Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Research Article

Integrated Machine Learning Algorithms for Stratification of Patients with Bladder Cancer

Author(s): Yuanyuan He, Haodong Wei, Siqing Liao, Ruiming Ou, Yuqiang Xiong, Yongchun Zuo* and Lei Yang*

Volume 19, Issue 10, 2024

Published on: 06 February, 2024

Page: [963 - 976] Pages: 14

DOI: 10.2174/0115748936288453240124082031

Price: $65

Abstract

Background: Bladder cancer is a prevalent malignancy globally, characterized by rising incidence and mortality rates. Stratifying bladder cancer patients into different subtypes is crucial for the effective treatment of this form of cancer. Therefore, there is a need to develop a stratification model specific to bladder cancer.

Purpose: This study aims to establish a prognostic prediction model for bladder cancer, with the primary goal of accurately predicting prognosis and treatment outcomes.

Methods: We collected datasets from 10 bladder cancer datasets sourced from the Gene Expression Omnibus (GEO), the Cancer Genome Atlas (TCGA) databases, and IMvigor210 dataset. The machine learning based on feature selection algorithms were used to generate 96 models for establishing the risk score for each patient. Based on the risk score, all the patients were classified into two different risk score groups.

Results: The two groups of bladder cancer patients exhibited significant differences in prognosis, biological functions, and drug sensitivity. Nomogram model demonstrated that the risk score had a robust predictive effect with good clinical utility.

Conclusion: The risk score constructed in this study can be utilized to predict the prognosis, response to drug treatment, and immunotherapy of bladder cancer patients, providing assistance for personalized clinical treatment of bladder cancer.

Keywords: Bladder cancer, prognosis, machine learning, drug sensitivity, immunotherapy, algorithms.

Graphical Abstract
[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of Incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Robertson AG, Kim J, Al-Ahmadie H, et al. Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell 2017; 171(3): 540-556.e25.
[http://dx.doi.org/10.1016/j.cell.2017.09.007] [PMID: 28988769]
[3]
van Kessel KEM, Zuiverloon TCM, Alberts AR, Boormans JL, Zwarthoff EC. Targeted therapies in bladder cancer: An overview of in vivo research. Nat Rev Urol 2015; 12(12): 681-94.
[http://dx.doi.org/10.1038/nrurol.2015.231] [PMID: 26390971]
[4]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[5]
Kamoun A, de Reyniès A, Allory Y, et al. A consensus molecular classification of muscle-invasive bladder cancer. Eur Urol 2020; 77(4): 420-33.
[http://dx.doi.org/10.1016/j.eururo.2019.09.006] [PMID: 31563503]
[6]
Jubber I, Ong S, Bukavina L, et al. Epidemiology of bladder cancer in 2023: A systematic review of risk factors. Eur Urol 2023; 84(2): 176-90.
[http://dx.doi.org/10.1016/j.eururo.2023.03.029] [PMID: 37198015]
[7]
Tutsoy O, Tanrikulu MY. Priority and age specific vaccination algorithm for the pandemic diseases: A comprehensive parametric prediction model. BMC Med Inform Decis Mak 2022; 22(1): 4.
[http://dx.doi.org/10.1186/s12911-021-01720-6] [PMID: 34991566]
[8]
Tutsoy O. Graph theory based large-scale machine learning with multi-dimensional constrained optimization approaches for exact epidemiological modeling of pandemic diseases. IEEE Trans Pattern Anal Mach Intell 2023; 45(8): 9836-45.
[http://dx.doi.org/10.1109/TPAMI.2023.3256421] [PMID: 37028303]
[9]
Hänzelmann S, Castelo R, Guinney J. GSVA: Gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics 2013; 14(1): 7.
[http://dx.doi.org/10.1186/1471-2105-14-7] [PMID: 23323831]
[10]
Su D, Wang S, Xi Q, et al. Prognostic and predictive value of a metabolic risk score model in breast cancer: An immunogenomic landscape analysis. Brief Funct Genomics 2022; 21(2): 128-41.
[http://dx.doi.org/10.1093/bfgp/elab040] [PMID: 34755827]
[11]
Su D, Lu Q, Pan Y, et al. Immune-related gene-based prognostic signature for the risk stratification analysis of breast cancer. Curr Bioinform 2022; 17(2): 196-205.
[http://dx.doi.org/10.2174/1574893616666211005110732]
[12]
Wang S, Zhang Q, Yu C, Cao Y, Zuo Y, Yang L. Immune cell infiltration-based signature for prognosis and immunogenomic analysis in breast cancer. Brief Bioinform 2021; 22(2): 2020-31.
[http://dx.doi.org/10.1093/bib/bbaa026] [PMID: 32141494]
[13]
Wang S, Xiong Y, Zhang Q, et al. Clinical significance and immunogenomic landscape analyses of the immune cell signature based prognostic model for patients with breast cancer. Brief Bioinform 2020.
[PMID: 33302293]
[14]
Miao YR, Zhang Q, Lei Q, et al. ImmuCellAI: A unique method for comprehensive T-cell subsets abundance prediction and its application in cancer immunotherapy. Adv Sci 2020; 7(7): 1902880.
[http://dx.doi.org/10.1002/advs.201902880] [PMID: 32274301]
[15]
Yang L, Lv Y, Wang S, et al. Identifying FL11 subtype by characterizing tumor immune microenvironment in prostate adenocarcinoma via Chou’s 5-steps rule. Genomics 2020; 112(2): 1500-15.
[http://dx.doi.org/10.1016/j.ygeno.2019.08.021] [PMID: 31472243]
[16]
Xiao Y, Ma D, Zhao S, et al. Multi-omics profiling reveals distinct microenvironment characterization and suggests immune escape mechanisms of triple-negative breast cancer. Clin Cancer Res 2019; 25(16): 5002-14.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-3524] [PMID: 30837276]
[17]
Leone RD, Powell JD. Metabolism of immune cells in cancer. Nat Rev Cancer 2020; 20(9): 516-31.
[http://dx.doi.org/10.1038/s41568-020-0273-y] [PMID: 32632251]
[18]
Xiao Y, Ma D, Yang YS, et al. Comprehensive metabolomics expands precision medicine for triple-negative breast cancer. Cell Res 2022; 32(5): 477-90.
[http://dx.doi.org/10.1038/s41422-022-00614-0] [PMID: 35105939]
[19]
Chu G, Ji X, Wang Y, Niu H. Integrated multiomics analysis and machine learning refine molecular subtypes and prognosis for muscle-invasive urothelial cancer. Mol Ther Nucleic Acids 2023; 33: 110-26.
[http://dx.doi.org/10.1016/j.omtn.2023.06.001] [PMID: 37449047]
[20]
Liu Z, Liu L, Weng S, et al. Machine learning-based integration develops an immune-derived lncRNA signature for improving outcomes in colorectal cancer. Nat Commun 2022; 13(1): 816.
[http://dx.doi.org/10.1038/s41467-022-28421-6] [PMID: 35145098]
[21]
Ning J, Sun K, Fan X, et al. Use of machine learning-based integration to develop an immune-related signature for improving prognosis in patients with gastric cancer. Sci Rep 2023; 13(1): 7019.
[http://dx.doi.org/10.1038/s41598-023-34291-9] [PMID: 37120631]
[22]
Liu J, Shi Y, Zhang Y. Multi-omics identification of an immunogenic cell death-related signature for clear cell renal cell carcinoma in the context of 3P medicine and based on a 101-combination machine learning computational framework. EPMA J 2023; 14(2): 275-305.
[http://dx.doi.org/10.1007/s13167-023-00327-3] [PMID: 37275552]
[23]
Qin H, Abulaiti A, Maimaiti A, et al. Integrated machine learning survival framework develops a prognostic model based on inter-crosstalk definition of mitochondrial function and cell death patterns in a large multicenter cohort for lower-grade glioma. J Transl Med 2023; 21(1): 588.
[http://dx.doi.org/10.1186/s12967-023-04468-x] [PMID: 37660060]
[24]
Wang L, Liu Z, Liang R, et al. Comprehensive machine-learning survival framework develops a consensus model in large-scale multicenter cohorts for pancreatic cancer. eLife 2022; 11: e80150.
[http://dx.doi.org/10.7554/eLife.80150] [PMID: 36282174]
[25]
Colaprico A, Silva TC, Olsen C, et al. TCGAbiolinks: An R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res 2016; 44(8): e71-1.
[http://dx.doi.org/10.1093/nar/gkv1507] [PMID: 26704973]
[26]
Mariathasan S, Turley SJ, Nickles D, et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 2018; 554(7693): 544-8.
[http://dx.doi.org/10.1038/nature25501] [PMID: 29443960]
[27]
Wu Y, Yang S, Ma J, et al. Spatiotemporal immune landscape of colorectal cancer liver metastasis at single-cell level. Cancer Discov 2022; 12(1): 134-53.
[http://dx.doi.org/10.1158/2159-8290.CD-21-0316] [PMID: 34417225]
[28]
Jassal B, Matthews L, Viteri G, et al. The reactome pathway knowledgebase. Nucleic Acids Res 2020; 48(D1): D498-503.
[PMID: 31691815]
[29]
Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 2012; 28(6): 882-3.
[http://dx.doi.org/10.1093/bioinformatics/bts034] [PMID: 22257669]
[30]
Liu Z, Guo C, Dang Q, et al. Integrative analysis from multi-center studies identities a consensus machine learning-derived lncRNA signature for stage II/III colorectal cancer. EBioMedicine 2022; 75: 103750.
[http://dx.doi.org/10.1016/j.ebiom.2021.103750] [PMID: 34922323]
[31]
Xu H, Liu Z, Weng S, et al. Artificial intelligence‐driven consensus gene signatures for improving bladder cancer clinical outcomes identified by multi‐center integration analysis. Mol Oncol 2022; 16(22): 4023-42.
[http://dx.doi.org/10.1002/1878-0261.13313] [PMID: 36083778]
[32]
Pickett KL, Suresh K, Campbell KR, Davis S, Juarez-Colunga E. Random survival forests for dynamic predictions of a time-to-event outcome using a longitudinal biomarker. BMC Med Res Methodol 2021; 21(1): 216.
[http://dx.doi.org/10.1186/s12874-021-01375-x] [PMID: 34657597]
[33]
Goeman JJ. L1 penalized estimation in the Cox proportional hazards model. Biom J 2010; 52(1): 70-84.
[http://dx.doi.org/10.1002/bimj.200900028] [PMID: 19937997]
[34]
Robinson MD, McCarthy DJ, Smyth GK. edgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010; 26(1): 139-40.
[http://dx.doi.org/10.1093/bioinformatics/btp616] [PMID: 19910308]
[35]
Wu T, Hu E, Xu S, et al. ClusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation 2021; 2(3): 100141.
[http://dx.doi.org/10.1016/j.xinn.2021.100141] [PMID: 34557778]
[36]
Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102(43): 15545-50.
[http://dx.doi.org/10.1073/pnas.0506580102] [PMID: 16199517]
[37]
Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst 2015; 1(6): 417-25.
[http://dx.doi.org/10.1016/j.cels.2015.12.004] [PMID: 26771021]
[38]
Bhattacharya S, Dunn P, Thomas CG, et al. ImmPort, toward repurposing of open access immunological assay data for translational and clinical research. Sci Data 2018; 5(1): 180015.
[http://dx.doi.org/10.1038/sdata.2018.15] [PMID: 29485622]
[39]
Charoentong P, Finotello F, Angelova M, et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep 2017; 18(1): 248-62.
[http://dx.doi.org/10.1016/j.celrep.2016.12.019] [PMID: 28052254]
[40]
Maeser D, Gruener RF, Huang RS. oncoPredict: An R package for predicting in vivo or cancer patient drug response and biomarkers from cell line screening data. Brief Bioinform 2021; 22(6): bbab260.
[http://dx.doi.org/10.1093/bib/bbab260] [PMID: 34260682]
[41]
Yang W, Soares J, Greninger P, et al. Genomics of drug sensitivity in cancer (GDSC): A resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res 2013; 41(Database issue): D955-61.
[PMID: 23180760]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy