Generic placeholder image

Central Nervous System Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5249
ISSN (Online): 1875-6166

Review Article

Effectiveness of Novel Drug Delivery System using Curcumin in Alzheimer’s Disease

Author(s): Urmila Aswar*, Kundlik Rathod and Dyandevi Mathure

Volume 24, Issue 3, 2024

Published on: 23 February, 2024

Page: [281 - 293] Pages: 13

DOI: 10.2174/0118715249279534240214111155

Price: $65

Open Access Journals Promotions 2
Abstract

Alzheimer's disease (AD) is a form of brain degeneration that gradually impairs a person's memory and cognitive skills, eventually making it harder for them to perform everyday activities. Its pathophysiology has been attributed to the deposition of amyloid β (Aβ), neurofibrillary tangles (NFT), and α-synuclein (A-s) in some cases. Presently, 4 drugs have been approved for the treatment. They are Donepezil, Rivastigmine, Galantamine and Memantine. The first three are acetylcholinesterase inhibitors, while memantine is an NMDA receptor antagonist. Even though these medications are successful in treating mild to moderate Alzheimer's disease, they have not been able to reverse the disease or even slow its progression completely. Hence, natural products are gaining more popularity due to the advantage of the multitarget intervention effect. The most investigated spice, Curcuma longa's bioactive component, curcumin, has demonstrated anti-amyloid, anti-NFT, and anti-Lewy body properties and substantial antiinflammatory, antioxidant, and antiapoptotic properties. However, its proven neuroprotective activity is hampered by many factors, such as poor water solubility and bioavailability. Therefore, many novel formulations have been designed to improve its bioavailability with methods such as 1) Micellar Solubilization, 2) Cyclodextrin Complexation, 3) Crystal Modification, and 4) Particle Size Reduction, etc. The current chapter aims to summarize various novel formulations of curcumin and their effectiveness in treating AD.

Keywords: Alzheimer's disease, amyloid-β, blood-brain barrier, neurofibrillary tangles, acetylcholine, presenilin 1.

Graphical Abstract
[1]
Li, X.; Feng, X.; Sun, X.; Hou, N.; Han, F.; Liu, Y. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2019. Front. Aging Neurosci., 2022, 14937486
[http://dx.doi.org/10.3389/fnagi.2022.937486] [PMID: 36299608]
[2]
2023 Alzheimer’s disease facts and figures. Alzheimers Dement., 2023, 19(4), 1598-1695.
[http://dx.doi.org/10.1002/alz.13016] [PMID: 36918389]
[3]
Organization, W.H. Dementia: a public health priority; World Health Organization, 2012.
[4]
Trejo-Lopez, J.A.; Yachnis, A.T.; Prokop, S. Neuropathology of Alzheimer’s disease. Neurotherapeutics, 2022, 19(1), 173-185.
[http://dx.doi.org/10.1007/s13311-021-01146-y]
[5]
Mahley, R.W.; Weisgraber, K.H.; Huang, Y. Apolipoprotein E4: A causative factor and therapeutic target in neuropathology, including Alzheimer’s disease. Proc. Natl. Acad. Sci., 2006, 103(15), 5644-5651.
[http://dx.doi.org/10.1073/pnas.0600549103] [PMID: 16567625]
[6]
Wang, J.Z.; Liu, F. Microtubule-associated protein tau in development, degeneration and protection of neurons. Prog. Neurobiol., 2008, 85(2), 148-175.
[http://dx.doi.org/10.1016/j.pneurobio.2008.03.002] [PMID: 18448228]
[7]
Cárdenas, A.M.; Ardiles, A.O.; Barraza, N.; Baéz-Matus, X.; Caviedes, P. Role of tau protein in neuronal damage in Alzheimer’s disease and Down syndrome. Arch. Med. Res., 2012, 43(8), 645-654.
[http://dx.doi.org/10.1016/j.arcmed.2012.10.012] [PMID: 23142525]
[8]
Meraz-Ríos, M.A.; Lira-De León, K.I.; Campos-Peña, V.; De Anda-Hernández, M.A.; Mena-López, R. Tau oligomers and aggregation in Alzheimer’s disease. J. Neurochem., 2010, 112(6), 1353-1367.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06511.x] [PMID: 19943854]
[9]
Palop, J.J.; Mucke, L. Amyloid-β–induced neuronal dysfunction in Alzheimer’s disease: From synapses toward neural networks. Nat. Neurosci., 2010, 13(7), 812-818.
[http://dx.doi.org/10.1038/nn.2583] [PMID: 20581818]
[10]
Ferrer, I. Hypothesis review: Alzheimer’s overture guidelines. Brain Pathol., 2023, 33(1)e13122
[http://dx.doi.org/10.1111/bpa.13122] [PMID: 36223647]
[11]
Tewari, D.; Stankiewicz, A.M.; Mocan, A.; Sah, A.N.; Tzvetkov, N.T.; Huminiecki, L.; Horbańczuk, J.O.; Atanasov, A.G. Ethnopharmacological approaches for dementia therapy and significance of natural products and herbal drugs. Front. Aging Neurosci., 2018, 10, 3.
[http://dx.doi.org/10.3389/fnagi.2018.00003] [PMID: 29483867]
[12]
Haines, J.L. Alzheimer disease: Perspectives from epidemiology and genetics. J. Law Med. Ethics, 2018, 46(3), 694-698.
[http://dx.doi.org/10.1177/1073110518804230] [PMID: 30336113]
[13]
Giri, M.; Lü, Y.; Zhang, M. Genes associated with Alzheimer’s disease: An overview and current status. Clin. Interv. Aging, 2016, 11, 665-681.
[http://dx.doi.org/10.2147/CIA.S105769] [PMID: 27274215]
[14]
Davidson, Y.S.; Robinson, A.; Prasher, V.P.; Mann, D.M.A. The age of onset and evolution of Braak tangle stage and Thal amyloid pathology of Alzheimer’s disease in individuals with Down syndrome. Acta Neuropathol. Commun., 2018, 6(1), 56.
[http://dx.doi.org/10.1186/s40478-018-0559-4] [PMID: 29973279]
[15]
Uéda, K.; Fukushima, H.; Masliah, E.; Xia, Y.; Iwai, A.; Yoshimoto, M.; Otero, D.A.; Kondo, J.; Ihara, Y.; Saitoh, T. Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc. Natl. Acad. Sci., 1993, 90(23), 11282-11286.
[http://dx.doi.org/10.1073/pnas.90.23.11282] [PMID: 8248242]
[16]
Tuttle, M.D.; Comellas, G.; Nieuwkoop, A.J.; Covell, D.J.; Berthold, D.A.; Kloepper, K.D.; Courtney, J.M.; Kim, J.K.; Barclay, A.M.; Kendall, A.; Wan, W.; Stubbs, G.; Schwieters, C.D.; Lee, V.M.Y.; George, J.M.; Rienstra, C.M. Solid-state NMR structure of a pathogenic fibril of full-length human α-synuclein. Nat. Struct. Mol. Biol., 2016, 23(5), 409-415.
[http://dx.doi.org/10.1038/nsmb.3194] [PMID: 27018801]
[17]
Samuel, F.; Flavin, W.P.; Iqbal, S.; Pacelli, C.; Sri Renganathan, S.D.; Trudeau, L.E.; Campbell, E.M.; Fraser, P.E.; Tandon, A. Effects of serine 129 phosphorylation on α-synuclein aggregation, membrane association, and internalization. J. Biol. Chem., 2016, 291(9), 4374-4385.
[http://dx.doi.org/10.1074/jbc.M115.705095] [PMID: 26719332]
[18]
Meade, R.M.; Fairlie, D.P.; Mason, J.M. Alpha-synuclein structure and Parkinson’s disease – lessons and emerging principles. Mol. Neurodegener., 2019, 14(1), 29.
[http://dx.doi.org/10.1186/s13024-019-0329-1] [PMID: 31331359]
[19]
Twohig, D.; Nielsen, H.M. α-synuclein in the pathophysiology of Alzheimer’s disease. Mol. Neurodegener., 2019, 14(1), 23.
[http://dx.doi.org/10.1186/s13024-019-0320-x] [PMID: 31186026]
[20]
O’Brien, R.J.; Resnick, S.M.; Zonderman, A.B.; Ferrucci, L.; Crain, B.J.; Pletnikova, O.; Rudow, G.; Iacono, D.; Riudavets, M.A.; Driscoll, I.; Price, D.L.; Martin, L.J.; Troncoso, J.C. Neuropathologic studies of the Baltimore longitudinal study of aging (BLSA). J. Alzheimers Dis., 2009, 18(3), 665-675.
[http://dx.doi.org/10.3233/JAD-2009-1179] [PMID: 19661626]
[21]
Melmon, K.L.; Morrelli, H.F. Melmon and Morrelli’s Clinical Pharmacology: Basic Principles in Therapeutics; McGraw Hill Professional, 1992.
[22]
Agatonovic-Kustrin, S.; Kettle, C.; Morton, D.W. A molecular approach in drug development for Alzheimer’s disease. Biomed. Pharmacother., 2018, 106, 553-565.
[http://dx.doi.org/10.1016/j.biopha.2018.06.147] [PMID: 29990843]
[23]
Singh, S.K.; Srivastav, S.; Castellani, R.J.; Plascencia-Villa, G.; Perry, G. Neuroprotective and antioxidant effect of ginkgo biloba extract against ad and other neurological disorders. Neurotherapeutics, 2019, 16(3), 666-674.
[http://dx.doi.org/10.1007/s13311-019-00767-8] [PMID: 31376068]
[24]
Cao, Y.; Xu, W.; Huang, Y.; Zeng, X. Licochalcone B, a chalcone derivative from Glycyrrhiza inflata, as a multifunctional agent for the treatment of Alzheimer’s disease. Nat. Prod. Res., 2020, 34(5), 736-739.
[http://dx.doi.org/10.1080/14786419.2018.1496429] [PMID: 30345819]
[25]
Loy, C.; Schneider, L. Galantamine for Alzheimer’s disease and mild cognitive impairment. Cochrane Database Syst. Rev., 2006, 2006(1)CD001747
[http://dx.doi.org/10.1002/14651858.CD001747.pub3]
[26]
Abd El-Wahab, A.E.; Ghareeb, D.A.; Sarhan, E.E.M.; Abu-Serie, M.M.; El Demellawy, M.A. In vitro biological assessment of berberis vulgaris and its active constituent, berberine: antioxidants, anti-acetylcholinesterase, anti-diabetic and anticancer effects. BMC Complement. Altern. Med., 2013, 13(1), 218.
[http://dx.doi.org/10.1186/1472-6882-13-218] [PMID: 24007270]
[27]
Saharan, S.; Mandal, P.K. The emerging role of glutathione in Alzheimer’s disease. J. Alzheimers Dis., 2014, 40(3), 519-529.
[http://dx.doi.org/10.3233/JAD-132483] [PMID: 24496077]
[28]
Dhingra, D.; Parle, M.; Kulkarni, S.K. Memory enhancing activity of Glycyrrhiza glabra in mice. J. Ethnopharmacol., 2004, 91(2-3), 361-365.
[http://dx.doi.org/10.1016/j.jep.2004.01.016] [PMID: 15120462]
[29]
Chang, K-H.; Chen, I.C.; Lin, H.Y.; Chen, H.C.; Lin, C.H.; Lin, T.H.; Weng, Y.T.; Chao, C.Y.; Wu, Y.R.; Lin, J.Y.; Lee-Chen, G.J.; Chen, C.M. The aqueous extract of Glycyrrhiza inflata can upregulate unfolded protein response-mediated chaperones to reduce tau misfolding in cell models of Alzheimer’s disease. Drug Des. Devel. Ther., 2016, 10, 885-896.
[PMID: 27013866]
[30]
Kanno, H.; Kawakami, Z.; Tabuchi, M.; Mizoguchi, K.; Ikarashi, Y.; Kase, Y. Protective effects of glycycoumarin and procyanidin B1, active components of traditional Japanese medicine yokukansan, on amyloid β oligomer-induced neuronal death. J. Ethnopharmacol., 2015, 159, 122-128.
[http://dx.doi.org/10.1016/j.jep.2014.10.058] [PMID: 25446602]
[31]
Ikarashi, Y.; Mizoguchi, K. Neuropharmacological efficacy of the traditional Japanese Kampo medicine yokukansan and its active ingredients. Pharmacol. Ther., 2016, 166, 84-95.
[http://dx.doi.org/10.1016/j.pharmthera.2016.06.018] [PMID: 27373856]
[32]
Chandra, V. Prevalence of Alzheimer's disease and other dementias in rural India. The Indo-US study, 1998, 51(4), 1000-1008.
[http://dx.doi.org/10.1212/WNL.51.4.1000]
[33]
Subramanian, S.; Sandhyarani, B.; Shree, A.N.D.; Murthy, K.K.; Kalyani, K.; Kumar, S.P. Pradeep; Noone, M.J.; Taly, A.B. Lower levels of cerebrospinal fluid amyloid ß (Aß) in non-demented Indian controls. Neurosci. Lett., 2006, 407(2), 121-123.
[http://dx.doi.org/10.1016/j.neulet.2006.08.018] [PMID: 16978775]
[34]
Shankar, T.N.; Shantha, N.V.; Ramesh, H.P.; Murthy, I.A.; Murthy, V.S. Toxicity studies on turmeric (Curcuma longa): acute toxicity studies in rats, guineapigs & monkeys. Indian J. Exp. Biol., 1980, 18(1), 73-75.
[PMID: 6772551]
[35]
Nagabhushan, M.; Bhide, S.V. Nonmutagenicity of curcumin and its antimutagenic action versus chili and capsaicin. Nutr. Cancer, 1986, 8(3), 201-210.
[http://dx.doi.org/10.1080/01635588609513894] [PMID: 3526291]
[36]
Zhao, J.; Yu, S.; Zheng, W.; Feng, G.; Luo, G.; Wang, L.; Zhao, Y. Curcumin improves outcomes and attenuates focal cerebral ischemic injury via antiapoptotic mechanisms in rats. Neurochem. Res., 2010, 35(3), 374-379.
[http://dx.doi.org/10.1007/s11064-009-0065-y] [PMID: 19774461]
[37]
Bai, X.J.; Hao, J.T.; Wang, J.; Zhang, W.F.; Yan, C.P.; Zhao, J.H.; Zhao, Z.Q. Curcumin inhibits cardiac hypertrophy and improves cardiovascular function via enhanced Na +/Ca 2+ exchanger expression after transverse abdominal aortic constriction in rats. Pharmacol. Rep., 2018, 70(1), 60-68.
[http://dx.doi.org/10.1016/j.pharep.2017.07.014] [PMID: 29331788]
[38]
Hodaei, H.; Adibian, M.; Nikpayam, O.; Hedayati, M.; Sohrab, G. The effect of curcumin supplementation on anthropometric indices, insulin resistance and oxidative stress in patients with type 2 diabetes: A randomized, double-blind clinical trial. Diabetol. Metab. Syndr., 2019, 11(1), 41.
[http://dx.doi.org/10.1186/s13098-019-0437-7] [PMID: 31149032]
[39]
Puglielli, L.; Tanzi, R.E.; Kovacs, D.M. Alzheimer’s disease: The cholesterol connection. Nat. Neurosci., 2003, 6(4), 345-351.
[http://dx.doi.org/10.1038/nn0403-345] [PMID: 12658281]
[40]
Soni, K.B.; Kuttan, R. Effect of oral curcumin administration on serum peroxides and cholesterol levels in human volunteers. Indian J. Physiol. Pharmacol., 1992, 36(4), 273-275.
[PMID: 1291482]
[41]
Alwi, I.; Santoso, T.; Suyono, S.; Sutrisna, B.; Suyatna, F.D.; Kresno, S.B.; Ernie, S. The effect of curcumin on lipid level in patients with acute coronary syndrome. Acta Med. Indones., 2008, 40(4), 201-210.
[PMID: 19151449]
[42]
Fan, C.; Wo, X.; Qian, Y.; Yin, J.; Gao, L. Effect of curcumin on the expression of LDL receptor in mouse macrophages. J. Ethnopharmacol., 2006, 105(1-2), 251-254.
[http://dx.doi.org/10.1016/j.jep.2005.11.009] [PMID: 16406419]
[43]
Shah, B.H.; Nawaz, Z.; Pertani, S.A.; Roomi, A.; Mahmood, H.; Saeed, S.A.; Gilani, A.H. Inhibitory effect of curcumin, a food spice from turmeric, on platelet-activating factor- and arachidonic acid-mediated platelet aggregation through inhibition of thromboxane formation and Ca2+ signaling. Biochem. Pharmacol., 1999, 58(7), 1167-1172.
[http://dx.doi.org/10.1016/S0006-2952(99)00206-3] [PMID: 10484074]
[44]
Srivastava, R.; Dikshit, M.; Srimal, R.C.; Dhawan, B.N. Anti-thrombotic effect of curcumin. Thromb. Res., 1985, 40(3), 413-417.
[http://dx.doi.org/10.1016/0049-3848(85)90276-2] [PMID: 4082116]
[45]
Cole, G.; Yang, F.; Lim, G.; Cummings, J.; Masterman, D.; Frautschy, S. A rationale for curcuminoids for the prevention or treatment of Alzheimer’s disease. Curr. Med. Chem. Immunol. Endocr. Metab. Agents, 2003, 3(1), 15-25.
[http://dx.doi.org/10.2174/1568013033358761]
[46]
Ono, K.; Hasegawa, K.; Naiki, H.; Yamada, M. Curcumin has potent anti‐amyloidogenic effects for Alzheimer’s β‐amyloid fibrils in vitro. J. Neurosci. Res., 2004, 75(6), 742-750.
[http://dx.doi.org/10.1002/jnr.20025] [PMID: 14994335]
[47]
Ringman, J.; Frautschy, S.; Cole, G.; Masterman, D.; Cummings, J. A potential role of the curry spice curcumin in Alzheimer’s disease. Curr. Alzheimer Res., 2005, 2(2), 131-136.
[http://dx.doi.org/10.2174/1567205053585882] [PMID: 15974909]
[48]
Lim, G.P.; Chu, T.; Yang, F.; Beech, W.; Frautschy, S.A.; Cole, G.M. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J. Neurosci., 2001, 21(21), 8370-8377.
[http://dx.doi.org/10.1523/JNEUROSCI.21-21-08370.2001] [PMID: 11606625]
[49]
Frautschy, S.; Hu, W.; Kim, P.; Miller, S.A.; Chu, T.; Harris-White, M.E.; Cole, G.M. Phenolic anti-inflammatory antioxidant reversal of AÎ2-induced cognitive deficits and neuropathology. Neurobiol. Aging, 2001, 22(6), 993-1005.
[http://dx.doi.org/10.1016/S0197-4580(01)00300-1] [PMID: 11755008]
[50]
Cheng, K.K.; Yeung, C.F.; Ho, S.W.; Chow, S.F.; Chow, A.H.L.; Baum, L. Highly stabilized curcumin nanoparticles tested in an in vitro blood-brain barrier model and in Alzheimer’s disease Tg2576 mice. AAPS J., 2013, 15(2), 324-336.
[http://dx.doi.org/10.1208/s12248-012-9444-4] [PMID: 23229335]
[51]
Lin, L.; Li, C.; Zhang, D.; Yuan, M.; Chen, C.; Li, M. Synergic effects of berberine and curcumin on improving cognitive function in an Alzheimer’s disease mouse model. Neurochem. Res., 2020, 45(5), 1130-1141.
[http://dx.doi.org/10.1007/s11064-020-02992-6] [PMID: 32080784]
[52]
Su, I.J.; Chang, H.Y.; Wang, H.C.; Tsai, K.J. A curcumin analog exhibits multiple biologic effects on the pathogenesis of Alzheimer’s disease and improves behavior, inflammation, and β-amyloid accumulation in a mouse model. Int. J. Mol. Sci., 2020, 21(15), 5459.
[http://dx.doi.org/10.3390/ijms21155459] [PMID: 32751716]
[53]
Ahmed, T.; Gilani, A.H. Therapeutic potential of turmeric in Alzheimer’s disease: Curcumin or curcuminoids? Phytother. Res., 2014, 28(4), 517-525.
[http://dx.doi.org/10.1002/ptr.5030] [PMID: 23873854]
[54]
Yanagisawa, D.; Taguchi, H.; Morikawa, S.; Kato, T.; Hirao, K.; Shirai, N.; Tooyama, I. Novel curcumin derivatives as potent inhibitors of amyloid β aggregation. Biochem. Biophys. Rep., 2015, 4, 357-368.
[http://dx.doi.org/10.1016/j.bbrep.2015.10.009] [PMID: 29124225]
[55]
Alattiya, R.H. The role of polyphenols in the treatment of alzheimer’s disease: Curcumin as a prototype: Polyphenols in alzheimer’s disease. AJMS, 2021, 1, 53-61.
[56]
Sahoo, J.P.; Behera, L.; Praveena, J.; Sawant, S.; Mishra, A.; Sharma, S.S.; Ghosh, L.; Mishra, A.P.; Sahoo, A.R.; Pradhan, P.; Sahu, S.; Moharana, A.; Samal, K.C. The golden spice turmeric (Curcuma longa) and its feasible benefits in prospering human health—a review. Am. J. Plant Sci., 2021, 12(3), 455-475.
[http://dx.doi.org/10.4236/ajps.2021.123030]
[57]
Mohseni, M.; Sahebkar, A.; Askari, G.; Johnston, T.P.; Alikiaii, B.; Bagherniya, M. The clinical use of curcumin on neurological disorders: An updated systematic review of clinical trials. Phytother. Res., 2021, 35(12), 6862-6882.
[http://dx.doi.org/10.1002/ptr.7273] [PMID: 34528307]
[58]
Silva, A.C.; Santos, P.D.F.; Silva, J.T.P.; Leimann, F.V.; Bracht, L.; Gonçalves, O.H. Impact of curcumin nanoformulation on its antimicrobial activity. Trends Food Sci. Technol., 2018, 72, 74-82.
[http://dx.doi.org/10.1016/j.tifs.2017.12.004]
[59]
Shimizu, K.; Funamoto, M.; Sunagawa, Y.; Shimizu, S.; Katanasaka, Y.; Miyazaki, Y.; Wada, H.; Hasegawa, K.; Morimoto, T. Anti-inflammatory action of curcumin and its use in the treatment of lifestyle-related diseases. Eur. Cardiol., 2019, 14(2), 117-122.
[http://dx.doi.org/10.15420/ecr.2019.17.2] [PMID: 31360234]
[60]
Abrahams, S.; Haylett, W.L.; Johnson, G.; Carr, J.A.; Bardien, S. Antioxidant effects of curcumin in models of neurodegeneration, aging, oxidative and nitrosative stress A review.. Neuroscience., 2019, 406, 1-21.
[http://dx.doi.org/10.1016/j.neuroscience.2019.02.020] [PMID: 30825584]
[61]
Mor, N.; Raghav, N. A comprehensive update on successful clinical trials of curcumin. Chem. Biol. Interface., 2021, 11(6), 217.
[62]
Gupta, T.; Singh, J.; Kaur, S.; Sandhu, S.; Singh, G.; Kaur, I.P. Enhancing bioavailability and stability of curcumin using solid lipid nanoparticles (CLEN): A covenant for its effectiveness. Front. Bioeng. Biotechnol., 2020, 8, 879.
[http://dx.doi.org/10.3389/fbioe.2020.00879] [PMID: 33178666]
[63]
Puranik, N.; Yadav, D.; Song, M. Advancements in the application of nanomedicine in Alzheimer’s Disease: A therapeutic perspective. Int. J. Mol. Sci., 2023, 24(18), 14044.
[http://dx.doi.org/10.3390/ijms241814044] [PMID: 37762346]
[64]
Wang, Z.Y.; Sreenivasmurthy, S.G.; Song, J.X.; Liu, J.Y.; Li, M. Strategies for brain-targeting liposomal delivery of small hydrophobic molecules in the treatment of neurodegenerative diseases. Drug Discov. Today, 2019, 24(2), 595-605.
[http://dx.doi.org/10.1016/j.drudis.2018.11.001] [PMID: 30414950]
[65]
Cheng, Y.; Xu, Z.; Ma, M.; Xu, T. Dendrimers as drug carriers: Applications in different routes of drug administration. J. Pharm. Sci., 2008, 97(1), 123-143.
[http://dx.doi.org/10.1002/jps.21079] [PMID: 17721949]
[66]
Seko, I.; Tonbul, H.; Tavukçuoğlu, E.; Şahin, A.; Akbas, S.; Yanık, H.; Öztürk, S.C.; Esendagli, G.; Khan, M.; Capan, Y. Development of curcumin and docetaxel co-loaded actively targeted PLGA nanoparticles to overcome blood brain barrier. J. Drug Deliv. Sci. Technol., 2021, 66102867
[http://dx.doi.org/10.1016/j.jddst.2021.102867]
[67]
Doggui, S.; Sahni, J.K.; Arseneault, M.; Dao, L.; Ramassamy, C. Neuronal uptake and neuroprotective effect of curcumin-loaded PLGA nanoparticles on the human SK-N-SH cell line. J. Alzheimers Dis., 2012, 30(2), 377-392.
[http://dx.doi.org/10.3233/JAD-2012-112141] [PMID: 22426019]
[68]
Gao, C.; Chu, X.; Gong, W.; Zheng, J.; Xie, X.; Wang, Y.; Yang, M.; Li, Z.; Gao, C.; Yang, Y. RETRACTED ARTICLE: Neuron tau-targeting biomimetic nanoparticles for curcumin delivery to delay progression of Alzheimer’s disease. J. Nanobiotechnology, 2020, 18(1), 71.
[http://dx.doi.org/10.1186/s12951-020-00626-1] [PMID: 32404183]
[69]
Marslin, G.; Sarmento, B.F.; Franklin, G.; Martins, J.A.; Silva, C.J.; Gomes, A.F.; Sárria, M.P.; Coutinho, O.M.; Dias, A.C. Curcumin encapsulated into methoxy poly (ethylene glycol) poly (ε-caprolactone) nanoparticles increases cellular uptake and neuroprotective effect in glioma cells. Planta Med., 2017, 83(5), 434-444.
[PMID: 27626946]
[70]
Barbara, R.; Belletti, D.; Pederzoli, F.; Masoni, M.; Keller, J.; Ballestrazzi, A.; Vandelli, M.A.; Tosi, G.; Grabrucker, A.M. Novel curcumin loaded nanoparticles engineered for blood-brain barrier crossing and able to disrupt abeta aggregates. Int. J. Pharm., 2017, 526(1-2), 413-424.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.015] [PMID: 28495580]
[71]
Tiwari, S.K.; Agarwal, S.; Seth, B.; Yadav, A.; Nair, S.; Bhatnagar, P.; Karmakar, M.; Kumari, M.; Chauhan, L.K.S.; Patel, D.K.; Srivastava, V.; Singh, D.; Gupta, S.K.; Tripathi, A.; Chaturvedi, R.K.; Gupta, K.C. Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/β-catenin pathway. ACS Nano, 2014, 8(1), 76-103.
[http://dx.doi.org/10.1021/nn405077y] [PMID: 24467380]
[72]
Huang, N.; Lu, S.; Liu, X.G.; Zhu, J.; Wang, Y.J.; Liu, R.T. PLGA nanoparticles modified with a BBB-penetrating peptide co-delivering Aβ generation inhibitor and curcumin attenuate memory deficits and neuropathology in Alzheimer’s disease mice. Oncotarget, 2017, 8(46), 81001-81013.
[http://dx.doi.org/10.18632/oncotarget.20944] [PMID: 29113362]
[73]
Khumsupan, P.; Ramirez, R.; Khumsupan, D.; Narayanaswami, V. Apolipoprotein E LDL receptor-binding domain-containing high-density lipoprotein: A nanovehicle to transport curcumin, an antioxidant and anti-amyloid bioflavonoid. Biochim. Biophys. Acta Biomembr., 2011, 1808(1), 352-359.
[http://dx.doi.org/10.1016/j.bbamem.2010.09.007] [PMID: 20851099]
[74]
Ray, B.; Bisht, S.; Maitra, A.; Maitra, A.; Lahiri, D.K. Neuroprotective and neurorescue effects of a novel polymeric nanoparticle formulation of curcumin (NanoCurc™) in the neuronal cell culture and animal model: Implications for Alzheimer’s disease. J. Alzheimers Dis., 2011, 23(1), 61-77.
[http://dx.doi.org/10.3233/JAD-2010-101374] [PMID: 20930270]
[75]
Taylor, M.; Moore, S.; Mourtas, S.; Niarakis, A.; Re, F.; Zona, C.; Ferla, B.L.; Nicotra, F.; Masserini, M.; Antimisiaris, S.G.; Gregori, M.; Allsop, D. Effect of curcumin-associated and lipid ligand-functionalized nanoliposomes on aggregation of the Alzheimer’s Aβ peptide. Nanomedicine, 2011, 7(5), 541-550.
[http://dx.doi.org/10.1016/j.nano.2011.06.015] [PMID: 21722618]
[76]
Torchilin, V. Multifunctional nanocarriers. Adv. Drug Deliv. Rev., 2006, 58(14), 1532-1555.
[http://dx.doi.org/10.1016/j.addr.2006.09.009] [PMID: 17092599]
[77]
Kühlwein, F.; Polborn, K.; Beck, W. Metallkomplexe von farbstoffen. VIII übergangsmetallkomplexe des curcumins und seiner derivate. Z. Anorg. Allg. Chem., 1997, 623(8), 1211-1219.
[http://dx.doi.org/10.1002/zaac.19976230806]
[78]
Wanninger, S.; Lorenz, V.; Subhan, A.; Edelmann, F.T. Metal complexes of curcumin – synthetic strategies, structures and medicinal applications. Chem. Soc. Rev., 2015, 44(15), 4986-5002.
[http://dx.doi.org/10.1039/C5CS00088B] [PMID: 25964104]
[79]
Vajragupta, O.; Boonchoong, P.; Watanabe, H.; Tohda, M.; Kummasud, N.; Sumanont, Y. Manganese complexes of curcumin and its derivatives: Evaluation for the radical scavenging ability and neuroprotective activity. Free Radic. Biol. Med., 2003, 35(12), 1632-1644.
[http://dx.doi.org/10.1016/j.freeradbiomed.2003.09.011] [PMID: 14680686]
[80]
Shabbir, U.; Rubab, M.; Tyagi, A.; Oh, D.H. Curcumin and its derivatives as theranostic agents in Alzheimer’s disease: The implication of nanotechnology. Int. J. Mol. Sci., 2020, 22(1), 196.
[http://dx.doi.org/10.3390/ijms22010196] [PMID: 33375513]
[81]
Alves, T.F.; Chaud, M.V.; Grotto, D.; Jozala, A.F.; Pandit, R.; Rai, M.; dos Santos, C.A. Association of silver nanoparticles and curcumin solid dispersion: Antimicrobial and antioxidant properties. AAPS PharmSciTech, 2018, 19(1), 225-231.
[http://dx.doi.org/10.1208/s12249-017-0832-z] [PMID: 28681332]
[82]
Araiza-Calahorra, A.; Akhtar, M.; Sarkar, A. Recent advances in emulsion-based delivery approaches for curcumin: From encapsulation to bioaccessibility. Trends Food Sci. Technol., 2018, 71, 155-169.
[http://dx.doi.org/10.1016/j.tifs.2017.11.009]
[83]
Sripriya, R.; Muthu Raja, K.; Santhosh, G.; Chandrasekaran, M.; Noel, M. The effect of structure of oil phase, surfactant and co-surfactant on the physicochemical and electrochemical properties of bicontinuous microemulsion. J. Colloid Interface Sci., 2007, 314(2), 712-717.
[http://dx.doi.org/10.1016/j.jcis.2007.05.080] [PMID: 17585927]
[84]
Wang, S.; Chen, P.; Zhang, L.; Yang, C.; Zhai, G. Formulation and evaluation of microemulsion-based in situ ion-sensitive gelling systems for intranasal administration of curcumin. J. Drug Target., 2012, 20(10), 831-840.
[http://dx.doi.org/10.3109/1061186X.2012.719230] [PMID: 22934854]
[85]
Sood, S.; Jain, K.; Gowthamarajan, K. Intranasal therapeutic strategies for management of Alzheimer’s disease. J. Drug Target., 2014, 22(4), 279-294.
[http://dx.doi.org/10.3109/1061186X.2013.876644] [PMID: 24404923]
[86]
Kato, T.; Gupta, M.; Yamaguchi, D.; Gan, K.P.; Nakayama, M. Supramolecular association and nanostructure formation of liquid crystals and polymers for new functional materials. Bull. Chem. Soc. Jpn., 2021, 94(1), 357-376.
[http://dx.doi.org/10.1246/bcsj.20200304]
[87]
Tlijani, M. Development of a BCS class II drug microemulsion for oral delivery: Design, optimization, and evaluation. J. Nanomater., 2021, 2021
[http://dx.doi.org/10.1155/2021/5538940]
[88]
Shinde, L.R.; Jindal, A.B.; Devarajan, P.V. Microemulsions and nanoemulsions for targeted drug delivery to the brain. Curr. Nanosci., 2011, 7(1), 119-133.
[http://dx.doi.org/10.2174/157341311794480282]
[89]
Patil, V.; Mhamane, S.; More, S.; Pawar, A.; Arulmozhi, S. Exploring the protective effect exhibited by curcumin-loaded coconut oil microemulsion in the experimental models of neurodegeneration: An insight of formulation development, in vitro and in vivo study. Futur. J. Pharm. Sci., 2022, 8(1), 51.
[http://dx.doi.org/10.1186/s43094-022-00441-5]
[90]
Shoba, G.; Joy, D.; Joseph, T.; Majeed, M.; Rajendran, R.; Srinivas, P. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med., 1998, 64(4), 353-356.
[http://dx.doi.org/10.1055/s-2006-957450] [PMID: 9619120]
[91]
Yu, L.; Dean, K.; Li, L. Polymer blends and composites from renewable resources. Prog. Polym. Sci., 2006, 31(6), 576-602.
[http://dx.doi.org/10.1016/j.progpolymsci.2006.03.002]
[92]
Hernandez-Patlan, D. Chitoneous materials for control of foodborne pathogens and mycotoxins in poultry. In: Chitin-Chitosan: Myriad Functionalities in Science and Technology; Intech Open, 2018; pp. 261-282.
[http://dx.doi.org/10.5772/intechopen.76041]
[93]
Mazzarino, L.; Travelet, C.; Ortega-Murillo, S.; Otsuka, I.; Pignot-Paintrand, I.; Lemos-Senna, E.; Borsali, R. Elaboration of chitosan-coated nanoparticles loaded with curcumin for mucoadhesive applications. J. Colloid Interface Sci., 2012, 370(1), 58-66.
[http://dx.doi.org/10.1016/j.jcis.2011.12.063] [PMID: 22284577]
[94]
Sarvaiya, J.; Agrawal, Y.K. Chitosan as a suitable nanocarrier material for anti-Alzheimer drug delivery. Int. J. Biol. Macromol., 2015, 72, 454-465.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.08.052] [PMID: 25199867]
[95]
Parikh, A.; Kathawala, K.; Li, J.; Chen, C.; Shan, Z.; Cao, X.; Zhou, X.F.; Garg, S. Curcumin-loaded self-nanomicellizing solid dispersion system: Part II: in vivo safety and efficacy assessment against behavior deficit in Alzheimer disease. Drug Deliv. Transl. Res., 2018, 8(5), 1406-1420.
[http://dx.doi.org/10.1007/s13346-018-0570-0] [PMID: 30117120]
[96]
Hagl, S.; Heinrich, M.; Kocher, A.; Schiborr, C.; Frank, J.; Eckert, G.P. Curcumin micelles improve mitochondrial function in a mouse model of Alzheimer’s disease. J. Prev. Alzheimers Dis., 2014, 1(2), 80-83.
[PMID: 29255835]
[97]
McClure, R.; Ong, H.; Janve, V.; Barton, S.; Zhu, M.; Li, B.; Dawes, M.; Jerome, W.G.; Anderson, A.; Massion, P.; Gore, J.C.; Pham, W. Aerosol delivery of curcumin reduced amyloid-β deposition and improved cognitive performance in a transgenic model of Alzheimer’s disease. J. Alzheimers Dis., 2016, 55(2), 797-811.
[http://dx.doi.org/10.3233/JAD-160289] [PMID: 27802223]
[98]
Zhang, L.; Fiala, M.; Cashman, J.; Sayre, J.; Espinosa, A.; Mahanian, M.; Zaghi, J.; Badmaev, V.; Graves, M.C.; Bernard, G.; Rosenthal, M. Curcuminoids enhance amyloid-β uptake by macrophages of Alzheimer’s disease patients. J. Alzheimers Dis., 2006, 10(1), 1-7.
[http://dx.doi.org/10.3233/JAD-2006-10101] [PMID: 16988474]
[99]
Gangurde, A.B.; Kundaikar, H.S.; Javeer, S.D.; Jaiswar, D.R.; Degani, M.S.; Amin, P.D. Enhanced solubility and dissolution of curcumin by a hydrophilic polymer solid dispersion and its in silico molecular modeling studies. J. Drug Deliv. Sci. Technol., 2015, 29, 226-237.
[http://dx.doi.org/10.1016/j.jddst.2015.08.005]
[100]
Li, J.; Jiang, Y.; Wen, J.; Fan, G.; Wu, Y.; Zhang, C. A rapid and simple HPLC method for the determination of curcumin in rat plasma: assay development, validation and application to a pharmacokinetic study of curcumin liposome. Biomed. Chromatogr., 2009, 23(11), 1201-1207.
[http://dx.doi.org/10.1002/bmc.1244] [PMID: 19488971]
[101]
Ji, W.H.; Xiao, Z-B.; Liu, G-Y.; Zhang, X. Development and application of nano-flavor-drug carriers in neurodegenerative diseases. Chin. Chem. Lett., 2017, 28(9), 1829-1834.
[http://dx.doi.org/10.1016/j.cclet.2017.06.024]
[102]
Agrawal, M. Ajazuddin; Tripathi, D.K.; Saraf, S.; Saraf, S.; Antimisiaris, S.G.; Mourtas, S.; Hammarlund-Udenaes, M.; Alexander, A. Recent advancements in liposomes targeting strategies to cross blood-brain barrier (BBB) for the treatment of Alzheimer’s disease. J. Control. Release, 2017, 260, 61-77.
[http://dx.doi.org/10.1016/j.jconrel.2017.05.019] [PMID: 28549949]
[103]
Askarizadeh, A.; Barreto, G.E.; Henney, N.C.; Majeed, M.; Sahebkar, A. Neuroprotection by curcumin: A review on brain delivery strategies. Int. J. Pharm., 2020, 585119476
[http://dx.doi.org/10.1016/j.ijpharm.2020.119476] [PMID: 32473377]
[104]
Kaur, A.; Nigam, K.; Srivastava, S.; Tyagi, A.; Dang, S. Memantine nanoemulsion: A new approach to treat Alzheimer’s disease. J. Microencapsul., 2020, 37(5), 355-365.
[http://dx.doi.org/10.1080/02652048.2020.1756971] [PMID: 32293915]
[105]
Manek, E.; Darvas, F.; Petroianu, G.A. Use of biodegradable, chitosan-based nanoparticles in the treatment of Alzheimer’s disease. Molecules, 2020, 25(20), 4866.
[http://dx.doi.org/10.3390/molecules25204866] [PMID: 33096898]
[106]
Mathew, A.; Fukuda, T.; Nagaoka, Y.; Hasumura, T.; Morimoto, H.; Yoshida, Y.; Maekawa, T.; Venugopal, K.; Kumar, D.S. Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s disease. PLoS One, 2012, 7(3)e32616
[http://dx.doi.org/10.1371/journal.pone.0032616] [PMID: 22403681]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy