Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

DOCK1抑制剂topp通过调节twist介导的EMT增强顺铂治疗乳腺癌的疗效

卷 25, 期 1, 2025

发表于: 26 February, 2024

页: [72 - 82] 页: 11

弟呕挨: 10.2174/0115680096281231240202073558

open access plus

Open Access Journals Promotions 2
摘要

背景:据报道,DOCK1参与肿瘤进展和耐药。1-(2-(30-(三氟甲基)-[1,10-联苯]-4-基)-2-氧乙基)-5-吡咯烷基磺酰基2(1H)-吡啶酮(TBOPP)是一种选择性DOCK1抑制剂;然而,DOCK1及其抑制在乳腺癌耐药中的作用和分子机制仍然知之甚少。目的:本研究旨在探讨DOCK1在BC耐药中的潜在机制。 方法:采用DOCK1或Twist siRNA和Twist质粒进行体外实验,探讨DOCK1的功能。采用小鼠异种移植物模型进行体内实验。 结果:在本研究中,我们证明了DOCK1 siRNA在BC细胞中促进顺铂敏感性。此外,TBOPP还可以增强顺铂在体内和体外的治疗效果。在机制上,DOCK1 siRNA抑制EMT。Twist 1是诱导EMT的转录因子之一,已知可诱导EMT。为了进一步揭示DOCK在BC细胞中的作用,我们将DOCK1和Twist1 siRNA共转染到BC细胞中,发现DOCK1和Twist siRNA共转染不能进一步增强BC细胞的顺铂敏感性。此外,DOCK1 siRNA未能逆转Twist 1上调的作用。 结论:综上所述,这些结果表明DOCK1可能作为BC的潜在治疗靶点,顺铂联合TBOPP可能为顺铂耐药BC患者提供一种有希望的治疗策略。

关键词: 乳腺癌,顺铂,DOCK1,TWIST 1,上皮-间质转化,TBOPP。

图形摘要
[1]
DeSantis, C.E.; Ma, J.; Gaudet, M.M.; Newman, L.A.; Miller, K.D.; Goding Sauer, A.; Jemal, A.; Siegel, R.L. Breast cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(6), 438-451.
[http://dx.doi.org/10.3322/caac.21583] [PMID: 31577379]
[2]
Ozols, R.F.; O’Dwyer, P.J.; Hamilton, T.C. Clinical reversal of drug resistance in ovarian cancer. Gynecol. Oncol., 1993, 51(1), 90-96.
[http://dx.doi.org/10.1006/gyno.1993.1252] [PMID: 8244181]
[3]
Wu, S.G.; Shih, J.Y. Management of acquired resistance to EGFR TKI–targeted therapy in advanced non-small cell lung cancer. Mol. Cancer, 2018, 17(1), 38.
[http://dx.doi.org/10.1186/s12943-018-0777-1] [PMID: 29455650]
[4]
Garcia-Martinez, L.; Zhang, Y.; Nakata, Y.; Chan, H.L.; Morey, L. Epigenetic mechanisms in breast cancer therapy and resistance. Nat. Commun., 2021, 12(1), 1786.
[http://dx.doi.org/10.1038/s41467-021-22024-3] [PMID: 33741974]
[5]
Rodler, E.; Sharma, P.; Barlow, W.E.; Gralow, J.R.; Puhalla, S.L.; Anders, C.K.; Goldstein, L.; Tripathy, D.; Brown-Glaberman, U.A.; Huynh, T.T.; Szyarto, C.S.; Godwin, A.K.; Pathak, H.B.; Swisher, E.M.; Radke, M.R.; Timms, K.M.; Lew, D.L.; Miao, J.; Pusztai, L.; Hayes, D.F.; Hortobagyi, G.N. Cisplatin with veliparib or placebo in metastatic triple-negative breast cancer and BRCA mutation-associated breast cancer (S1416): A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol., 2023, 24(2), 162-174.
[http://dx.doi.org/10.1016/S1470-2045(22)00739-2] [PMID: 36623515]
[6]
Côté, J.F.; Vuori, K. GEF what? Dock180 and related proteins help Rac to polarize cells in new ways. Trends Cell Biol., 2007, 17(8), 383-393.
[http://dx.doi.org/10.1016/j.tcb.2007.05.001] [PMID: 17765544]
[7]
Gadea, G.; Blangy, A. Dock-family exchange factors in cell migration and disease. Eur. J. Cell Biol., 2014, 93(10-12), 466-477.
[http://dx.doi.org/10.1016/j.ejcb.2014.06.003] [PMID: 25022758]
[8]
Lee, S.H.; Chiu, Y.C.; Li, Y.H.; Lin, C.C.; Hou, H.A.; Chou, W.C.; Tien, H.F. High expression of dedicator of cytokinesis 1 (DOCK1) confers poor prognosis in acute myeloid leukemia. Oncotarget, 2017, 8(42), 72250-72259.
[http://dx.doi.org/10.18632/oncotarget.19706] [PMID: 29069784]
[9]
Tomino, T.; Tajiri, H.; Tatsuguchi, T.; Shirai, T.; Oisaki, K.; Matsunaga, S.; Sanematsu, F.; Sakata, D.; Yoshizumi, T.; Maehara, Y.; Kanai, M.; Cote, J.F.; Fukui, Y.; Uruno, T. DOCK1 inhibition suppresses cancer cell invasion and macropinocytosis induced by self-activating Rac1P29S mutation. Biochem. Biophys. Res. Commun., 2018, 497(1), 298-304.
[http://dx.doi.org/10.1016/j.bbrc.2018.02.073] [PMID: 29432733]
[10]
Liang, Y.; Wang, S.; Zhang, Y. Downregulation of Dock1 and Elmo1 suppresses the migration and invasion of triple negative breast cancer epithelial cells through the RhoA/Rac1 pathway. Oncol. Lett., 2018, 16(3), 3481-3488.
[http://dx.doi.org/10.3892/ol.2018.9077] [PMID: 30127952]
[11]
Greenburg, G.; Hay, E.D. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells. J. Cell Biol., 1982, 95(1), 333-339.
[http://dx.doi.org/10.1083/jcb.95.1.333] [PMID: 7142291]
[12]
Goossens, S.; Vandamme, N.; Van Vlierberghe, P.; Berx, G. EMT transcription factors in cancer development re-evaluated: Beyond EMT and MET. Biochim. Biophys. Acta Rev. Cancer, 2017, 1868(2), 584-591.
[http://dx.doi.org/10.1016/j.bbcan.2017.06.006] [PMID: 28669750]
[13]
Lu, W.; Kang, Y. Epithelial-mesenchymal plasticity in cancer progression and metastasis. Dev. Cell, 2019, 49(3), 361-374.
[http://dx.doi.org/10.1016/j.devcel.2019.04.010] [PMID: 31063755]
[14]
Sun, N.Y.; Yang, M.H. Metabolic reprogramming and epithelial-mesenchymal plasticity: Opportunities and challenges for cancer therapy. Front. Oncol., 2020, 10, 792.
[http://dx.doi.org/10.3389/fonc.2020.00792] [PMID: 32509584]
[15]
Chen, J.; Chen, D.; Chen, W.; Jiang, H.; Yang, H.; Wang, Y. Downregulation of DOCK1 sensitizes bladder cancer cells to cisplatin through preventing epithelial-mesenchymal transition. Drug Des. Devel. Ther., 2016, 10, 2845-2853.
[http://dx.doi.org/10.2147/DDDT.S101998] [PMID: 27660415]
[16]
Zhu, Q.Q.; Ma, C.; Wang, Q.; Song, Y.; Lv, T. The role of TWIST1 in epithelial-mesenchymal transition and cancers. Tumour Biol., 2016, 37(1), 185-197.
[http://dx.doi.org/10.1007/s13277-015-4450-7] [PMID: 26602382]
[17]
Zheng, X.; Carstens, J.L.; Kim, J.; Scheible, M.; Kaye, J.; Sugimoto, H.; Wu, C.C.; LeBleu, V.S.; Kalluri, R. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature, 2015, 527(7579), 525-530.
[http://dx.doi.org/10.1038/nature16064] [PMID: 26560028]
[18]
Sun, J.; Xu, Z.; Lv, H.; Wang, Y.; Wang, L.; Ni, Y.; Wang, X.; Hu, C.; Chen, S.; Teng, F.; Chen, W.; Cheng, X. eIF5A2 regulates the resistance of gastric cancer cells to cisplatin via induction of EMT. Am. J. Transl. Res., 2018, 10(12), 4269-4279.
[PMID: 30662669]
[19]
Yochum, Z.A.; Cades, J.; Wang, H.; Chatterjee, S.; Simons, B.W.; O’Brien, J.P.; Khetarpal, S.K.; Lemtiri-Chlieh, G.; Myers, K.V.; Huang, E.H.B.; Rudin, C.M.; Tran, P.T.; Burns, T.F. Targeting the EMT transcription factor TWIST1 overcomes resistance to EGFR inhibitors in EGFR-mutant non-small-cell lung cancer. Oncogene, 2019, 38(5), 656-670.
[http://dx.doi.org/10.1038/s41388-018-0482-y] [PMID: 30171258]
[20]
Li, Q.Q.; Xu, J.D.; Wang, W.J.; Cao, X.X.; Chen, Q.; Tang, F.; Chen, Z.Q.; Liu, X.P.; Xu, Z.D. Twist1-mediated adriamycin-induced epithelial-mesenchymal transition relates to multidrug resistance and invasive potential in breast cancer cells. Clin. Cancer Res., 2009, 15(8), 2657-2665.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-2372] [PMID: 19336515]
[21]
Chen, K.; Xu, J.; Tong, Y.; Yan, J.F.; Pan, Y.; Wang, W.; Zheng, L.; Zheng, X.; Hu, C.; Hu, X.; Shen, X.; Chen, W. Rab31 promotes metastasis and cisplatin resistance in stomach adenocarcinoma through Twist1-mediated EMT. Cell Death Dis., 2023, 14(2), 115.
[http://dx.doi.org/10.1038/s41419-023-05596-4] [PMID: 36781842]
[22]
Tajiri, H.; Uruno, T.; Shirai, T.; Takaya, D.; Matsunaga, S.; Setoyama, D.; Watanabe, M.; Kukimoto-Niino, M.; Oisaki, K.; Ushijima, M.; Sanematsu, F.; Honma, T.; Terada, T.; Oki, E.; Shirasawa, S.; Maehara, Y.; Kang, D.; Côté, J.F.; Yokoyama, S.; Kanai, M.; Fukui, Y. Targeting ras-driven cancer cell survival and invasion through selective inhibition of DOCK1. Cell Rep., 2017, 19(5), 969-980.
[http://dx.doi.org/10.1016/j.celrep.2017.04.016] [PMID: 28467910]
[23]
Li, R.; Wu, C.; Liang, H.; Zhao, Y.; Lin, C.; Zhang, X.; Ye, C. Knockdown of TWIST enhances the cytotoxicity of chemotherapeutic drugs in doxorubicin-resistant HepG2 cells by suppressing MDR1 and EMT. Int. J. Oncol., 2018, 53(4), 1763-1773.
[http://dx.doi.org/10.3892/ijo.2018.4495] [PMID: 30066890]
[24]
Feng, J.; Lu, H.; Ma, W.; Tian, W.; Lu, Z.; Yang, H.; Cai, Y.; Cai, P.; Sun, Y.; Zhou, Z.; Feng, J.; Deng, J.; Shu, Y.; Qu, K.; Jia, W.; Gao, P.; Zhang, H. Genome-wide CRISPR screen identifies synthetic lethality between DOCK1 inhibition and metformin in liver cancer. Protein Cell, 2022, 13(11), 825-841.
[http://dx.doi.org/10.1007/s13238-022-00906-6] [PMID: 35217990]
[25]
He, L.; Luo, L.; Zhu, H.; Yang, H.; Zhang, Y.; Wu, H.; Sun, H.; Jiang, F.; Kathera, C.S.; Liu, L.; Zhuang, Z.; Chen, H.; Pan, F.; Hu, Z.; Zhang, J.; Guo, Z. FEN1 promotes tumor progression and confers cisplatin resistance in non-small-cell lung cancer. Mol. Oncol., 2017, 11(6), 640-654.
[http://dx.doi.org/10.1002/1878-0261.12058] [PMID: 28371273]
[26]
Xu, Z.; Yao, T.; Liu, W. miR-378a-3p sensitizes ovarian cancer cells to cisplatin through targeting MAPK1/GRB2. Biomed. Pharmacother., 2018, 107, 1410-1417.
[http://dx.doi.org/10.1016/j.biopha.2018.08.132] [PMID: 30257357]
[27]
Liu, G.; Yu, M.; Wu, B.; Guo, S.; Huang, X.; Zhou, F.; Claret, F.X.; Pan, Y. Jab1/Cops5 contributes to chemoresistance in breast cancer by regulating Rad51. Cell. Signal., 2019, 53, 39-48.
[http://dx.doi.org/10.1016/j.cellsig.2018.09.010] [PMID: 30244171]
[28]
Miller, R.P.; Tadagavadi, R.K.; Ramesh, G.; Reeves, W.B. Mechanisms of Cisplatin nephrotoxicity. Toxins, 2010, 2(11), 2490-2518.
[http://dx.doi.org/10.3390/toxins2112490] [PMID: 22069563]
[29]
Zhu, D.; Zhang, X.; Lin, Y.; Liang, S.; Song, Z.; Dong, C. MT1JP inhibits tumorigenesis and enhances cisplatin sensitivity of breast cancer cells through competitively binding to miR-24-3p. Am. J. Transl. Res., 2019, 11(1), 245-256.
[PMID: 30787983]
[30]
Jiang, Y.; Ji, F.; Liu, Y.; He, M.; Zhang, Z.; Yang, J.; Wang, N.; Zhong, C.; Jin, Q.; Ye, X.; Chen, T. Cisplatin-induced autophagy protects breast cancer cells from apoptosis by regulating yes-associated protein. Oncol. Rep., 2017, 38(6), 3668-3676.
[http://dx.doi.org/10.3892/or.2017.6035] [PMID: 29039616]
[31]
Dunne, M.; Dou, Y.N.; Drake, D.M.; Spence, T.; Gontijo, S.M.L.; Wells, P.G.; Allen, C. Hyperthermia-mediated drug delivery induces biological effects at the tumor and molecular levels that improve cisplatin efficacy in triple negative breast cancer. J. Control. Release, 2018, 282, 35-45.
[http://dx.doi.org/10.1016/j.jconrel.2018.04.029] [PMID: 29673642]
[32]
Soleymani Abyaneh, H.; Gupta, N.; Radziwon-Balicka, A.; Jurasz, P.; Seubert, J.; Lai, R.; Lavasanifar, A. STAT3 but Not HIF-1α is important in mediating hypoxia-induced chemoresistance in MDA-MB-231, a triple negative breast cancer cell line. Cancers, 2017, 9(12), 137.
[http://dx.doi.org/10.3390/cancers9100137] [PMID: 29036915]
[33]
Hasegawa, H.; Kiyokawa, E.; Tanaka, S.; Nagashima, K.; Gotoh, N.; Shibuya, M.; Kurata, T.; Matsuda, M. DOCK180, a major CRK-binding protein, alters cell morphology upon translocation to the cell membrane. Mol. Cell. Biol., 1996, 16(4), 1770-1776.
[http://dx.doi.org/10.1128/MCB.16.4.1770] [PMID: 8657152]
[34]
Kiyokawa, E.; Hashimoto, Y.; Kobayashi, S.; Sugimura, H.; Kurata, T.; Matsuda, M. Activation of Rac1 by a Crk SH3-binding protein, DOCK180. Genes Dev., 1998, 12(21), 3331-3336.
[http://dx.doi.org/10.1101/gad.12.21.3331] [PMID: 9808620]
[35]
Jarzynka, M.J.; Hu, B.; Hui, K.M.; Bar-Joseph, I.; Gu, W.; Hirose, T.; Haney, L.B.; Ravichandran, K.S.; Nishikawa, R.; Cheng, S.Y. ELMO1 and Dock180, a bipartite Rac1 guanine nucleotide exchange factor, promote human glioma cell invasion. Cancer Res., 2007, 67(15), 7203-7211.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0473] [PMID: 17671188]
[36]
Li, H.; Yang, L.; Fu, H.; Yan, J.; Wang, Y.; Guo, H.; Hao, X.; Xu, X.; Jin, T.; Zhang, N. Association between Gαi2 and ELMO1/Dock180 connects chemokine signalling with Rac activation and metastasis. Nat. Commun., 2013, 4(1), 1706.
[http://dx.doi.org/10.1038/ncomms2680] [PMID: 23591873]
[37]
Pan, Y.; Li, X.; Duan, J.; Yuan, L.; Fan, S.; Fan, J.; Xiaokaiti, Y.; Yang, H.; Wang, Y.; Li, X. Enoxaparin sensitizes human non-small-cell lung carcinomas to gefitinib by inhibiting DOCK1 expression, vimentin phosphorylation, and Akt activation. Mol. Pharmacol., 2015, 87(3), 378-390.
[http://dx.doi.org/10.1124/mol.114.094425] [PMID: 25488183]
[38]
Katoh, H.; Hiramoto, K.; Negishi, M. Activation of Rac1 by RhoG regulates cell migration. J. Cell Sci., 2006, 119(1), 56-65.
[http://dx.doi.org/10.1242/jcs.02720] [PMID: 16339170]
[39]
Laurin, M.; Huber, J.; Pelletier, A.; Houalla, T.; Park, M.; Fukui, Y.; Haibe-Kains, B.; Muller, W.J.; Côté, J.F. Rac-specific guanine nucleotide exchange factor DOCK1 is a critical regulator of HER2-mediated breast cancer metastasis. Proc. Natl. Acad. Sci., 2013, 110(18), 7434-7439.
[http://dx.doi.org/10.1073/pnas.1213050110] [PMID: 23592719]
[40]
Chen, Q.; Jiao, D.; Wang, J.; Hu, H.; Tang, X.; Chen, J.; Mou, H.; Lu, W. miR-206 regulates cisplatin resistance and EMT in human lung adenocarcinoma cells partly by targeting MET. Oncotarget, 2016, 7(17), 24510-24526.
[http://dx.doi.org/10.18632/oncotarget.8229] [PMID: 27014910]
[41]
Xie, S.L.; Fan, S.; Zhang, S.Y.; Chen, W.X.; Li, Q.X.; Pan, G.K.; Zhang, H.Q.; Wang, W.W.; Weng, B.; Zhang, Z.; Li, J.S.; Lin, Z.Y. SOX8 regulates cancer stem‐like properties and cisplatin‐induced EMT in tongue squamous cell carcinoma by acting on the Wnt/β‐catenin pathway. Int. J. Cancer, 2018, 142(6), 1252-1265.
[http://dx.doi.org/10.1002/ijc.31134] [PMID: 29071717]
[42]
Takeda, T.; Tsubaki, M.; Matsuda, T.; Kimura, A.; Jinushi, M.; Obana, T.; Takegami, M.; Nishida, S. EGFR inhibition reverses epithelial mesenchymal transition, and decreases tamoxifen resistance via Snail and Twist downregulation in breast cancer cells. Oncol. Rep., 2022, 47(6), 109.
[http://dx.doi.org/10.3892/or.2022.8320] [PMID: 35445730]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy