Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

联合递送紫杉醇和双氢青蒿素的混合纳米粒子显示协同抗癌治疗

卷 24, 期 12, 2024

发表于: 06 February, 2024

页: [1250 - 1261] 页: 12

弟呕挨: 10.2174/0115680096283208231229103822

价格: $65

摘要

目标:抗癌治疗需要提供有效和安全的患者药物。这项研究有助于开发和应用纳米颗粒(NPs)用于癌症治疗。 背景:紫杉醇(PTX)溶解度差,由于配方辅料的过敏性副作用,限制了其治疗效果。为了克服这一问题,PTX与青蒿素衍生物偶联并装载到NP给药系统中,以增强其作用,同时解决其低溶解度问题。 目的:本研究制备并表征了一种含有双氢青蒿素(DHA)和PTX的杂化PLGA -卵磷脂NP,用于协同抗癌。冻干研究提高了NP药物制剂的稳定性。 方法:采用单步溶剂蒸发法制备了PTX和DHA双负载PLGA和卵磷脂基NPs。对NP悬浮液进行冻干,并研究了冷冻保护剂的种类和配比。对NPs和冻干饼(Lyo-NPs)的理化性质进行了表征。研究了Lyo-NPs在2-8℃和室温条件下的稳定性。采用体外细胞毒性实验和体内模型分析了联合用药、NP悬浮液和冻干粉的抗癌作用。 结果:制备了最佳PTX-DHA负载plga -卵磷脂- np (200 nm, PDI: 0.248 μ} 0.003, Zeta电位:-33.60 μ} 3.39 mV)。选择甘露醇进行冻干。Lyo-NPs提高了NPs的稳定性(1年),其中NPs的物理化学性质保持不变(RDI接近1.0)。PTX与DHA联合体外细胞毒性试验显示出协同抗癌作用(CI <1.0)。Lyo-NPs对体内肿瘤生长的抑制作用呈剂量依赖性。虽然游离药物混合物在体内显示出高毒性(7.5 mg PTX-15 mg DHA/kg),但Lyo-NPs在血液学和生化参数方面与对照组相比没有统计学差异。 结论:双药负载的杂化PLGA -卵磷脂NP是一种潜在的系统,可以在减少严重副作用的同时增强抗肿瘤疗效,其中冻干是增加稳定性的关键过程。

关键词: 紫杉醇,协同治疗,杂交纳米粒子,抗癌治疗,冻干,稳定性,青蒿素衍生物。

图形摘要
[1]
Kalaydina, R.V.; Bajwa, K.; Qorri, B.; DeCarlo, A.; Szewczuk, M.R. Recent advances in “smart” delivery systems for extended drug release in cancer therapy. Int. J. Nanomedicine, 2018, 13, 4727-4745.
[http://dx.doi.org/10.2147/IJN.S168053] [PMID: 30154657]
[2]
Rowinsky, E.K.; Cazenave, L.A.; Donehower, R.C. Taxol: A novel investigational antimicrotubule agent. J. Natl. Cancer Inst., 1990, 82(15), 1247-1259.
[http://dx.doi.org/10.1093/jnci/82.15.1247] [PMID: 1973737]
[3]
Ma, P Paclitaxel nano-delivery systems: A comprehensive review. J. Nanomed. Nanotechnol., 2013, 4(2), 1000164.
[4]
Liebmann, J.; Cook, J.A.; Lipschultz, C.; Teague, D.; Fisher, J.; Mitchell, J.B. The influence of Cremophor EL on the cell cycle effects of paclitaxel (Taxol) in human tumor cell lines. Cancer Chemother. Pharmacol., 1994, 33(4), 331-339.
[http://dx.doi.org/10.1007/BF00685909] [PMID: 7904231]
[5]
Weiss, R.B.; Donehower, R.C.; Wiernik, P.H.; Ohnuma, T.; Gralla, R.J.; Trump, D.L.; Baker, J.R., Jr; Van Echo, D.A.; Von Hoff, D.D.; Leyland-Jones, B. Hypersensitivity reactions from taxol. J. Clin. Oncol., 1990, 8(7), 1263-1268.
[http://dx.doi.org/10.1200/JCO.1990.8.7.1263] [PMID: 1972736]
[6]
Miele, E.; Spinelli, G.P.; Miele, E. Albumin-bound formulation of paclitaxel (Abraxane® ABI-007) in the treatment of breast cancer. Int. J. Nanomedicine, 2009, 4, 99-105.
[7]
Tran, B.N.; Nguyen, H.T.; Kim, J.O.; Yong, C.S.; Nguyen, C.N. Developing combination of artesunate with paclitaxel loaded into poly- D,L -lactic-co-glycolic acid nanoparticle for systemic delivery to exhibit synergic chemotherapeutic response. Drug Dev. Ind. Pharm., 2017, 43(12), 1952-1962.
[http://dx.doi.org/10.1080/03639045.2017.1357729] [PMID: 28724314]
[8]
Tran, B.N.; Nguyen, H.T.; Kim, J.O. Combination of a chemopreventive agent and paclitaxel in CD44-targeted hybrid nanoparticles for breast cancer treatment. Arch. Pharm. Res., 2017, 40(12), 1420-1432.
[http://dx.doi.org/10.1007/s12272-017-0968-0]
[9]
Phung, C.D.; Le, T.G.; Nguyen, V.H. PEGylated-paclitaxel and dihydroartemisinin nanoparticles for simultaneously delivering paclitaxel and dihydroartemisinin to colorectal cancer. Pharm. Res., 2020, 37(7), 129.
[http://dx.doi.org/10.1007/s11095-020-02819-7]
[10]
Jiang, Y.; Zhou, Y.; Zhang, C.Y. Co-delivery of paclitaxel and doxorubicin by ph-responsive prodrug micelles for cancer therapy. Int. J. Nanomedicine, 2020, 15, 3319-3331.
[http://dx.doi.org/10.2147/IJN.S249144]
[11]
Mohamad Saimi, N.I.; Salim, N.; Ahmad, N.; Abdulmalek, E.; Abdul Rahman, M.B. Aerosolized niosome formulation containing gemcitabine and cisplatin for lung cancer treatment: Optimization, characterization and in vitro evaluation. Pharmaceutics, 2021, 13(1), 59.
[http://dx.doi.org/10.3390/pharmaceutics13010059] [PMID: 33466428]
[12]
Mokhtari, R.B.; Homayouni, T.S.; Baluch, N. Combination therapy in combating cancer. Oncotarget, 2017, 8(23), 38022-38043.
[http://dx.doi.org/10.18632/oncotarget.16723]
[13]
Greco, F.; Vicent, MJ Combination therapy: Opportunities and challenges for polymer-drug conjugates as anticancer nanomedicines. Adv. Drug Deliv. Rev., 2009, 61(13), 1203-1213.
[14]
Bishop, J.F.; Dewar, J.; Toner, G.C.; Smith, J.; Tattersall, M.H.N.; Olver, I.N.; Ackland, S.; Kennedy, I.; Goldstein, D.; Gurney, H.; Walpole, E.; Levi, J.; Stephenson, J.; Canetta, R. Initial paclitaxel improves outcome compared with CMFP combination chemotherapy as front-line therapy in untreated metastatic breast cancer. J. Clin. Oncol., 1999, 17(8), 2355-2364.
[http://dx.doi.org/10.1200/JCO.1999.17.8.2355] [PMID: 10561297]
[15]
Danhier, F.; Lecouturier, N.; Vroman, B.; Jérôme, C.; Marchand-Brynaert, J.; Feron, O.; Préat, V. Paclitaxel-loaded PEGylated PLGA-based nanoparticles: In vitro and in vivo evaluation. J. Control. Release, 2009, 133(1), 11-17.
[http://dx.doi.org/10.1016/j.jconrel.2008.09.086] [PMID: 18950666]
[16]
Fonseca, C.; Simões, S.; Gaspar, R. Paclitaxel-loaded PLGA nanoparticles: Preparation, physicochemical characterization and in vitro anti-tumoral activity. J. Control. Release, 2002, 83(2), 273-286.
[http://dx.doi.org/10.1016/S0168-3659(02)00212-2] [PMID: 12363453]
[17]
Nguyen, H.T.; Tran, T.H.; Kim, J.O.; Yong, C.S.; Nguyen, C.N. Enhancing the in vitro anti-cancer efficacy of artesunate by loading into poly-d,l-lactide-co-glycolide (PLGA) nanoparticles. Arch. Pharm. Res., 2015, 38(5), 716-724.
[http://dx.doi.org/10.1007/s12272-014-0424-3] [PMID: 24968925]
[18]
Chu, X-Y.; Huang, W.; Wang, Y-L Improving antitumor outcomes for palliative intratumoral injection therapy through lecithin- chitosan nanoparticles loading paclitaxel- cholesterol complex. Int. J. Nanomed., 2019, 14, 689-705.
[19]
Zolnik, B.S.; Burgess, DJ Effect of acidic pH on PLGA microsphere degradation and release. J. Control. Release, 2007, 122(3), 338-344.
[http://dx.doi.org/10.1016/j.jconrel.2007.05.034]
[20]
Yoo, J.Y.; Kim, J.M.; Seo, K.S.; Jeong, Y.K.; Lee, H.B.; Khang, G. Characterization of degradation behavior for PLGA in various pH condition by simple liquid chromatography method. Biomed. Mater. Eng., 2005, 15(4), 279-288.
[PMID: 16010036]
[21]
Comas, DI; Wagner, JR; Tomás, MC Creaming stability of oil in water (O/W) emulsions: Influence of pH on soybean protein–lecithin interaction. 2006, 20(7), 990-996.
[22]
Tran, T.B.; Tran, T.H.; Vu, YH pH-responsive nanocarriers for combined chemotherapies: A new approach with old materials. Cellulose, 2021, 28(6), 3423-3433.
[23]
Ball, R.L.; Bajaj, P. Achieving long-term stability of lipid nanoparticles: Examining the effect of pH, temperature, and lyophilization. Int. J. Nanomedicine, 2017, 12, 305-315.
[24]
Patel, S.M.; Nail, S.L.; Pikal, M.J. Lyophilized drug product cake appearance: What is acceptable? J. Pharm. Sci., 2017, 106(7), 1706-1721.
[http://dx.doi.org/10.1016/j.xphs.2017.03.014]
[25]
Kasper, J.C.; Winter, G.; Friess, W. Recent advances and further challenges in lyophilization. Eur. J. Pharm. Biopharm., 2013, 85(2), 162-169.
[http://dx.doi.org/10.1016/j.ejpb.2013.05.019]
[26]
Holzer, M.; Vogel, V.; Mäntele, W.; Schwartz, D.; Haase, W.; Langer, K. Physico-chemical characterisation of PLGA nanoparticles after freeze-drying and storage. Eur. J. Pharm. Biopharm., 2009, 72(2), 428-437.
[http://dx.doi.org/10.1016/j.ejpb.2009.02.002] [PMID: 19462479]
[27]
Ho, H.N.; Laidmäe, I.; Kogermann, K.; Lust, A.; Meos, A.; Nguyen, C.N.; Heinämäki, J. Development of electrosprayed artesunate-loaded core-shell nanoparticles. Drug Dev. Ind. Pharm., 2017, 43(7), 1134-1142.
[http://dx.doi.org/10.1080/03639045.2017.1300163] [PMID: 28277847]
[28]
Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A.; Gray-Goodrich, M.; Campbell, H.; Mayo, J.; Boyd, M. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J. Natl. Cancer Inst., 1991, 83(11), 757-766.
[http://dx.doi.org/10.1093/jnci/83.11.757] [PMID: 2041050]
[29]
Ninh, T.T.K.; Tran, T.H.; Huang, C-Y.F. Application of computational screening tools and nanotechnology for enhanced drug synergism in cancer therapy. Curr. Drug Deliv., 2023, 20(7), 1015-1029.
[http://dx.doi.org/10.2174/1567201819666220426092538]
[30]
Wang, Y.; Chen, J.; Yang, Y. Oil-water partition coefficient preparation and detection in the dihydroartemisinin self-emulsifying drug delivery system. BMC Biotechnol., 2022, 22(1), 16.
[http://dx.doi.org/10.1186/s12896-022-00746-6]
[31]
Ansari, M.T.; Batty, K.T.; Iqbal, I. Improving the solubility and bioavailability of dihydroartemisinin by solid dispersions and inclusion complexes. Arch. Pharm. Res., 2011, 34(5), 757-765.
[http://dx.doi.org/10.1007/s12272-011-0509-1]
[32]
Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.; Iynkkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.; Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res., 2018, 46(D1), D1074-D1082.
[http://dx.doi.org/10.1093/nar/gkx1037] [PMID: 29126136]
[33]
Liu, J.; Huang, Y.; Kumar, A pH-Sensitive nano-systems for drug delivery in cancer therapy. Biotechnol. Adv., 2014, 32(4), 693-710.
[34]
Cao, Z.; Li, W.; Liu, R pH-and enzyme-triggered drug release as an important process in the design of anti-tumor drug delivery systems. Biomed. Pharmacother., 2019, 118, 109340.
[35]
Circioban, D.; Ledeti, A.; Vlase, G. Thermal stability and kinetic degradation study for dihydroartemisinin. J. Therm. Anal. Calorim., 2020, 142(10), 6.
[http://dx.doi.org/10.1007/s10973-020-09902-6]
[36]
Wang, L.; Wang, Y.; Wang, X.; Sun, L.; Zhou, Z.; Lu, J.; Zheng, Y. Encapsulation of low lipophilic and slightly water-soluble dihydroartemisinin in PLGA nanoparticles with phospholipid to enhance encapsulation efficiency and in vitro bioactivity. J. Microencapsul., 2016, 33(1), 43-52.
[http://dx.doi.org/10.3109/02652048.2015.1114042] [PMID: 26626402]
[37]
Chen, Y.; Chin, B.W.; Bieber, M.M.; Tan, X.; Teng, N.N. Abstract 470: Artemisinin derivatives synergize with paclitaxel by targeting FOXM1 through Raf/MEK/MAPK signaling pathway in ovarian cancer. Cancer Res., 2014, 74(19_Supplement), 470.
[http://dx.doi.org/10.1158/1538-7445.AM2014-470]
[38]
Liu, J.; Chen, Q.; Feng, L. Nanomedicine for tumor microenvironment modulation and cancer treatment enhancement. Nano Today, 2018, 21.
[http://dx.doi.org/10.1016/j.nantod.2018.06.008]
[39]
Parolini, I.; Federici, C.; Raggi, C Microenvironmental pH is a key factor for exosome traffic in tumor cells. J. Biol. Chem., 2009, 284(49), 34211-34222.
[http://dx.doi.org/10.1074/jbc.M109.041152]
[40]
Ashton, JC Drug combination studies and their synergy quantification using the Chou–Talalay method., 2015, 75(11), 2400.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy