Generic placeholder image

Central Nervous System Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5249
ISSN (Online): 1875-6166

Research Article

The Role of Ocimene in Decreasing α-Synuclein Aggregation using Rotenone-induced Rat Model

Author(s): Ankul Singh Suresh, Aarita Sood and Chitra Vellapandian*

Volume 24, Issue 3, 2024

Published on: 23 February, 2024

Page: [304 - 316] Pages: 13

DOI: 10.2174/0118715249283425240212111523

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Parkinson’s disease is defined by the loss of dopaminergic neurons in the midbrain of substantia nigra associated with Lewy bodies. The precise mechanism is not yet entirely understood.

Objective: The study aims to determine whether ocimene has antiparkinsonian activity by reducing α-Synuclein aggregation levels in the brains of rotenone-induced rat models.

Methods: 36 male rats were used for six groups, with six animals in each group. Vehicle, control (rotenone, 2.5 mg/kg, i.p), standard (L-Dopa, 10 mg/kg, i.p), Test drug of low dose (66.66 mg/kg, i.p), medium dose (100 mg/kg, i.p), and high dose (200 mg/kg, i.p) were administered to the rats. The open field, actophotometer, hanging wire, and catalepsy tests were used to assess the rat’s motor performance. The expressions of biomarkers such as AchE, D2 Receptor, and α- Synuclein were evaluated, and their level of expression in the brain samples was checked using ELISA. Histopathological analysis was also carried out to determine the degree of neuron degeneration in the brain samples.

Results: The open field test showed significant anxiety levels, whereas test groups showed fewer anxiety levels but increased motor activity. The biochemical tests revealed that rotenonetreated rats had higher levels of AchE, but ocimene-treated rats had a significant decrease in AchE levels. The test drug-treated rats also expressed high levels of D2 receptors. In ocimenetreated rats, α-Synuclein aggregation was reduced, however, in rotenone-treated rats' brain samples, higher clumps of α-Synuclein were observed.

Conclusion: Ocimene has neuroprotective properties. As a result, this essential oil might be helpful as a therapeutic treatment for Parkinson's disease.

Keywords: Ocimene, rotenone, L-dopa, α-synuclein, AchE, D2 receptor.

Graphical Abstract
[1]
Simon, D.K.; Tanner, C.M.; Brundin, P. Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin. Geriatr. Med., 2020, 36(1), 1-12.http://linkinghub.elsevier.com/retrieve/pii/S0749069019300631
[http://dx.doi.org/10.1016/j.cger.2019.08.002] [PMID: 31733690]
[2]
Foffani, G.; Obeso, J.A. A cortical pathogenic theory of parkinson’s disease. Neuron, 2018, 99(6), 1116-1128.
[http://dx.doi.org/10.1016/j.neuron.2018.07.028] [PMID: 30236282]
[3]
Hattingen, E.; Magerkurth, J.; Pilatus, U.; Mozer, A.; Seifried, C.; Steinmetz, H.; Zanella, F.; Hilker, R. Phosphorus and proton magnetic resonance spectroscopy demonstrates mitochondrial dysfunction in early and advanced Parkinson’s disease. Brain, 2009, 132(12), 3285-3297.
[http://dx.doi.org/10.1093/brain/awp293] [PMID: 19952056]
[4]
Poewe, W.; Seppi, K.; Tanner, C.M.; Halliday, G.M.; Brundin, P.; Volkmann, J.; Schrag, A.E.; Lang, A.E. Parkinson disease. Nat. Rev. Dis. Prim., 2017, 3(1), 17013.http://www.nature.com/articles/nrdp201713
[http://dx.doi.org/10.1038/nrdp.2017.13]
[5]
Bartels, T.; Choi, J.G.; Selkoe, D.J. α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature, 2011, 477(7362), 107-110.http://www.nature.com/articles/nature10324
[http://dx.doi.org/10.1038/nature10324] [PMID: 21841800]
[6]
Ugalde, C.L.; Lawson, V.A.; Finkelstein, D.I.; Hill, A.F. The role of lipids in α-synuclein misfolding and neurotoxicity. J. Biol. Chem., 2019, 294(23), 9016-9028.
[http://dx.doi.org/10.1074/jbc.REV119.007500] [PMID: 31064841]
[7]
Burré, J.; Sharma, M.; Südhof, T.C. Cell biology and pathophysiology of α-synuclein. Cold Spring Harb. Perspect. Med., 2018, 8(3), a024091.
[http://dx.doi.org/10.1101/cshperspect.a024091] [PMID: 28108534]
[8]
Ramirez-Moreno, M.J.; Duarte-Jurado, A.P.; Gopar-Cuevas, Y.; Gonzalez-Alcocer, A.; Loera-Arias, M.J.; Saucedo-Cardenas, O.; Montes de Oca-Luna, R.; Rodriguez-Rocha, H.; Garcia-Garcia, A. Autophagy stimulation decreases dopaminergic neuronal death mediated by oxidative stress. Mol. Neurobiol., 2019, 56(12), 8136-8156.
[http://dx.doi.org/10.1007/s12035-019-01654-1] [PMID: 31197654]
[9]
Aman, Y.; Schmauck-Medina, T.; Hansen, M.; Morimoto, R.I.; Simon, A.K.; Bjedov, I.; Palikaras, K.; Simonsen, A.; Johansen, T.; Tavernarakis, N.; Rubinsztein, D.C.; Partridge, L.; Kroemer, G.; Labbadia, J.; Fang, E.F. Autophagy in healthy aging and disease. Nat Aging, 2021, 1(8), 634-650.http://www.nature.com/articles/s43587-021-00098-4
[http://dx.doi.org/10.1038/s43587-021-00098-4]
[10]
Arotcarena, M.L.; Teil, M.; Dehay, B. Autophagy in synucleinopathy: The overwhelmed and defective machinery. Cells, 2019, 8(6), 565.
[http://dx.doi.org/10.3390/cells8060565] [PMID: 31181865]
[11]
Zhang, Y.N.; Fan, J.K.; Gu, L.; Yang, H.M.; Zhan, S.Q.; Zhang, H. Metabotropic glutamate receptor 5 inhibits α-synuclein-induced microglia inflammation to protect from neurotoxicity in Parkinson’s disease. J. Neuroinflammation, 2021, 18(1), 23.
[http://dx.doi.org/10.1186/s12974-021-02079-1] [PMID: 33461598]
[12]
Tanimura, A.; Pancani, T.; Lim, S.A.O.; Tubert, C.; Melendez, A.E.; Shen, W.; Surmeier, D.J. Striatal cholinergic interneurons and Parkinson’s disease. Eur. J. Neurosci., 2018, 47(10), 1148-1158.
[http://dx.doi.org/10.1111/ejn.13638] [PMID: 28677242]
[13]
Bohnen, N.I.; Yarnall, A.J.; Weil, R.S.; Moro, E.; Moehle, M.S.; Borghammer, P.; Bedard, M.A.; Albin, R.L. Cholinergic system changes in Parkinson’s disease: Emerging therapeutic approaches. Lancet Neurol, 2022, 21(4), 381-392.http://linkinghub.elsevier.com/retrieve/pii/S147444222100377X
[http://dx.doi.org/10.1016/S1474-4422(21)00377-X] [PMID: 35131038]
[14]
Wei, Z.Y.D.; Shetty, A.K. Treating Parkinson’s disease by astrocyte reprogramming: Progress and challenges. Sci. Adv., 2021, 7(26), eabg3198.
[http://dx.doi.org/10.1126/sciadv.abg3198] [PMID: 34162545]
[15]
Yang, P.; Perlmutter, J.S.; Benzinger, T.L.S.; Morris, J.C.; Xu, J. Dopamine D3 receptor: A neglected participant in Parkinson Disease pathogenesis and treatment? Ageing Res. Rev., 2020, 57100994.https://linkinghub.elsevier.com/retrieve/pii/S1568163719303800
[http://dx.doi.org/10.1016/j.arr.2019.100994] [PMID: 31765822]
[16]
Mehra, S.; Sahay, S.; Maji, S.K. α-Synuclein misfolding and aggregation: Implications in Parkinson’s disease pathogenesis. Biochim. Biophys. Acta. Proteins Proteomics, 2019, 1867(10), 890-908.http://linkinghub.elsevier.com/retrieve/pii/S1570963919300457
[http://dx.doi.org/10.1016/j.bbapap.2019.03.001] [PMID: 30853581]
[17]
Betarbet, R.; Sherer, T.B.; MacKenzie, G.; Garcia-Osuna, M.; Panov, A.V.; Greenamyre, J.T. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat. Neurosci, 2000, 3(12), 1301-1306.http://www.nature.com/articles/nn1200_1301
[http://dx.doi.org/10.1038/81834] [PMID: 11100151]
[18]
Margabandhu, G.; Vanisree, A.J. Dopamine, a key factor of mitochondrial damage and neuronal toxicity on rotenone exposure and also parkinsonic motor dysfunction—Impact of asiaticoside with a probable vesicular involvement. J. Chem. Neuroanat., 2020, 106, 101788.
[http://dx.doi.org/10.1016/j.jchemneu.2020.101788] [PMID: 32278634]
[19]
Imafuku, F.; Miyazaki, I.; Sun, J.; Kamimai, S.; Shimizu, T.; Toyota, T.; Okamoto, Y.; Isooka, N.; Kikuoka, R.; Kitamura, Y.; Asanuma, M. Central and enteric neuroprotective effects by eucommia ulmoides extracts on neurodegeneration in rotenone-induced parkinsonian mouse. Acta Med. Okayama, 2022, 76(4), 373-383.http://www.ncbi.nlm.nih.gov/pubmed/36123151 [Internet]
[PMID: 36123151]
[20]
Paulino, B.N.; Silva, G.N.S.; Araújo, F.F.; Néri-Numa, I.A.; Pastore, G.M.; Bicas, J.L.; Molina, G. Beyond natural aromas: The bioactive and technological potential of monoterpenes. Trends Food Sci. Technol., 2022, 128, 188-201.http://linkinghub.elsevier.com/retrieve/pii/S0924224422003569 [Internet]
[http://dx.doi.org/10.1016/j.tifs.2022.08.006]
[21]
Pina, L.T.S.; Guimarães, A.G.; Santos, W.B.R.; Oliveira, M.A.; Rabelo, T.K.; Serafini, M.R. Monoterpenes as a perspective for the treatment of seizures: A Systematic Review. Phytomedicine, 2021, 81, 153422.http://linkinghub.elsevier.com/retrieve/pii/S0944711320302531
[http://dx.doi.org/10.1016/j.phymed.2020.153422] [PMID: 33310306]
[22]
Wojtunik-Kulesza, K.A.; Kasprzak, K.; Oniszczuk, T.; Oniszczuk, A. Natural monoterpenes: Much more than only a scent. Chem. Biodivers., 2019, 16(12), e1900434.
[http://dx.doi.org/10.1002/cbdv.201900434] [PMID: 31587473]
[23]
Tundis, R.; Xiao, J.; Silva, A.S.; Carreiró, F.; Loizzo, M.R. Health-promoting properties and potential application in the food industry of citrus medica l. and citrus × clementina hort. ex tan. essential oils and their main constituents. Plants, 2023, 12(5), 991.
[http://dx.doi.org/10.3390/plants12050991] [PMID: 36903853]
[24]
Mony, T.J.; Elahi, F.; Choi, J.W.; Park, S.J. Neuropharmacological effects of terpenoids on preclinical animal models of psychiatric disorders: A review. Antioxidants, 2022, 11(9), 1834.http://www.mdpi.com/2076-3921/11/9/1834
[http://dx.doi.org/10.3390/antiox11091834] [PMID: 36139909]
[25]
Sánchez-Martínez, J.D.; Bueno, M.; Alvarez-Rivera, G.; Tudela, J.; Ibañez, E.; Cifuentes, A. In vitro neuroprotective potential of terpenes from industrial orange juice by-products. Food Funct, 2021, 12(1), 302, 314.http://xlink.rsc.org/?DOI=D0FO02809F
[http://dx.doi.org/10.1039/D0FO02809F] [PMID: 33300906]
[26]
Bomfim, L.M.; Menezes, L.R.A.; Rodrigues, A.C.B.C.; Dias, R.B.; Gurgel Rocha, C.A.; Soares, M.B.P.; Neto, A.F.S.; Nascimento, M.P.; Campos, A.F.; Silva, L.C.R.C.; Costa, E.V.; Bezerra, D.P. Antitumour activity of the microencapsulation of annona vepretorum essential oil. Basic Clin. Pharmacol. Toxicol., 2016, 118(3), 208-213.
[http://dx.doi.org/10.1111/bcpt.12488] [PMID: 26348780]
[27]
Cascone, P.; Iodice, L.; Maffei, M.E.; Bossi, S.; Arimura, G.; Guerrieri, E. Tobacco overexpressing β-ocimene induces direct and indirect responses against aphids in receiver tomato plants. J. Plant Physiol., 2015, 173, 28-32.
[http://dx.doi.org/10.1016/j.jplph.2014.08.011] [PMID: 25462075]
[28]
Russo, E.B.; Marcu, J. Cannabis pharmacology. The Usual Suspects and a Few Promising Leads. In ; , 2017, pp. 67-134.https://linkinghub.elsevier.com/retrieve/pii/S1054358917300273
[29]
Ojha, S.; Javed, H.; Azimullah, S.; Abul Khair, S.B.; Haque, M.E. Glycyrrhizic acid attenuates neuroinflammation and oxidative stress in rotenone model of parkinson’s disease. Neurotox. Res., 2016, 29(2), 275-287.
[http://dx.doi.org/10.1007/s12640-015-9579-z] [PMID: 26607911]
[30]
Zagoura, D.; Canovas-Jorda, D.; Pistollato, F.; Bremer-Hoffmann, S.; Bal-Price, A. Evaluation of the rotenone-induced activation of the Nrf2 pathway in a neuronal model derived from human induced pluripotent stem cells. Neurochem. Int., 2017, 106, 62-73.https://linkinghub.elsevier.com/retrieve/pii/S0197018616302844
[http://dx.doi.org/10.1016/j.neuint.2016.09.004] [PMID: 27615060]
[31]
Cass, W.A.; Peters, L.E.; Fletcher, A.M.; Yurek, D.M. Calcitriol promotes augmented dopamine release in the lesioned striatum of 6-hydroxydopamine treated rats. Neurochem. Res., 2014, 39(8), 1467-1476.
[http://dx.doi.org/10.1007/s11064-014-1331-1] [PMID: 24858239]
[32]
Rispin, A.; Farrar, D.; Margosches, E.; Gupta, K.; Stitzel, K.; Carr, G.; Greene, M.; Meyer, W.; McCall, D. Alternative methods for the median lethal dose (LD(50)) test: The up-and-down procedure for acute oral toxicity. ILAR J., 2002, 43(4), 233-243.
[http://dx.doi.org/10.1093/ilar.43.4.233] [PMID: 12391399]
[33]
Klemann, C.J.H.M.; Martens, G.J.M.; Sharma, M.; Martens, M.B.; Isacson, O.; Gasser, T.; Visser, J.E.; Poelmans, G. Integrated molecular landscape of Parkinson’s disease. npj Park Dis, 2017, 3(1), 14.http://www.nature.com/articles/s41531-017-0015-3
[34]
Paul, C.A.; Beltz, B.; Berger-Sweeney, J. Dissection of rat brains. cold spring harb protoc; Internet, 2008.
[35]
Paydas, S.; Bagir, E.K.; Deveci, M.A.; Gonlusen, G. Clinical and prognostic significance of PD-1 and PD-L1 expression in sarcomas. Med. Oncol., 2016, 33(8), 93.http://link.springer.com/10.1007/s12032-016-0807-z
[http://dx.doi.org/10.1007/s12032-016-0807-z] [PMID: 27421997]
[36]
Perez, J.; Decouvelaere, A.V.; Pointecouteau, T.; Pissaloux, D.; Michot, J.P.; Besse, A.; Blay, J.Y.; Dutour, A. Inhibition of chondrosarcoma growth by mtor inhibitor in an in vivo syngeneic rat model. PLoS One, 2012, 7(6), 32458.http://dx.plos.org/10.1371/journal.pone.0032458
[http://dx.doi.org/10.1371/journal.pone.0032458]
[37]
Kostine, M.; Cleven, A.H.G.; de Miranda, N.F.C.C.; Italiano, A.; Cleton-Jansen, A.M.; Bovée, J.V.M.G. Analysis of PD-L1, T-cell infiltrate and HLA expression in chondrosarcoma indicates potential for response to immunotherapy specifically in the dedifferentiated subtype. Mod. Pathol., 2016, 29(9), 1028-1037.
[http://dx.doi.org/10.1038/modpathol.2016.108] [PMID: 27312065]
[38]
Zhou, C.; Wang, L.; Cheng, W.; Lv, J.; Guan, X.; Guo, T.; Wu, J.; Zhang, W.; Gao, T.; Liu, X.; Bai, X.; Wu, H.; Cao, Z.; Gu, L.; Chen, J.; Wen, J.; Huang, P.; Xu, X.; Zhang, B.; Feng, J.; Zhang, M. Two distinct trajectories of clinical and neurodegeneration events in Parkinson’s disease. npj Park Dis, 2023, 9(1), 111.https://www.nature.com/articles/s41531-023-00556-3
[39]
Seager, R.; Lee, L.; Henley, J.M.; Wilkinson, K.A. Mechanisms and roles of mitochondrial localisation and dynamics in neuronal function. Neuronal Signal., 2020, 4(2), NS20200008.
[http://dx.doi.org/10.1042/NS20200008] [PMID: 32714603]
[40]
Greenamyre, J.T.; Sherer, T.B.; Betarbet, R.; Panov, A.V. Complex I and Parkinson’s Disease. IUBMB Life, 2001, 52(3-5), 135-141.
[http://dx.doi.org/10.1080/15216540152845939] [PMID: 11798025]
[41]
Alam, M.; Schmidt, W.J. Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats. Behav. Brain Res., 2002, 136(1), 317-324.http://linkinghub.elsevier.com/retrieve/pii/S0166432802001808
[http://dx.doi.org/10.1016/S0166-4328(02)00180-8] [PMID: 12385818]
[42]
Zhang, Z.N.; Zhang, J.S.; Xiang, J.; Yu, Z.H.; Zhang, W.; Cai, M.; Li, X.T.; Wu, T.; Li, W.W.; Cai, D.F. Subcutaneous rotenone rat model of Parkinson’s disease: Dose exploration study. Brain Res., 2017, 1655, 104-113.
[http://dx.doi.org/10.1016/j.brainres.2016.11.020] [PMID: 27876560]
[43]
Uversky, V.N. Neurotoxicant-induced animal models of Parkinson? s disease: understanding the role of rotenone, maneb and paraquat in neurodegeneration. Cell Tissue Res, 2004, 318(1), 225-241.http://link.springer.com/10.1007/s00441-004-0937-z
[http://dx.doi.org/10.1007/s00441-004-0937-z] [PMID: 15258850]
[44]
Betarbet, R.; Sherer, T.B.; Di, D.A.; Greenamyre, J.T. Mechanistic approaches to Parkinson’s disease pathogenesis. Brain Pathol, 2002, 12(4), 499-510.http://onlinelibrary.wiley.com/doi/10.1111/j.1750-3639.2002.tb00468.x
[http://dx.doi.org/10.1111/j.1750-3639.2002.tb00468.x] [PMID: 12408237]
[45]
Sawada, M.; Imamura, K.; Nagatsu, T. Role of cytokines in inflammatory process in Parkinson’s disease. In: Parkinson’s Disease and Related Disorders Internet ; Springer Vienna: Vienna,, 2006; pp. 373-381.
[http://dx.doi.org/10.1007/978-3-211-45295-0_57]
[46]
Sindhu, K.M.; Saravanan, K.S.; Mohanakumar, K.P. Behavioral differences in a rotenone-induced hemiparkinsonian rat model developed following intranigral or median forebrain bundle infusion. Brain Res., 2005, 1051(1-2), 25-34.http://linkinghub.elsevier.com/retrieve/pii/S0006899305008140
[http://dx.doi.org/10.1016/j.brainres.2005.05.051] [PMID: 15992782]
[47]
Amorati, R.; Foti, M.C.; Valgimigli, L. Antioxidant activity of essential oils. J. Agric. Food Chem., 2013, 61(46), 10835-10847.http://pubs.acs.org/doi/10.1021/jf403496k
[http://dx.doi.org/10.1021/jf403496k] [PMID: 24156356]
[48]
Pham-Huy, L.A.; He, H.; Pham-Huyc, C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci, 2008, 4(2), 89-96.http://www.ncbi.nlm.nih.gov/pubmed/23675073
[http://dx.doi.org/10.59566/IJBS.2008.4089] [PMID: 23675073]
[49]
Jonsson, M.; Jestoi, M.; Nathanail, A.V.; Kokkonen, U.M.; Anttila, M.; Koivisto, P.; Karhunen, P.; Peltonen, K. Application of OECD Guideline 423 in assessing the acute oral toxicity of moniliformin. Food Chem. Toxicol, 2013, 53, 27-32.http://linkinghub.elsevier.com/retrieve/pii/S0278691512008307
[http://dx.doi.org/10.1016/j.fct.2012.11.023] [PMID: 23201451]
[50]
Rafael, J.A.; Nitta, Y.; Peters, J.; Davies, K.E. Testing of SHIRPA, a mouse phenotypic assessment protocol, on Dmd mdx and Dmd mdx3cv dystrophin-deficient mice. Mamm. Genome, 2000, 11(9), 725-728.http://link.springer.com/10.1007/s003350010149
[http://dx.doi.org/10.1007/s003350010149] [PMID: 10967129]
[51]
Poyraz, B.Ç.; Aksoy Poyraz, C.; Yassa, A.; Arikan, M.K.; Gündüz, A.; Kiziltan, G. Recurrent catatonia in parkinson disease. J. Clin. Psychopharmacol, 2016, 36(1), 104-106.http://journals.lww.com/00004714-201602000-00026
[http://dx.doi.org/10.1097/JCP.0000000000000443] [PMID: 26658081]
[52]
Bhavani, K.; Muthukumar, A.; Almuqbil, M.; Das, K. v, Y.; Almadani, M.E.; Alshehri, A.; Alghamdi, A.; Hussain, S.A.; Alamer, B.H.; Abdulrahman Jibreel, E.; Rabbani, S.I.; Alosaimi, T.M.; Alharbi, W.F.; Aldosari, S.M.; Basheeruddin Asdaq, S.M. Neuroprotective potential of Cordia dichotoma in Parkinson’s syndrome induced by haloperidol: An animal study. Saudi Pharm. J., 2023, 31(10), 101791.http://linkinghub.elsevier.com/retrieve/pii/S1319016423002864
[http://dx.doi.org/10.1016/j.jsps.2023.101791] [PMID: 37771955]
[53]
Verma, R.; Raj Choudhary, P.; Kumar Nirmal, N.; Syed, F.; Verma, R. Neurotransmitter systems in zebrafish model as a target for neurobehavioural studies. Mater. Today Proc., 2022, 69, 1565-1580.http://linkinghub.elsevier.com/retrieve/pii/S221478532204771X [Internet]
[http://dx.doi.org/10.1016/j.matpr.2022.07.147]
[54]
Vellingiri, B.; Chandrasekhar, M.; Sri Sabari, S.; Gopalakrishnan, A.V.; Narayanasamy, A.; Venkatesan, D.; Iyer, M.; Kesari, K.; Dey, A. Neurotoxicity of pesticides – A link to neurodegeneration. Ecotoxicol. Environ. Saf., 2022, 243113972 .http://linkinghub.elsevier.com/retrieve/pii/S0147651322008120
[http://dx.doi.org/10.1016/j.ecoenv.2022.113972] [PMID: 36029574]
[55]
Missale, C.; Nash, S.R.; Robinson, S.W.; Jaber, M.; Caron, M.G. Dopamine receptors: From structure to function. Physiol. Rev., 1998, 78(1), 189-225.
[http://dx.doi.org/10.1152/physrev.1998.78.1.189] [PMID: 9457173]
[56]
Siddiqui, M.A.; Kashyap, M.P.; Khanna, V.K.; Yadav, S.; Al-Khedhairy, A.A.; Musarrat, J.; Pant, A.B. Association of dopamine DA-D 2 receptor in rotenone-induced cytotoxicity in PC12 cells. Toxicol. Ind. Health, 2010, 26(8), 533-542.
[http://dx.doi.org/10.1177/0748233710377776] [PMID: 20634262]
[57]
Spillantini, M.G.; Crowther, R.A.; Jakes, R.; Hasegawa, M.; Goedert, M. α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc. Natl. Acad. Sci., 1998, 95(11), 6469-6473.
[http://dx.doi.org/10.1073/pnas.95.11.6469] [PMID: 9600990]
[58]
Sherer, T.B.; Kim, J.H.; Betarbet, R.; Greenamyre, J.T. Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and α-synuclein aggregation. Exp. Neurol., 2003, 179(1), 9-16.
[http://dx.doi.org/10.1006/exnr.2002.8072] [PMID: 12504863]
[59]
Cookson, M.R.; van der Brug, M. Cell systems and the toxic mechanism(s) of α-synuclein. Exp. Neurol., 2008, 209(1), 5-11.
[http://dx.doi.org/10.1016/j.expneurol.2007.05.022] [PMID: 17603039]
[60]
Kaplan Algin, A.; Tomruk, C.; Gözde Aslan, Ç.; Şaban Akkurt, S.; Mehtap Çinar, G.; Ulukaya, S.; Uyanikgil, Y.; Akçay, Y. Effects of ozone treatment to the levels of neurodegeneration biomarkers after rotenone induced rat model of Parkinson’s disease. Neurosci. Lett., 2023, 814137448.
[http://dx.doi.org/10.1016/j.neulet.2023.137448] [PMID: 37597740]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy