Generic placeholder image

Current Respiratory Medicine Reviews

Editor-in-Chief

ISSN (Print): 1573-398X
ISSN (Online): 1875-6387

Review Article

Unravelling the Impact: Pulmonary Side Effects of Anti-Seizure Medications

Author(s): Ambra Butera, Martina Pirrone, Arianna Santina Accetta, Carla Consoli, Antonio Gennaro Nicotera* and Laura Turriziani

Volume 21, Issue 1, 2025

Published on: 02 February, 2024

Page: [29 - 47] Pages: 19

DOI: 10.2174/011573398X279958240131101144

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Epilepsy is a chronic brain condition affecting over 50 million people worldwide. Several new anti-seizure medications (ASMs) have been introduced to treat epilepsy in recent decades.

Objective: Nearby the specific therapeutic action, ASMs, like other types of pharmacotherapy, can produce various side effects. In this review, we shall analyze the different pharmaceutical classes of ASMs, their mechanism of action, and their interaction with the respiratory system.

Methods: This manuscript is based on a retrospective review of English publications indexed by Pubmed, UpToDate and datasheets published by the European Medicines Agency and the Food and Drug Administration (FDA), using various terms reminiscent of ASMs and pulmonary function.

Results: ASMs act on organism homeostasis in different ways, acting on lung function directly and indirectly and playing a protective or damaging role. A damaging direct lung involvement ranged from infections, hypersensitivity reactions, and respiratory depression to other structured pulmonary diseases. Meanwhile, a damaging indirect effect, might be constituted by pulmonary artery hypertension. On the other hand, a protective effect might be the expression of developmental processing, decreasing airway remodelling in asthma patients, vascular remodelling in pulmonary hypertension and, nonetheless, anti-inflammatory and immunomodulatory actions.

Conclusion: An adequate awareness of ASMs effects on the respiratory system seems essential for better managing frail individuals or/and those predisposed to respiratory disorders to improve our patients' clinical outcomes.

Keywords: Anti-seizure medications (ASMs), antiepileptic drugs (AEDs), respiratory function, epilepsy, lung function, pulmonary disease.

Graphical Abstract
[1]
World Health Organization (WHO) Epilepsy 2023. Available from: https://www.who.int/news-room/fact-sheets/detail/epilepsy
[2]
Specchio N, Pietrafusa N, Perucca E, Cross J H. New paradigms for the treatment of pediatric monogenic epilepsies: Progressing toward precision medicine. Epilepsy & behavior : E&B 2022; 131(Pt B): 107961.
[http://dx.doi.org/10.1016/j.yebeh.2021.107961]
[3]
Romão TT, Angelim AIM, Prado HJP, et al. Use of lacosamide in children: Experience of a tertiary medical care center in Brazil. Arq Neuropsiquiatr 2022; 80(11): 1090-6.
[http://dx.doi.org/10.1055/s-0042-1758366] [PMID: 36577407]
[4]
Driessen JT, Wammes-van der Heijden EA, Verschuure P, Fasen KCFM, Teunissen MWA, Majoie HJM. Effectiveness and tolerability of lacosamide in children with drug resistant epilepsy. Epilepsy Behav Rep 2023; 21: 100574.
[http://dx.doi.org/10.1016/j.ebr.2022.100574] [PMID: 36545476]
[5]
Becker LL, Kaindl AM. Corticosteroids in childhood epilepsies: A systematic review. Front Neurol 2023; 14: 1142253.
[http://dx.doi.org/10.3389/fneur.2023.1142253] [PMID: 36970534]
[6]
Iapadre G, Balagura G, Zagaroli L, Striano P, Verrotti A. Pharmacokinetics and drug interaction of antiepileptic drugs in children and adolescents. Paediatr Drugs 2018; 20(5): 429-53.
[http://dx.doi.org/10.1007/s40272-018-0302-4] [PMID: 30003498]
[7]
Spoto G, Valentini G, Saia MC, et al. Synaptopathies in developmental and epileptic encephalopathies: A focus on pre-synaptic dysfunction. Front Neurol 2022; 13: 826211.
[http://dx.doi.org/10.3389/fneur.2022.826211] [PMID: 35350397]
[8]
Cornaggia C M, Di Rosa G, Polita M, Magaudda A, Perin C, Beghi M. Conversation analysis in the differentiation of psychogenic nonepileptic and epileptic seizures in pediatric and adolescent settings Epilepsy & behavior : E&B 2016; 62: 231-8.
[http://dx.doi.org/10.1016/j.yebeh.2016.07.006]
[9]
Verrotti A, Iapadre G, Di Donato G, et al. Pharmacokinetic considerations for anti-epileptic drugs in children. Expert Opin Drug Metab Toxicol 2019; 15(3): 199-211.
[http://dx.doi.org/10.1080/17425255.2019.1575361] [PMID: 30689454]
[10]
Spoto G, Amore G, Vetri L, et al. Cerebellum and prematurity: A complex interplay between disruptive and dysmaturational events. Front Syst Neurosci 2021; 15: 655164.
[http://dx.doi.org/10.3389/fnsys.2021.655164] [PMID: 34177475]
[11]
Yuen A W C, Keezer M R, Sander J W. Epilepsy is a neurological and a systemic disorder. Epilepsy & behavior : E&B 2018; 78: 57-61.
[http://dx.doi.org/10.1016/j.yebeh.2017.10.010]
[12]
Di Rosa G, Lenzo P, Parisi E, et al. Role of plasma homocysteine levels and MTHFR polymorphisms on IQ scores in children and young adults with epilepsy treated with antiepileptic drugs. Epilepsy & behavior : E&B 2013; 29(3): 548-51.
[http://dx.doi.org/10.1016/j.yebeh.2013.09.034]
[13]
Lacuey N, Zonjy B, Hampson JP, et al. The incidence and significance of periictal apnea in epileptic seizures. Epilepsia 2018; 59(3): 573-82.
[http://dx.doi.org/10.1111/epi.14006] [PMID: 29336036]
[14]
Islam MZ, Hossain SI, Deplazes E, Luo Z, Saha SC. The concentration-dependent effect of hydrocortisone on the structure of model lung surfactant monolayer by using an in silico approach. RSC Advances 2022; 12(51): 33313-28.
[http://dx.doi.org/10.1039/D2RA05268G] [PMID: 36506480]
[15]
Mansour NM, El-Sherbiny DT, Ibrahim FA, El-Subbagh HI. Analysis of two mixtures containing racetams in their pharmaceuticals using simple spectrophotometric methodologies. Ann Pharm Fr 2022; 80(6): 885-96.
[http://dx.doi.org/10.1016/j.pharma.2022.06.001] [PMID: 35718111]
[16]
Malykh AG, Sadaie MR. Piracetam and piracetam-like drugs: from basic science to novel clinical applications to CNS disorders. Drugs 2010; 70(3): 287-312.
[http://dx.doi.org/10.2165/11319230-000000000-00000] [PMID: 20166767]
[17]
Verrotti A, Grasso EA, Cacciatore M, Matricardi S, Striano P. Potential role of brivaracetam in pediatric epilepsy. Acta Neurol Scand 2021; 143(1): 19-26.
[http://dx.doi.org/10.1111/ane.13347] [PMID: 32966640]
[18]
Food and drug administration (FDA). Briviact (brivaracetam) prescribing information. 2021. Available from: https://www.accessdata.fda.gov/drugsa tfda_docs/label/2021/205836s009,205837s007,205838s006lbl.pdf
[19]
European medicines agency (EMA), Keppra (Levetiracetam), Summary of product characteristics. 2023. Avaialbe from: https://www.ema.europa.eu/en/documents/product-information/keppra-epar-product-information_en.pdf
[20]
Delanty N, Jones J, Tonner F. Adjunctive levetiracetam in children, adolescents, and adults with primary generalized seizures: Open-label, noncomparative, multicenter, long-term follow-up study. Epilepsia 2012; 53(1): 111-9.
[http://dx.doi.org/10.1111/j.1528-1167.2011.03300.x] [PMID: 22050371]
[21]
Winblad B. Piracetam: A review of pharmacological properties and clinical uses. CNS Drug Rev 2005; 11(2): 169-82.
[http://dx.doi.org/10.1111/j.1527-3458.2005.tb00268.x] [PMID: 16007238]
[22]
van Hooft JA, Dougherty JJ, Endeman D, Nichols RA, Wadman WJ. Gabapentin inhibits presynaptic Ca2+ influx and synaptic transmission in rat hippocampus and neocortex. Eur J Pharmacol 2002; 449(3): 221-8.
[http://dx.doi.org/10.1016/S0014-2999(02)02044-7] [PMID: 12167463]
[23]
Cross AL, Viswanath O, Sherman AL. Pregabalin. StatPearls. StatPearls Publishing 2022.
[24]
Łukasiuk K, Lasoń W. Emerging molecular targets for anti-epileptogenic and epilepsy modifying drugs. Int J Mol Sci 2023; 24(3): 2928.
[http://dx.doi.org/10.3390/ijms24032928] [PMID: 36769250]
[25]
Morano A, Palleria C, Citraro R, et al. Immediate and controlled-release pregabalin for the treatment of epilepsy. Expert Rev Neurother 2019; 19(12): 1167-77.
[http://dx.doi.org/10.1080/14737175.2019.1681265] [PMID: 31623493]
[26]
Zaccara G, Gangemi P, Perucca P, Specchio L. The adverse event profile of pregabalin: A systematic review and meta-analysis of randomized controlled trials. Epilepsia 2011; 52(4): 826-36.
[http://dx.doi.org/10.1111/j.1528-1167.2010.02966.x] [PMID: 21320112]
[27]
Panebianco M, Al-Bachari S, Hutton JL, Marson AG. Gabapentin add-on treatment for drug-resistant focal epilepsy. Cochrane Libr 2021; 2021(1): CD001415.
[http://dx.doi.org/10.1002/14651858.CD001415.pub4] [PMID: 33434292]
[28]
Yasaei R, Katta S, Saadabadi A. Gabapentin. StatPearls. StatPearls Publishing 2022.
[29]
Smith RV, Havens JR, Walsh SL. Gabapentin misuse, abuse and diversion: A systematic review. Addiction 2016; 111(7): 1160-74.
[http://dx.doi.org/10.1111/add.13324] [PMID: 27265421]
[30]
Antinew J, Pitrosky B, Knapp L, et al. Pregabalin as adjunctive treatment for focal onset seizures in pediatric patients: A randomized controlled trial. J Child Neurol 2019; 34(5): 248-55.
[http://dx.doi.org/10.1177/0883073818821035] [PMID: 30688135]
[31]
Mann D, Antinew J, Knapp L, et al. Pregabalin adjunctive therapy for focal onset seizures in children 1 month to <4 years of age: A double-blind, placebo-controlled, video-electroencephalographic trial. Epilepsia 2020; 61(4): 617-26.
[http://dx.doi.org/10.1111/epi.16466] [PMID: 32189338]
[32]
European medicines agency (EMA), neurontin (Gabapentin), scientific conclusions and grounds for amendment of the summary of product characteristics, labelling and package leaflet presented by the EMA 2023. Available from: https://www.ema.europa.eu/en/documents/referral/neurontin-article-30-referral-annex-i-ii-iii_en.pdf
[33]
European medicines agency (EMA), Lyrica (Pregabalin), Summary of product characteristics. 2023. Available from: https://www.ema.europa.eu/en/documents/product-information/lyrica-epar-product-information_en.pdf
[34]
Shrestha S, Palaian S. Respiratory concerns of gabapentin and pregabalin: What does it mean to the pharmacovigilance systems in developing countries? F1000 Res 2020; 9: 32.
[http://dx.doi.org/10.12688/f1000research.21962.1] [PMID: 33728039]
[35]
Schachter SC. Antiseizure medications: Mechanism of action, pharmacology, and adverse effects UpToDate 2023. Available from: www.uptodate.com
[36]
Food and drug administration (FDA) (2016), Zarontin (Ethosuximide Capsules, USP). 2016. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/012380s036lbl.pdf
[37]
Davies JA. Mechanisms of action of antiepileptic drugs. Seizure 1995; 4(4): 267-71.
[http://dx.doi.org/10.1016/S1059-1311(95)80003-4] [PMID: 8719918]
[38]
Lewis CB, Adams N. Phenobarbital StatPearls. StatPearls Publishing 2022.
[39]
Trinka E. Phenobarbital in Status epilepticus - Rediscovery of an effective drug. Epilepsy & behavior : E&B 2023; 141: 109104.
[http://dx.doi.org/10.1016/j.yebeh.2023.109104]
[40]
Suddock JT, Kent KJ, Cain MD. Barbiturate Toxicity StatPearls. StatPearls Publishing. 2023.
[41]
de Groot AC. Patch testing in drug reaction with eosinophilia and systemic symptoms ( DRESS ): A literature review. Contact Dermat 2022; 86(6): 443-79.
[http://dx.doi.org/10.1111/cod.14090] [PMID: 35233782]
[42]
Porter RJ, Dhir A, Macdonald RL, Rogawski MA. Mechanisms of action of antiseizure drugs. Handb Clin Neurol 2012; 108: 663-81.
[http://dx.doi.org/10.1016/B978-0-444-52899-5.00021-6] [PMID: 22939059]
[43]
Tiagabine. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury National Institute of Diabetes and Digestive and Kidney Diseases 2018.
[44]
Spiller HA, Wiles D, Russell JL, Casavant MJ. Review of toxicity and trends in the use of tiagabine as reported to US poison centers from 2000 to 2012. Hum Exp Toxicol 2016; 35(2): 109-13.
[http://dx.doi.org/10.1177/0960327115579206] [PMID: 25825412]
[45]
Rahman M, Awosika AO, Nguyen H. Valproic acid. StatPearls. StatPearls Publishing. 2023.
[46]
Kashyap S, Bhardwaj M, Himral P. Valproic acid-induced eosinophilic pleural effusion: An uncommon occurrence. Lung India 2023; 40(1): 82-5.
[http://dx.doi.org/10.4103/lungindia.lungindia_440_22] [PMID: 36695265]
[47]
Royce SG, Dang W, Ververis K, et al. Protective effects of valproic acid against airway hyperresponsiveness and airway remodeling in a mouse model of allergic airways disease. Epigenetics 2011; 6(12): 1463-70.
[http://dx.doi.org/10.4161/epi.6.12.18396] [PMID: 22139576]
[48]
Food and drug administration (FDA), Sabril (Vigabatrin), Highlights of prescribing information. 2018. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/022006s020,020427s018lbl.pdf
[49]
Lingeshwar P, Kaur G, Singh N, et al. A study on the involvement of GABA-transaminase in MCT induced pulmonary hypertension. Pulm Pharmacol Ther 2016; 36: 10-21.
[http://dx.doi.org/10.1016/j.pupt.2015.11.002] [PMID: 26608704]
[50]
Nickels KC, Wirrell EC. Stiripentol in the management of epilepsy. CNS Drugs 2017; 31(5): 405-16.
[http://dx.doi.org/10.1007/s40263-017-0432-1] [PMID: 28434133]
[51]
Balestrini S, Doccini V, Boncristiano A, Lenge M, De Masi S, Guerrini R. Efficacy and safety of long-term treatment with stiripentol in children and adults with drug-resistant epilepsies: A retrospective cohort study of 196 patients. Drugs Real World Outcomes 2022; 9(3): 451-61.
[http://dx.doi.org/10.1007/s40801-022-00305-7] [PMID: 35680739]
[52]
Mantegazza M, Curia G, Biagini G, Ragsdale DS, Avoli M. Voltage-gated sodium channels as therapeutic targets in epilepsy and other neurological disorders. Lancet Neurol 2010; 9(4): 413-24.
[http://dx.doi.org/10.1016/S1474-4422(10)70059-4] [PMID: 20298965]
[53]
Pal R, Kumar B, Akhtar MJ, Chawla PA. Voltage gated sodium channel inhibitors as anticonvulsant drugs: A systematic review on recent developments and structure activity relationship studies. Bioorg Chem 2021; 115: 105230.
[http://dx.doi.org/10.1016/j.bioorg.2021.105230] [PMID: 34416507]
[54]
Glauser T, Ben-Menachem E, Bourgeois B, et al. Updated ILAE evidence review of antiepileptic drug efficacy and effectiveness as initial monotherapy for epileptic seizures and syndromes. Epilepsia 2013; 54(3): 551-63.
[http://dx.doi.org/10.1111/epi.12074] [PMID: 23350722]
[55]
Takia L, Kc S, Randhawa M, et al. Clinical features, intensive care needs, and outcome of carbamazepine poisoning in children. Indian J Pediatr 2022; 89(10): 1022-4.
[http://dx.doi.org/10.1007/s12098-022-04155-7] [PMID: 35277811]
[56]
Dyong TM, Gess B, Dumke C, Rolke R, Dohrn MF. Carbamazepine for chronic muscle pain: A retrospective assessment of indications, side effects, and treatment response. Brain Sci 2023; 13(1): 123.
[http://dx.doi.org/10.3390/brainsci13010123] [PMID: 36672104]
[57]
Grunze A, Amann BL, Grunze H. Efficacy of carbamazepine and its derivatives in the treatment of bipolar disorder. Medicina 2021; 57(5): 433.
[http://dx.doi.org/10.3390/medicina57050433] [PMID: 33946323]
[58]
Gallego MDC, García MA. Acute carbamazepine intoxication. Neurol Int 2022; 14(3): 614-8.
[http://dx.doi.org/10.3390/neurolint14030049] [PMID: 35893284]
[59]
Gonçalves D, Moura R, Ferraz C, Vitor AB, Vaz L. Carbamazepine-induced interstitial pneumonitis associated with pan-hypogammaglobulinemia. Respir Med Case Rep 2012; 5: 6-8.
[http://dx.doi.org/10.1016/j.rmedc.2011.12.001] [PMID: 26029583]
[60]
Wilschut FA, Cobben NA, Thunnissen FB, Lamers RJ, Wouters EF, Drent M. Recurrent respiratory distress associated with carbamazepine overdose. Eur Respir J 1997; 10(9): 2163-5.
[http://dx.doi.org/10.1183/09031936.97.10092163] [PMID: 9311520]
[61]
Barreiro B, Manresa F, Valldeperas J. Carbamazepine and the lung. Eur Respir J 1990; 3(8): 930-1.
[http://dx.doi.org/10.1183/09031936.93.03080930] [PMID: 2292288]
[62]
Takahashi N, Aizawa H, Takata S, et al. Acute interstitial pneumonitis induced by carbamazepine. Eur Respir J 1993; 6(9): 1409-11.
[http://dx.doi.org/10.1183/09031936.93.06091409] [PMID: 8287960]
[63]
Banka R, Ward MJ. Bronchiolitis obliterans and organising pneumonia caused by carbamazepine and mimicking community acquired pneumonia. Postgrad Med J 2002; 78(924): 621-2.
[http://dx.doi.org/10.1136/pmj.78.924.621] [PMID: 12415089]
[64]
Milesi-Lecat AM, Schmidt J, Aumaitre O, Kemeny JL, Moinard J, Piette JC. Lupus and pulmonary nodules consistent with bronchiolitis obliterans organizing pneumonia induced by carbamazepine. Mayo Clin Proc 1997; 72(12): 1145-7.
[http://dx.doi.org/10.4065/72.12.1145] [PMID: 9413295]
[65]
Lewis IJ, Rosenbloom L. Glandular fever-like syndrome, pulmonary eosinophilia and asthma associated with carbamazepine. Postgrad Med J 1982; 58(676): 100-1.
[http://dx.doi.org/10.1136/pgmj.58.676.100] [PMID: 7100019]
[66]
Tolmie J, Steer CR, Edmunds AT. Pulmonary eosinophilia associated with carbamazepine. Arch Dis Child 1983; 58(10): 833-4.
[http://dx.doi.org/10.1136/adc.58.10.833] [PMID: 6639136]
[67]
Khan FMA, Dave D, Rohatgi S, et al. Carbamazepine-induced hypersensitivity pneumonitis in a patient with neuromyelitis optica: A case report. Indian J Physiol Pharmacol 2022; 66: 81-3.
[http://dx.doi.org/10.25259/IJPP_282_2021]
[68]
Acikgoz M, Paksu MS, Guzel A, Alacam A, Alacam F. Severe carbamazepine intoxication in children: Analysis of a 40-Case Series. Med Sci Monit 2016; 22: 4729-35.
[http://dx.doi.org/10.12659/MSM.898899] [PMID: 27911891]
[69]
European medicines agency (EMA). Evaluation of lamictal and associated names. 2008. Available from: https://www.ema.europa.eu/en/documents/referral/lamictal-article-30-referral-annex-i-ii-iii_en.pdf
[70]
Egunsola O, Choonara I, Sammons HM. Safety of lamotrigine in paediatrics: A systematic review. BMJ Open 2015; 5(6): e007711.
[http://dx.doi.org/10.1136/bmjopen-2015-007711] [PMID: 26070796]
[71]
Saravanan N, Musibay Otaiku O, Namushi Namushi R. Interstitial pneumonitis during lamotrigine therapy. Br J Clin Pharmacol 2005; 60(6): 666-7.
[http://dx.doi.org/10.1111/j.1365-2125.2005.02493.x] [PMID: 16305594]
[72]
Ghandourah H, Bhandal S, Brundler MA, Noseworthy M. Bronchiolitis obliterans organising pneumonia associated with anticonvulsant hypersensitivity syndrome induced by lamotrigine. BMJ Case Rep 2016; 2016: bcr2014207182.
[http://dx.doi.org/10.1136/bcr-2014-207182] [PMID: 26825933]
[73]
Layer N, Brandes J, Lührs PJ, Wuttke TV, Koch H. The effect of lamotrigine and other antiepileptic drugs on respiratory rhythm generation in the pre-Bötzinger complex. Epilepsia 2021; 62(11): 2790-803.
[http://dx.doi.org/10.1111/epi.17066] [PMID: 34553376]
[74]
Beydoun A, DuPont S, Zhou D, Matta M, Nagire V, Lagae L. Current role of carbamazepine and oxcarbazepine in the management of epilepsy. Seizure 2020; 83: 251-63.
[http://dx.doi.org/10.1016/j.seizure.2020.10.018] [PMID: 33334546]
[75]
Preuss CV, Randhawa G, Wy TJP, Saadabadi A. Oxcarbazepine StatPearls. StatPearls Publishing 2022.
[76]
Aneja S, Sharma S. Newer anti-epileptic drugs. Indian Pediatr 2013; 50(11): 1033-40.
[http://dx.doi.org/10.1007/s13312-013-0284-9] [PMID: 24382900]
[77]
Gambeta E, Chichorro JG, Zamponi GW. Trigeminal neuralgia: An overview from pathophysiology to pharmacological treatments. Mol Pain 2020; 16: 1744806920901890.
[http://dx.doi.org/10.1177/1744806920901890] [PMID: 31908187]
[78]
Vasudev A, Macritchie K, Vasudev K, Watson S, Geddes J, Young AH. Oxcarbazepine for acute affective episodes in bipolar disorder. Cochrane Libr 2011; (12): CD004857.
[http://dx.doi.org/10.1002/14651858.CD004857.pub2] [PMID: 22161387]
[79]
Wellington K, Goa KL. Oxcarbazepine. CNS Drugs 2001; 15(2): 137-63.
[http://dx.doi.org/10.2165/00023210-200115020-00005] [PMID: 11460891]
[80]
Salari F, Golpayegani M, Gharagozli K. Newer antiepileptic drugs discontinuation due to adverse effects: An observational study. Ann Indian Acad Neurol 2019; 22(1): 27-30.
[http://dx.doi.org/10.4103/aian.AIAN_25_18] [PMID: 30692756]
[81]
Abou-Khalil BW. Antiepileptic drugs. Continuum . 2016; pp. 132-56.
[http://dx.doi.org/10.1212/CON.0000000000000289]
[82]
Trinka E, Leitinger M. Management of status epilepticus, refractory status epilepticus, and super-refractory status epilepticus. Continuum 2022; 28(2): 559-602.
[http://dx.doi.org/10.1212/CON.0000000000001103] [PMID: 35393970]
[83]
Schnell S, Marrodan M, Acosta JN, Bonamico L, Goicochea MT. Trigeminal neuralgia crisis – Intravenous phenytoin as acute rescue treatment. Headache 2020; 60(10): 2247-53.
[http://dx.doi.org/10.1111/head.13963] [PMID: 32981076]
[84]
Patocka J, Wu Q, Nepovimova E, Kuca K. Phenytoin - An anti-seizure drug: Overview of its chemistry, pharmacology and toxicology. Food and chemical toxicology : An international journal published for the British Industrial Biological Research Association. 2020; 142: p. 111393.
[http://dx.doi.org/10.1016/j.fct.2020.111393]
[85]
Imam SH, Landry K, Kaul V, Gambhir H, John D, Kloss B. Free phenytoin toxicity. Am J Emerg Med 2014; 32(10): 1301.e3-4.
[http://dx.doi.org/10.1016/j.ajem.2014.03.036] [PMID: 24768668]
[86]
Yermakov VM, Hitti IF, Sutton AL. Necrotizing vasculitis associated with diphenylhydantoin: Two fatal cases. Hum Pathol 1983; 14(2): 182-4.
[http://dx.doi.org/10.1016/S0046-8177(83)80248-2] [PMID: 6131861]
[87]
Chamberlain DW, Hyland RH, Ross DJ. Diphenylhydantoin-induced lymphocytic interstitial pneumonia. Chest 1986; 90(3): 458-60.
[http://dx.doi.org/10.1378/chest.90.3.458] [PMID: 3743167]
[88]
Mahatma M, Haponik EF, Nelson S, Lopez A, Summer WR. Phenytoin-induced acute respiratory failure with pulmonary eosinophilia. Am J Med 1989; 87(1): 93-4.
[http://dx.doi.org/10.1016/S0002-9343(89)80490-5] [PMID: 2741988]
[89]
Dixit R, Dixit K, Nuwal P, Banerjee A, Sharma S, Dave L. Diphenylhydantoin (phenytoin)-induced chronic pulmonary disease. Lung India 2009; 26(4): 155-8.
[http://dx.doi.org/10.4103/0970-2113.56356] [PMID: 20532004]
[90]
Talwar D, Periwal P, Joshi S, Gothi R. Phenytoin-induced acute hypersensitivity pneumonitis. Lung India 2015; 32(6): 631-4.
[http://dx.doi.org/10.4103/0970-2113.168126] [PMID: 26664176]
[91]
Kheir F, Daroca P, Lasky J. Phenytoin-associated granulomatous pulmonary vasculitis. Am J Ther 2016; 23(1): e311-4.
[http://dx.doi.org/10.1097/MJT.0000000000000006] [PMID: 24247101]
[92]
Annoh Gordon R, Silhan L. A case report of phenytoin-induced eosinophilic pneumonia. Respir Med Case Rep 2019; 28: 100922.
[http://dx.doi.org/10.1016/j.rmcr.2019.100922] [PMID: 31463188]
[93]
Walker A, Rupal A, Jani C, et al. Longstanding phenytoin use as a cause of progressive dyspnea. Chest 2022; 161(2): e91-6.
[http://dx.doi.org/10.1016/j.chest.2021.08.079] [PMID: 35131079]
[94]
Tidwell A, Swims M. Review of the newer antiepileptic drugs. Am J Manag Care 2003; 9(3): 253-76.
[PMID: 12643343]
[95]
Hancock EC, Cross JH. Treatment of lennox-gastaut syndrome. Cochrane Libr 2013; 2013(2): CD003277.
[http://dx.doi.org/10.1002/14651858.CD003277.pub3] [PMID: 23450537]
[96]
Zou LP, Lin Q, Qin J, Cai FC, Liu ZS, Mix E. Evaluation of open-label topiramate as primary or adjunctive therapy in infantile spasms. Clin Neuropharmacol 2008; 31(2): 86-92.
[http://dx.doi.org/10.1097/WNF.0b013e3180986d43] [PMID: 18382180]
[97]
Biton V, Bourgeois BF. Topiramate in patients with juvenile myoclonic epilepsy. Arch Neurol 2005; 62(11): 1705-8.
[http://dx.doi.org/10.1001/archneur.62.11.1705] [PMID: 16286543]
[98]
Khalil NY, AlRabiah HK, AL Rashoud SS, Bari A, Wani TA. Topiramate. Profiles Drug Subst Excip Relat Methodol 2019; 44: 333-78.
[http://dx.doi.org/10.1016/bs.podrm.2018.11.005] [PMID: 31029222]
[99]
Latini G, Verrotti A, Manco R, Scardapane A, Vecchio A, Chiarelli F. Topiramate: its pharmacological properties and therapeutic efficacy in epilepsy. Mini Rev Med Chem 2008; 8(1): 10-23.
[http://dx.doi.org/10.2174/138955708783331568] [PMID: 18220981]
[100]
Shank RP, Gardocki JF, Streeter AJ, Maryanoff BE. An overview of the preclinical aspects of topiramate: Pharmacology, pharmacokinetics, and mechanism of action. Epilepsia 2000; 41(s1): 3-9.
[http://dx.doi.org/10.1111/j.1528-1157.2000.tb02163.x] [PMID: 10768292]
[101]
Bai YF, Zeng C, Jia M, Xiao B. Molecular mechanisms of topiramate and its clinical value in epilepsy. Seizure 2022; 98: 51-6.
[http://dx.doi.org/10.1016/j.seizure.2022.03.024] [PMID: 35421622]
[102]
Ko C, Kong C. Topiramate-induced metabolic acidosis: Report of two cases. Dev Med Child Neurol 2001; 43(10): 701-4.
[http://dx.doi.org/10.1017/S0012162201001268] [PMID: 11665828]
[103]
Laskey AL, Korn DE, Moorjani BI, Patel NC, Tobias JD. Central hyperventilation related to administration of topiramate. Pediatr Neurol 2000; 22(4): 305-8.
[http://dx.doi.org/10.1016/S0887-8994(99)00143-5] [PMID: 10788749]
[104]
Gupta S, Gao J J, Emmett M, Fenves A Z. Topiramate and metabolic acidosis: An evolving story. Hospital practice 2017; 45(5): 192-5.
[http://dx.doi.org/10.1080/21548331.2017.1370969]
[105]
Kadian R, Kumar A. Zonisamide StatPearls. StatPearls Publishing 2022.
[106]
Brodie MJ, Ben-Menachem E, Chouette I, Giorgi L. Zonisamide: its pharmacology, efficacy and safety in clinical trials. Acta Neurol Scand 2012; 126(194): 19-28.
[http://dx.doi.org/10.1111/ane.12016] [PMID: 23106522]
[107]
Kothare S V, Valencia I, Khurana D S, Hardison H, Melvin J J, Legido A. Efficacy and tolerability of zonisamide in juvenile myoclonic epilepsy. Epileptic Disord 2004; 6(4): 267-70.
[108]
Lotze TE, Wilfong AA. Zonisamide treatment for symptomatic infantile spasms. Neurology 2004; 62(2): 296-8.
[http://dx.doi.org/10.1212/01.WNL.0000103284.73495.35] [PMID: 14745073]
[109]
Kothare SV, Kaleyias J. Zonisamide: Review of pharmacology, clinical efficacy, tolerability, and safety. Expert Opin Drug Metab Toxicol 2008; 4(4): 493-506.
[http://dx.doi.org/10.1517/17425255.4.4.493] [PMID: 18433351]
[110]
Biton V. Zonisamide: Newer antiepileptic agent with multiple mechanisms of action. Expert Rev Neurother 2004; 4(6): 935-43.
[http://dx.doi.org/10.1586/14737175.4.6.935] [PMID: 15853520]
[111]
Sills GJ, Brodie MJ. Pharmacokinetics and drug interactions with zonisamide. Epilepsia 2007; 48(3): 435-41.
[http://dx.doi.org/10.1111/j.1528-1167.2007.00983.x] [PMID: 17319920]
[112]
Cross J H, Auvin S, Patten A, Giorgi L. Safety and tolerability of zonisamide in paediatric patients with epilepsy. Eur J Paediatr Neurol 2014; 18(6): 747-58.
[http://dx.doi.org/10.1016/j.ejpn.2014.07.005]
[113]
European medicines agency (EMA). Zonegran (Zonisamide). Summary of product characteristics. 2023. Available from: https://www.ema.europa.eu/en/documents/product-information/zonegran-epar-product-information_en.pdf
[114]
Shibuya R, Tanizaki H, Nakajima S, et al. DIHS/DRESS with remarkable eosinophilic pneumonia caused by zonisamide. Acta Derm Venereol 2015; 95(2): 229-30.
[http://dx.doi.org/10.2340/00015555-1863] [PMID: 24696158]
[115]
Lattanzi S, Trinka E, Striano P, et al. Highly purified cannabidiol for epilepsy treatment: A systematic review of epileptic conditions beyond dravet syndrome and lennox–gastaut syndrome. CNS Drugs 2021; 35(3): 265-81.
[http://dx.doi.org/10.1007/s40263-021-00807-y] [PMID: 33754312]
[116]
Nicotera AG, Spanò M, Decio A, Valentini G, Saia M, Di Rosa G. Epileptic phenotype and cannabidiol efficacy in a williams–beuren syndrome patient with atypical deletion: A case report. Front Neurol 2021; 12: 659543.
[http://dx.doi.org/10.3389/fneur.2021.659543] [PMID: 34168609]
[117]
Pacher P, Kogan NM, Mechoulam R. Beyond THC and endocannabinoids. Annu Rev Pharmacol Toxicol 2020; 60(1): 637-59.
[http://dx.doi.org/10.1146/annurev-pharmtox-010818-021441] [PMID: 31580774]
[118]
Tambe SM, Mali S, Amin PD, Oliveira M. Neuroprotective potential of cannabidiol: Molecular mechanisms and clinical implications. J Integr Med 2023; 21(3): 236-44.
[http://dx.doi.org/10.1016/j.joim.2023.03.004] [PMID: 36973157]
[119]
Cannavò L, Perrone S, Viola V, Marseglia L, Di Rosa G, Gitto E. Oxidative stress and respiratory diseases in preterm newborns. Int J Mol Sci 2021; 22(22): 12504.
[http://dx.doi.org/10.3390/ijms222212504] [PMID: 34830385]
[120]
Georgieva D, Langley J, Hartkopf K, et al. Real-world, long-term evaluation of the tolerability and therapy retention of Epidiolex® (cannabidiol) in patients with refractory epilepsy. Epilepsy & behavior : E&B 2023; 141: 109159.
[http://dx.doi.org/10.1016/j.yebeh.2023.109159]
[121]
Brodie MJ, Ben-Menachem E. Cannabinoids for epilepsy: What do we know and where do we go? Epilepsia 2018; 59(2): 291-6.
[http://dx.doi.org/10.1111/epi.13973] [PMID: 29214639]
[122]
Khodadadi H, Salles ÉL, Jarrahi A, et al. Cannabidiol modulates cytokine storm in acute respiratory distress syndrome induced by simulated viral infection using synthetic RNA. Cannabis Cannabinoid Res 2020; 5(3): 197-201.
[http://dx.doi.org/10.1089/can.2020.0043] [PMID: 32923657]
[123]
Muthumalage T, Rahman I. Cannabidiol differentially regulates basal and LPS-induced inflammatory responses in macrophages, lung epithelial cells, and fibroblasts. Toxicol Appl Pharmacol 2019; 382: 114713.
[http://dx.doi.org/10.1016/j.taap.2019.114713] [PMID: 31437494]
[124]
Sperling MR, Abou-Khalil B, Aboumatar S, et al. Efficacy of cenobamate for uncontrolled focal seizures: Post hoc analysis of a Phase 3, multicenter, open-label study. Epilepsia 2021; 62(12): 3005-15.
[http://dx.doi.org/10.1111/epi.17091] [PMID: 34633084]
[125]
Makridis KL, Bast T, Prager C, et al. Real-world experience treating pediatric epilepsy patients with cenobamate. Front Neurol 2022; 13: 950171.
[http://dx.doi.org/10.3389/fneur.2022.950171] [PMID: 35937072]
[126]
Nakamura M, Cho JH, Shin H, Jang IS. Effects of cenobamate (YKP3089), a newly developed anti-epileptic drug, on voltage-gated sodium channels in rat hippocampal CA3 neurons. Eur J Pharmacol 2019; 855: 175-82.
[http://dx.doi.org/10.1016/j.ejphar.2019.05.007] [PMID: 31063770]
[127]
Sharma R, Nakamura M, Neupane C, et al. Positive allosteric modulation of GABAA receptors by a novel antiepileptic drug cenobamate. Eur J Pharmacol 2020; 879: 173117.
[http://dx.doi.org/10.1016/j.ejphar.2020.173117] [PMID: 32325146]
[128]
Krauss GL, Klein P, Brandt C, et al. Safety and efficacy of adjunctive cenobamate (YKP3089) in patients with uncontrolled focal seizures: A multicentre, double-blind, randomised, placebo-controlled, dose-response trial. Lancet Neurol 2020; 19(1): 38-48.
[http://dx.doi.org/10.1016/S1474-4422(19)30399-0] [PMID: 31734103]
[129]
Roberti R, De Caro C, Iannone LF, Zaccara G, Lattanzi S, Russo E. Pharmacology of cenobamate: Mechanism of action, pharmacokinetics, drug–drug interactions and tolerability. CNS Drugs 2021; 35(6): 609-18.
[http://dx.doi.org/10.1007/s40263-021-00819-8] [PMID: 33993416]
[130]
Sperling MR, Klein P, Aboumatar S, et al. Cenobamate (YKP3089) as adjunctive treatment for uncontrolled focal seizures in a large, phase 3, multicenter, open-label safety study. Epilepsia 2020; 61(6): 1099-108.
[http://dx.doi.org/10.1111/epi.16525] [PMID: 32396252]
[131]
Brown WM, Aiken SP. Felbamate: Clinical and molecular aspects of a unique antiepileptic drug. Crit Rev Neurobiol 1998; 12(3): 205-22.
[http://dx.doi.org/10.1615/CritRevNeurobiol.v12.i3.30] [PMID: 9847055]
[132]
Pellock JM. Felbamate. Epilepsia 1999; 40(s5) (Suppl. 5): S57-62.
[http://dx.doi.org/10.1111/j.1528-1157.1999.tb00920.x] [PMID: 10530695]
[133]
TALOXA® Italian Medicines Agency (AIFA).Summary of product characteristics. 2020. Available from: https://farmaci.agenziafarmaco.gov.it/aifa/servlet/PdfDownloadServlet?pdfFileName=footer_001117_030822_RCP.pdf&sys=m0b1l3
[134]
FELBATOL® Food and Drugs Administration (FDA) Summary of product characteristics. 2012. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/020189s027lbl.pdf
[135]
Shi LL, Bresnahan R, Martin-McGill KJ, Dong J, Ni H, Geng J. Felbamate add-on therapy for drug-resistant focal epilepsy. Cochrane Libr 2019; 8(8): CD008295.
[http://dx.doi.org/10.1002/14651858.CD008295.pub5] [PMID: 31425617]
[136]
Samanta D. Fenfluramine: A review of pharmacology, clinical efficacy, and safety in epilepsy. Children 2022; 9(8): 1159.
[http://dx.doi.org/10.3390/children9081159] [PMID: 36010049]
[137]
Tabaee Damavandi P, Fabin N, Giossi R, et al. Efficacy and safety of fenfluramine in epilepsy: A systematic review and meta-analysis. Neurol Ther 2023; 12(2): 669-86.
[http://dx.doi.org/10.1007/s40120-023-00452-1] [PMID: 36853503]
[138]
Specchio N, Pietrafusa N, Ferretti A, Trivisano M, Vigevano F. Successful use of fenfluramine in nonconvulsive status epilepticus of Dravet syndrome. Epilepsia 2020; 61(4): 831-3.
[http://dx.doi.org/10.1111/epi.16474] [PMID: 32167579]
[139]
Millett D, Pach S. Fenfluramine in the successful treatment of super-refractory status epilepticus in a patient with Dravet syndrome. Epilepsy Behav Rep 2021; 16: 100461.
[http://dx.doi.org/10.1016/j.ebr.2021.100461] [PMID: 34179745]
[140]
European Medicines Agency (EMA). Fintempla (Fenfluramine). Summary of product characteristics. 2023. Available from: https://www.ema.europa.eu/en/documents/product-information/fintepla-epar-product-information_en.pdf
[141]
European Medicines Agency (EMA) - Committee for medicinal products for human use. 2017. Available from: http://www. ema.europa.eu/docs/en_GB/document_library/Summary_of_opinion/human/000863/WC500231716.pdf
[142]
European Medicines Agency (EMA)(2022). Vimpat (lacosamide). An overview of Vimpat and why it is authorised in the EU. 2022. Available from: https://www.ema.europa.eu/en/documents/ overview/vimpat-epar-medicine-overview_en.pdf
[143]
Beyreuther BK, Freitag J, Heers C, Krebsfänger N, Scharfenecker U, Stöhr T. Lacosamide: A review of preclinical properties. CNS Drug Rev 2007; 13(1): 21-42.
[http://dx.doi.org/10.1111/j.1527-3458.2007.00001.x] [PMID: 17461888]
[144]
Labau JIR, Estacion M, Tanaka BS, et al. Differential effect of lacosamide on Nav1.7 variants from responsive and non-responsive patients with small fibre neuropathy. Brain 2020; 143(3): 771-82.
[http://dx.doi.org/10.1093/brain/awaa016] [PMID: 32011655]
[145]
Zhao T, Li H, Zhang H, et al. Twelve-month efficacy of lacosamide monotherapy at maximal dose and tolerability for epilepsy treatment in pediatric patients: Real-world clinical experience. Pediatr Neurol 2023; 142: 23-30.
[http://dx.doi.org/10.1016/j.pediatrneurol.2023.01.018] [PMID: 36868054]
[146]
Bamgbose O, Boyle F, Kean AC, Stefanescu BM, Wing S. Tolerability and safety of lacosamide in neonatal population. J Child Neurol 2023; 38(3-4): 137-41.
[http://dx.doi.org/10.1177/08830738231164835] [PMID: 36972493]
[147]
Rosenfeld W, Fountain N B, Kaubrys G, et al. Safety and efficacy of adjunctive lacosamide among patients with partial-onset seizures in a long-term open-label extension trial of up to 8 years. Epilepsy & behavior : E&B 2014; 41: 164-70.
[http://dx.doi.org/10.1016/j.yebeh.2014.09.074]
[148]
Ramirez GA, Ripa M, Burastero S, et al. Drug reaction with eosinophilia and systemic symptoms (DRESS): Focus on the pathophysiological and diagnostic role of viruses. Microorganisms 2023; 11(2): 346.
[http://dx.doi.org/10.3390/microorganisms11020346] [PMID: 36838310]
[149]
Lai MC, Wu SN, Huang CW. Rufinamide, a triazole-derived antiepileptic drug, stimulates Ca2+-activated K+ currents while inhibiting voltage-gated Na+ currents. Int J Mol Sci 2022; 23(22): 13677.
[http://dx.doi.org/10.3390/ijms232213677] [PMID: 36430153]
[150]
European medicines agency (EMA), Inovelon® (Rufinamide). Summary of product characteristics. 2023. Available from: https://www.ema.europa.eu/en/documents/product-information/inovelon-epar-product-information_en.pdf
[151]
Balagura G, Riva A, Marchese F, Verrotti A, Striano P. Adjunctive rufinamide in children with lennox-gastaut syndrome: A literature review. Neuropsychiatr Dis Treat 2020; 16: 369-79.
[http://dx.doi.org/10.2147/NDT.S185774] [PMID: 32103957]
[152]
Arzimanoglou A, Pringsheim M, Kluger G J, Genton P, Perdomo C, Malhotra M. Safety and efficacy of Rufinamide in children and adults with Lennox-Gastaut syndrome: A post hoc analysis from Study 022. Epilepsy & behavior : E&B 2021; 124: 108275.
[http://dx.doi.org/10.1016/j.yebeh.2021.108275]
[153]
Griffin CE III, Kaye AM, Bueno FR, Kaye AD. Benzodiazepine pharmacology and central nervous system-mediated effects. Ochsner J 2013; 13(2): 214-23.
[PMID: 23789008]
[154]
Riss J, Cloyd J, Gates J, Collins S. Benzodiazepines in epilepsy: Pharmacology and pharmacokinetics. Acta Neurol Scand 2008; 118(2): 69-86.
[http://dx.doi.org/10.1111/j.1600-0404.2008.01004.x] [PMID: 18384456]
[155]
Greenblatt DJ, Miller LG, Shader RI. Neurochemical and pharmacokinetic correlates of the clinical action of benzodiazepine hypnotic drugs. Am J Med 1990; 88(3): S18-24.
[http://dx.doi.org/10.1016/0002-9343(90)90281-H] [PMID: 1968714]
[156]
Sieghart W. GABA(A) benzodiazepine receptors and epilepsy. Wien KlinWochenschr 1990; 102(7): 197-201.
[157]
Edinoff AN, Nix CA, Hollier J, et al. Benzodiazepines: Uses, dangers, and clinical considerations. Neurol Int 2021; 13(4): 594-607.
[http://dx.doi.org/10.3390/neurolint13040059] [PMID: 34842811]
[158]
Huang KH, Tai CJ, Kuan YH, Chang YC, Tsai TH, Lee CY. Pneumonia risk associated with the use of individual benzodiazepines and benzodiazepine related drugs among the elderly with parkinson’s disease. Int J Environ Res Public Health 2021; 18(17): 9410.
[http://dx.doi.org/10.3390/ijerph18179410] [PMID: 34501996]
[159]
Taipale H, Tolppanen A M, Koponen M, et al. Risk of pneumonia associated with incident benzodiazepine use among community-dwelling adults with Alzheimer disease. Can Med Assoc J 2017; 189(14): E519-29.
[http://dx.doi.org/10.1503/cmaj.160126]
[160]
Berry RB, Mccasland CR, Light RW. The effect of triazolam on the arousal response to airway occlusion during sleep in normal subjects. Am Rev Respir Dis 1992; 146(5_pt_1): 1256-60.
[http://dx.doi.org/10.1164/ajrccm/146.5_Pt_1.1256] [PMID: 1443881]
[161]
Sanders RD, Godlee A, Fujimori T, et al. Benzodiazepine augmented γ-amino-butyric acid signaling increases mortality from pneumonia in mice. Crit Care Med 2013; 41(7): 1627-36.
[http://dx.doi.org/10.1097/CCM.0b013e31827c0c8d] [PMID: 23478657]
[162]
Chung WS, Lai CY, Lin CL, Kao CH. Adverse respiratory events associated with hypnotics use in patients of chronic obstructive pulmonary disease. Medicine 2015; 94(27): e1110.
[http://dx.doi.org/10.1097/MD.0000000000001110] [PMID: 26166105]
[163]
Wang SH, Chen WS, Tang SE, et al. Benzodiazepines associated with acute respiratory failure in patients with obstructive sleep apnea. Front Pharmacol 2019; 9: 1513.
[http://dx.doi.org/10.3389/fphar.2018.01513] [PMID: 30666205]
[164]
Vozoris NT, Fischer HD, Wang X, et al. Benzodiazepine drug use and adverse respiratory outcomes among older adults with COPD. Eur Respir J 2014; 44(2): 332-40.
[http://dx.doi.org/10.1183/09031936.00008014] [PMID: 24743966]
[165]
Kang M, Galuska MA, Ghassemzadeh S. Benzodiazepine toxicity. StatPearls. StatPearls Publishing 2023.
[166]
Dublin S, Walker RL, Jackson ML, et al. Use of opioids or benzodiazepines and risk of pneumonia in older adults: A population-based case-control study. J Am Geriatr Soc 2011; 59(10): 1899-907.
[http://dx.doi.org/10.1111/j.1532-5415.2011.03586.x] [PMID: 22091503]
[167]
Almirall J, Bolíbar I, Balanzó X, González CA. Risk factors for community-acquired pneumonia in adults: A population-based case-control study. Eur Respir J 1999; 13(2): 349-55.
[http://dx.doi.org/10.1183/09031936.99.13234999] [PMID: 10065680]
[168]
Chatterjee A, Mundlamuri RC, Kenchaiah R, et al. Role of pulse methylprednisolone in epileptic encephalopathy: A retrospective observational analysis. Epilepsy Res 2021; 173: 106611.
[http://dx.doi.org/10.1016/j.eplepsyres.2021.106611] [PMID: 33740698]
[169]
Di Rosa G, Dicanio D, Nicotera AG, Mondello P, Cannavò L, Gitto E. Efficacy of intravenous hydrocortisone treatment in refractory neonatal seizures: A report on three cases. Brain Sci 2020; 10(11): 885.
[http://dx.doi.org/10.3390/brainsci10110885] [PMID: 33233684]
[170]
DeNicola LK, Gayle MO, Blake KV. Drug therapy approaches in the treatment of acute severe asthma in hospitalised children. Paediatr Drugs 2001; 3(7): 509-37.
[http://dx.doi.org/10.2165/00128072-200103070-00003] [PMID: 11513282]
[171]
Manti S, Cuppari C, Marseglia L, et al. Association between allergies and hypercholesterolemia: A systematic review. Int Arch Allergy Immunol 2017; 174(2): 67-76.
[http://dx.doi.org/10.1159/000480081] [PMID: 29035883]
[172]
Manti S, Leonardi S, Panasiti I, Arrigo T, Salpietro C, Cuppari C. Serum IL-10, IL-17 and IL-23 levels as “bioumoral bridges” between dyslipidemia and atopy. Cytokine 2017; 99: 43-9.
[http://dx.doi.org/10.1016/j.cyto.2017.07.002] [PMID: 28692864]
[173]
Wang J, Lin J, Wang M, Meng Z, Zhou D, Li J. High dose steroids as first-line treatment increased the risk of in-hospital infections in patients with anti-NMDAR encephalitis. Front Immunol 2021; 12: 774664.
[http://dx.doi.org/10.3389/fimmu.2021.774664] [PMID: 34975861]
[174]
Di Rosa G, Cavallaro T, Alibrandi A, et al. Predictive role of early milestones-related psychomotor profiles and long-term neurodevelopmental pitfalls in preterm infants. Early Hum Dev 2016; 101: 49-55.
[http://dx.doi.org/10.1016/j.earlhumdev.2016.04.012] [PMID: 27405056]
[175]
Youssef J, Novosad SA, Winthrop KL. Infection risk and safety of corticosteroid use. Rheum Dis Clin North Am 2016; 42(1): 157-176, ix-x.
[http://dx.doi.org/10.1016/j.rdc.2015.08.004] [PMID: 26611557]
[176]
Özer Bekmez B, Tayman C, Çakır U, et al. Glucocorticoids in a neonatal hyperoxic lung injury model: Pulmonary and neurotoxic effects. Pediatr Res 2022; 92(2): 436-44.
[http://dx.doi.org/10.1038/s41390-021-01777-z] [PMID: 34725500]
[177]
Cacoub P, Musette P, Descamps V, et al. The DRESS syndrome: A literature review. Am J Med 2011; 124(7): 588-97.
[http://dx.doi.org/10.1016/j.amjmed.2011.01.017] [PMID: 21592453]
[178]
Taweesedt PT, Nordstrom CW, Stoeckel J, Dumic I. Pulmonary manifestations of drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome: A systematic review. BioMed Res Int 2019; 2019: 1-10.
[http://dx.doi.org/10.1155/2019/7863815] [PMID: 31662996]
[179]
Cross JH, Galer BS, Gil-Nagel A, et al. Impact of fenfluramine on the expected SUDEP mortality rates in patients with Dravet syndrome. Seizure 2021; 93: 154-9.
[http://dx.doi.org/10.1016/j.seizure.2021.10.024] [PMID: 34768178]
[180]
Licari A, Manti S, Castagnoli R, et al. Immunomodulation in pediatric asthma. Front Pediatr 2019; 7: 289.
[http://dx.doi.org/10.3389/fped.2019.00289] [PMID: 31355170]
[181]
Manti S, Leonardi S, Parisi GF, et al. High mobility group box 1: Biomarker of inhaled corticosteroid treatment response in children with moderate-severe asthma. Allergy Asthma Proc 2017; 38(3): 197-203.
[http://dx.doi.org/10.2500/aap.2017.38.4047] [PMID: 28441990]
[182]
Cole TJ, Short KL, Hooper SB. The science of steroids. Semin Fetal Neonatal Med 2019; 24(3): 170-5.
[http://dx.doi.org/10.1016/j.siny.2019.05.005] [PMID: 31147162]
[183]
Manti S, Salpietro C, Cuppari C. Antihistamines: Recommended dosage – Divergence between clinical practice and guideline recommendations. Int Arch Allergy Immunol 2019; 178(1): 93-6.
[http://dx.doi.org/10.1159/000492636] [PMID: 30253383]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy