lu, J.; Sun, M.; Wu, Q.; Shi, X.; Cui, H.; Liu, W.; Zhou, M.; Li, L.; Lin, Q. Astragalus granule prevents Ca 2+ current remodeling in heart failure by the downregulation of CaMKII. Evid. Based Complement. Alternat. Med., 2017, 2017, 1-10.
[http://dx.doi.org/10.1155/2017/7517358] [PMID: 28855948]
[51]
Jin, G.Z.; Na, Y.; Hua, H.; Guang, H.W.; Dong, S.G.; Xiao, L.W.; Xue, Z.W.; Guang, Y.S. Effect of Astragalus injection on plasma levels of apoptosis-related factors in aged patients with chronic heart failure. Chin. J. Integr. Med., 2005, 11(3), 187-190.
[http://dx.doi.org/10.1007/BF02836502] [PMID: 16181532]
[52]
Ma, J.; Peng, A.; Lin, S. Mechanisms of the therapeutic effect of Astragalus membranaceus on sodium and water retention in experimental heart failure. Chin. Med. J., 1998, 111(1), 17-23.
[PMID: 10322646]
[53]
Montenegro, M.F.; Neto-Neves, E.M.; Dias-Junior, C.A.; Ceron, C.S.; Castro, M.M.; Gomes, V.A.; Kanashiro, A.; Tanus-Santos, J.E. Quercetin restores plasma nitrite and nitroso species levels in renovascular hypertension. Naunyn Schmiedebergs Arch. Pharmacol., 2010, 382(4), 293-301.
[http://dx.doi.org/10.1007/s00210-010-0546-1] [PMID: 20694791]
[54]
Guan, Y.; Quan, D.; Chen, K.; Kang, L.; Yang, D.; Wu, H.; Yan, M.; Wu, S.; Lv, L.; Zhang, G. Kaempferol inhibits renal fibrosis by suppression of the sonic hedgehog signaling pathway. Phytomedicine, 2023, 108, 154246.
[http://dx.doi.org/10.1016/j.phymed.2022.154246] [PMID: 36274411]
[55]
García-Saura, M.F.; Galisteo, M.; Villar, I.C.; Bermejo, A.; Zarzuelo, A.; Vargas, F.; Duarte, J. Effects of chronic quercetin treatment in experimental renovascular hypertension. Mol. Cell. Biochem., 2005, 270(1-2), 147-155.
[http://dx.doi.org/10.1007/s11010-005-4503-0] [PMID: 15792364]
[56]
Machado Dutra, J.; Espitia, P.J.P.; Andrade Batista, R. Formononetin: Biological effects and uses – A review. Food Chem., 2021, 359, 129975.
[http://dx.doi.org/10.1016/j.foodchem.2021.129975] [PMID: 33962193]
[57]
Oza, M.J.; Kulkarni, Y.A. Formononetin attenuates kidney damage in type 2 diabetic rats. Life Sci., 2019, 219, 109-121.
[http://dx.doi.org/10.1016/j.lfs.2019.01.013] [PMID: 30641085]
[58]
Guo, M.F.; Dai, Y.J.; Gao, J.R.; Chen, P.J. Uncovering the mechanism of astragalus membranaceus in the treatment of diabetic nephropathy based on network pharmacology. J. Diabetes Res., 2020, 2020, 1-13.
[http://dx.doi.org/10.1155/2020/5947304] [PMID: 32215271]
[59]
Camarda, N.; Travers, R.; Yang, V.K.; London, C.; Jaffe, I.Z. VEGF receptor inhibitor-induced hypertension: Emerging mechanisms and clinical implications. Curr. Oncol. Rep., 2022, 24(4), 463-474.
[http://dx.doi.org/10.1007/s11912-022-01224-0] [PMID: 35179707]
[60]
Feng, Y.; Ye, D.; Wang, Z.; Pan, H.; Lu, X.; Wang, M.; Xu, Y.; Yu, J.; Zhang, J.; Zhao, M.; Xu, S.; Pan, W.; Yin, Z.; Ye, J.; Wan, J. The role of interleukin-6 family members in cardiovascular diseases. Front. Cardiovasc. Med., 2022, 9, 818890.
[http://dx.doi.org/10.3389/fcvm.2022.818890] [PMID: 35402550]
[61]
Yin, L.; Bai, J.; Yu, W.J.; Liu, Y.; Li, H.H.; Lin, Q.Y. Blocking VCAM-1 prevents angiotensin II-induced hypertension and vascular remodeling in mice. Front. Pharmacol., 2022, 13, 825459.
[http://dx.doi.org/10.3389/fphar.2022.825459] [PMID: 35222039]
[62]
Feng, W.; Guan, Z.; Ying, W.Z.; Xing, D.; Ying, K.E.; Sanders, P.W. Matrix metalloproteinase-9 regulates afferent arteriolar remodeling and function in hypertension-induced kidney disease. Kidney Int., 2023, 104(4), 740-753.
[http://dx.doi.org/10.1016/j.kint.2023.06.031] [PMID: 37423509]
[63]
Man, A.W.C.; Zhou, Y.; Reifenberg, G.; Camp, A.; Münzel, T.; Daiber, A.; Xia, N.; Li, H. Deletion of adipocyte NOS3 potentiates high-fat diet-induced hypertension and vascular remodelling via chemerin. Cardiovasc. Res., 2023, 119(17), 2755-2769.
[http://dx.doi.org/10.1093/cvr/cvad164] [PMID: 37897505]
[64]
Li, R.; Zhao, A.; Diao, X.; Song, J.; Wang, C.; Li, Y.; Qi, X.; Guan, Z.; Zhang, T.; He, Y. Polymorphism of NOS3 gene and its association with essential hypertension in Guizhou populations of China. PLoS One, 2023, 18(2), e0278680.
[http://dx.doi.org/10.1371/journal.pone.0278680] [PMID: 36758021]
[65]
Yu, J.; Wang, S.; Shi, W.; Zhou, W.; Niu, Y.; Huang, S.; Zhang, Y.; Zhang, A.; Jia, Z. Roxadustat prevents Ang II hypertension by targeting angiotensin receptors and eNOS. JCI Insight, 2021, 6(18), e133690.
[http://dx.doi.org/10.1172/jci.insight.133690] [PMID: 34403364]
[66]
Szychowski, K.A.; Skóra, B.; Wójtowicz, A.K. Triclosan affects the expression of nitric oxide synthases (NOSs), peroxisome proliferator-activated receptor gamma (PPARγ), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in mouse neocortical neurons in vitro. Toxicol. In Vitro, 2021, 73, 105143.
[http://dx.doi.org/10.1016/j.tiv.2021.105143] [PMID: 33722737]
[67]
Sandes, E.O.; Lodillinsky, C.; Langle, Y.; Belgorosky, D.; Marino, L.; Gimenez, L.; Casabé, A.R.; Eiján, A.M. Inducible nitric oxide synthase and PPARγ are involved in bladder cancer progression. J. Urol., 2012, 188(3), 967-973.
[http://dx.doi.org/10.1016/j.juro.2012.04.099] [PMID: 22819108]
[68]
Yuen, C.Y.; Wong, W.T.; Tian, X.Y.; Wong, S.L.; Lau, C.W.; Yu, J.; Tomlinson, B.; Yao, X.; Huang, Y. Telmisartan inhibits vasoconstriction via PPARγ-dependent expression and activation of endothelial nitric oxide synthase. Cardiovasc. Res., 2011, 90(1), 122-129.
[http://dx.doi.org/10.1093/cvr/cvq392] [PMID: 21156825]
[69]
Vallée, A.; Lévy, B.L.; Blacher, J. Interplay between the renin-angiotensin system, the canonical WNT/β-catenin pathway and PPARγ in hypertension. Curr. Hypertens. Rep., 2018, 20(7), 62.
[http://dx.doi.org/10.1007/s11906-018-0860-4] [PMID: 29884931]
[70]
Sigmund, C.D. A clinical link between peroxisome proliferator-activated receptor γ and the renin-angiotensin system. Arterioscler. Thromb. Vasc. Biol., 2013, 33(4), 676-678.
[http://dx.doi.org/10.1161/ATVBAHA.112.301125] [PMID: 23486770]
[71]
Fang, S.; Livergood, M.C.; Nakagawa, P.; Wu, J.; Sigmund, C.D. Role of the peroxisome proliferator activated receptors in hypertension. Circ. Res., 2021, 128(7), 1021-1039.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.318062] [PMID: 33793338]
[72]
Kökény, G.; Calvier, L.; Hansmann, G. PPARγ and TGFβ—major regulators of metabolism, inflammation, and fibrosis in the lungs and kidneys. Int. J. Mol. Sci., 2021, 22(19), 10431.
[http://dx.doi.org/10.3390/ijms221910431] [PMID: 34638771]
[73]
Sonneveld, R.; Hoenderop, J.G.; Isidori, A.M.; Henique, C.; Dijkman, H.B.; Berden, J.H.; Tharaux, P.L.; van der Vlag, J.; Nijenhuis, T. Sildenafil prevents podocyte injury via PPAR-γ–mediated TRPC6 inhibition. J. Am. Soc. Nephrol., 2017, 28(5), 1491-1505.
[http://dx.doi.org/10.1681/ASN.2015080885] [PMID: 27895156]
[74]
Ma, Y.; Shi, M.; Wang, Y.; Liu, J. PPAR γ and its agonists in chronic kidney disease. Int. J. Nephrol., 2020, 2020, 1-10.
[http://dx.doi.org/10.1155/2020/2917474] [PMID: 32158560]
[75]
Anwar, M.A.; Shalhoub, J.; Lim, C.S.; Gohel, M.S.; Davies, A.H. The effect of pressure-induced mechanical stretch on vascular wall differential gene expression. J. Vasc. Res., 2012, 49(6), 463-478.
[http://dx.doi.org/10.1159/000339151] [PMID: 22796658]

© 2024 Bentham Science Publishers | Privacy Policy