Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Review Article

Lipid-based Nanocarriers for mRNA Delivery: Vital Considerations and Applications

Author(s): Teenu Sharma*, M Arockia Babu, Atul Jain and Deepika Sharma

Volume 14, Issue 1, 2024

Published on: 24 January, 2024

Article ID: e240124226163 Pages: 13

DOI: 10.2174/0122106812284202231228095045

Price: $65

Open Access Journals Promotions 2
Abstract

The use of mRNA in therapeutics has lately emerged as a powerful strategy for alleviating the various viral infections and diseased conditions, along with prophylaxis. However, a key challenge in their efficient delivery is the protection of the nucleic acid from degradation followed by mRNA transport to the cells. In this regard, clinical translation of mRNA therapeutics has largely been facilitated with the advent of lipid-based nanoparticles (LBNPs). LBNPs–mRNA vaccines currently being employed for COVID-19 is one such instance substantiating and endorsing the use of lipidic nanocarriers for mRNA therapeutics. Thus, the current review article aims to furnish information on developmental challenges, different aspects of lipid-based carrier systems for mRNA delivery, their vital applications in different diseases and the future potential of LBNPs in therapeutics.

Keywords: RNA, vaccine, cancer, stability, lipid-based carrier system, COVID-19.

Graphical Abstract
[1]
Meng, Z.; O’Keeffe-Ahern, J.; Lyu, J.; Pierucci, L.; Zhou, D.; Wang, W. A new developing class of gene delivery: Messenger RNA-based therapeutics. Biomater. Sci., 2017, 5(12), 2381-2392.
[http://dx.doi.org/10.1039/C7BM00712D] [PMID: 29063914]
[2]
Huang, X.; Kong, N.; Zhang, X.; Cao, Y.; Langer, R.; Tao, W. The landscape of mRNA nanomedicine. Nat. Med., 2022, 28(11), 2273-2287.
[http://dx.doi.org/10.1038/s41591-022-02061-1] [PMID: 36357682]
[3]
Sahin, U.; Karikó, K.; Türeci, Ö. mRNA-based therapeutics - developing a new class of drugs. Nat. Rev. Drug Discov., 2014, 13(10), 759-780.
[http://dx.doi.org/10.1038/nrd4278] [PMID: 25233993]
[4]
Angel, M. Harnessing the therapeutic potential of mRNA.
[5]
Swingle, K.L.; Safford, H.C.; Geisler, H.C.; Hamilton, A.G.; Thatte, A.S.; Billingsley, M.M.; Joseph, R.A.; Mrksich, K.; Padilla, M.S.; Ghalsasi, A.A.; Alameh, M.G.; Weissman, D.; Mitchell, M.J. Ionizable lipid nanoparticles for in vivo mRNA delivery to the placenta during pregnancy. J. Am. Chem. Soc., 2023, 145(8), 4691-4706.
[http://dx.doi.org/10.1021/jacs.2c12893] [PMID: 36789893]
[6]
Ferreira Soares, D.C.; Domingues, S.C.; Viana, D.B.; Tebaldi, M.L. Polymer-hybrid nanoparticles: Current advances in biomedical applications. Biomed. Pharmacother., 2020, 131, 110695.
[http://dx.doi.org/10.1016/j.biopha.2020.110695] [PMID: 32920512]
[7]
Kliesch, L.; Delandre, S.; Gabelmann, A.; Koch, M.; Schulze, K.; Guzmán, C.A.; Loretz, B.; Lehr, C.M. Lipid-polymer hybrid nanoparticles for mRNA delivery to dendritic cells: Impact of lipid composition on performance in different media. Pharmaceutics, 2022, 14(12), 2675.
[http://dx.doi.org/10.3390/pharmaceutics14122675] [PMID: 36559170]
[8]
Chandra Boro, R.; Kaushal, J.; Nangia, Y.; Wangoo, N.; Bhasin, A.; Suri, C.R. Gold nanoparticles catalyzed chemiluminescence immunoassay for detection of herbicide 2,4-dichlorophenoxyacetic acid. Analyst, 2011, 136(10), 2125-2130.
[http://dx.doi.org/10.1039/c0an00810a] [PMID: 21455533]
[9]
Welderfael, T.; Yadav, O.P.; Taddesse, A.M.; Kaushal, J. Synthesis, characterization and photocatalytic activities of Ag-N-codoped ZnO nanoparticles for degradation of methyl red. Bull. Chem. Soc. Ethiop., 2013, 27(2), 221-232.
[http://dx.doi.org/10.4314/bcse.v27i2.7]
[10]
Zhang, D.; Atochina-Vasserman, E.N.; Maurya, D.S.; Liu, M.; Xiao, Q.; Lu, J.; Lauri, G.; Ona, N.; Reagan, E.K.; Ni, H.; Weissman, D.; Percec, V. Targeted delivery of mRNA with one-component ionizable amphiphilic Janus dendrimers. J. Am. Chem. Soc., 2021, 143(43), 17975-17982.
[http://dx.doi.org/10.1021/jacs.1c09585] [PMID: 34672554]
[11]
Le, T.C.; Zhai, J.; Chiu, W.H.; Tran, P.A.; Tran, N. Janus particles: Recent advances in the biomedical applications. Int. J. Nanomedicine, 2019, 14, 6749-6777.
[http://dx.doi.org/10.2147/IJN.S169030] [PMID: 31692550]
[12]
Semple, S.C.; Leone, R.; Barbosa, C.J.; Tam, Y.K.; Lin, P.J.C. Lipid nanoparticle delivery systems to enable mRNA-based therapeutics. Pharmaceutics, 2022, 14(2), 398.
[http://dx.doi.org/10.3390/pharmaceutics14020398] [PMID: 35214130]
[13]
Chavda, V.P.; Jogi, G.; Dave, S.; Patel, B.M.; Vineela Nalla, L.; Koradia, K. mRNA-based vaccine for COVID-19: They are new but not unknown! Vaccines, 2023, 11(3), 507.
[http://dx.doi.org/10.3390/vaccines11030507] [PMID: 36992091]
[14]
Bright, Andrew What are the challenges in developing and delivering lipid nanoparticle mRNA-based vaccines? EPR, 2021, 3
[15]
Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev., 2013, 65(1), 36-48.
[http://dx.doi.org/10.1016/j.addr.2012.09.037] [PMID: 23036225]
[16]
Hou, X.; Zaks, T.; Langer, R.; Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater., 2021, 6(12), 1078-1094.
[http://dx.doi.org/10.1038/s41578-021-00358-0] [PMID: 34394960]
[17]
Vogelaar, A.; Marcotte, S.; Cheng, J.; Oluoch, B.; Zaro, J. Use of microfluidics to prepare lipid-based nanocarriers. Pharmaceutics, 2023, 15(4), 1053.
[http://dx.doi.org/10.3390/pharmaceutics15041053] [PMID: 37111539]
[18]
Kon, E.; Elia, U.; Peer, D. Principles for designing an optimal mRNA lipid nanoparticle vaccine. Curr. Opin. Biotechnol., 2022, 73, 329-336.
[http://dx.doi.org/10.1016/j.copbio.2021.09.016]
[19]
Wadhwa, A. Opportunities and challenges in the delivery of mRNA-based vaccines. Pharmaceutics, 2020, 12(2), 102.
[http://dx.doi.org/10.3390/pharmaceutics12020102]
[20]
Feiran, C. Research advances on the stability of mRNA vaccines. Viruses, 2023, 15(3), 668.
[http://dx.doi.org/10.3390/v15030668]
[21]
Zhao, P. Long-term storage of lipid-like nanoparticles for mRNA delivery. Bioact. Mater., 2020, 5(2), 358-363.
[http://dx.doi.org/10.1016/j.bioactmat.2020.03.001]
[22]
Ball, R.L.; Bajaj, P.; Whitehead, K.A. Achieving long-term stability of lipid nanoparticles: Examining the effect of pH, temperature, and lyophilization. Int. J. Nanomedicine, 2016, 12, 305-315.
[http://dx.doi.org/10.2147/IJN.S123062]
[23]
Challener, C.A. Analysis of mRNA therapeutics and vaccines. Pharm. Technol., 2022, 46(2)
[24]
Whitley, J. Development of mRNA manufacturing for vaccines and therapeutics: mRNA platform requirements and development of a scalable production process to support early phase clinical trials. Transl. Res., 2022, 242, 38-55.
[http://dx.doi.org/10.1016/j.trsl.2021.11.009]
[25]
Qin, S. mRNA-based therapeutics: Powerful and versatile tools to combat diseases. Signal Transduct. Target. Ther., 2022, 7, 166.
[26]
Guerriaud, M.; Kohli, E. RNA-based drugs and regulation: Toward a necessary evolution of the definitions issued from the European union legislation. Front. Med., 2022, 9, 1012497.
[http://dx.doi.org/10.3389/fmed.2022.1012497] [PMID: 36325384]
[27]
Pardi, N. mRNA vaccines - A new era in vaccinology. Drug Discov., 2018, 2018, 1474-1784.
[28]
Battaglia, L.; Gallarate, M. Lipid nanoparticles: State of the art, new preparation methods and challenges in drug delivery. Expert Opin. Drug Deliv., 2012, 9(5), 497-508.
[http://dx.doi.org/10.1517/17425247.2012.673278] [PMID: 22439808]
[29]
Khosa, A.; Reddi, S.; Saha, R.N. Nanostructured lipid carriers for site-specific drug delivery. Biomed. Pharmacother., 2018, 103, 598-613.
[http://dx.doi.org/10.1016/j.biopha.2018.04.055] [PMID: 29677547]
[30]
Nkanga, C.I. General perception of liposomes: Formation, manufacturing and applications. In: Liposomes-advances and perspectives; IntechOpen, 2019.
[31]
Tenchov, R.; Bird, R.; Curtze, A.E.; Zhou, Q. Lipid nanoparticles- from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano, 2021, 15(11), 16982-17015.
[http://dx.doi.org/10.1021/acsnano.1c04996] [PMID: 34181394]
[32]
Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal formulations in clinical use: An updated review. Pharmaceutics, 2017, 9(4), 12.
[http://dx.doi.org/10.3390/pharmaceutics9020012] [PMID: 28346375]
[33]
Urits, I.; Swanson, D.; Swett, M.C.; Patel, A.; Berardino, K.; Amgalan, A.; Berger, A.A.; Kassem, H.; Kaye, A.D.; Viswanath, O. A review of patisiran (ONPATTRO®) for the treatment of polyneuropathy in people with hereditary transthyretin amyloidosis. Neurol. Ther., 2020, 9(2), 301-315.
[http://dx.doi.org/10.1007/s40120-020-00208-1] [PMID: 32785879]
[34]
Zhang, S.; Xu, Y.; Wang, B.; Qiao, W.; Liu, D.; Li, Z. Cationic compounds used in lipoplexes and polyplexes for gene delivery. J. Control. Release, 2004, 100(2), 165-180.
[http://dx.doi.org/10.1016/j.jconrel.2004.08.019] [PMID: 15544865]
[35]
Dymek, M.; Sikora, E. Liposomes as biocompatible and smart delivery systems - the current state. Adv. Colloid Interface Sci., 2022, 309, 102757.
[http://dx.doi.org/10.1016/j.cis.2022.102757] [PMID: 36152374]
[36]
Gómez-Aguado, I.; Rodríguez-Castejón, J.; Vicente-Pascual, M.; Rodríguez-Gascón, A.; del Pozo-Rodríguez, A.; Solinís Aspiazu, M.Á. Nucleic acid delivery by solid lipid nanoparticles containing switchable lipids: plasmid DNA vs. messenger RNA. Molecules, 2020, 25(24), 5995.
[http://dx.doi.org/10.3390/molecules25245995] [PMID: 33352904]
[37]
Qiu, M.; Li, Y.; Bloomer, H.; Xu, Q. Developing biodegradable lipid nanoparticles for intracellular mRNA delivery and genome editing. Acc. Chem. Res., 2021, 54(21), 4001-4011.
[http://dx.doi.org/10.1021/acs.accounts.1c00500] [PMID: 34668716]
[38]
Hald Albertsen, C.; Kulkarni, J.A.; Witzigmann, D.; Lind, M.; Petersson, K.; Simonsen, J.B. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Adv. Drug Deliv. Rev., 2022, 188, 114416.
[http://dx.doi.org/10.1016/j.addr.2022.114416] [PMID: 35787388]
[39]
Dhiman, S. Solid lipid nanoparticles: A current approach to new drug-delivery systems in nanotechnology; Fut. Med, 2013.
[40]
Taratula, O.; Kuzmov, A.; Shah, M.; Garbuzenko, O.B.; Minko, T. Nanostructured lipid carriers as multifunctional nanomedicine platform for pulmonary co-delivery of anticancer drugs and siRNA. J. Control. Release, 2013, 171(3), 349-357.
[http://dx.doi.org/10.1016/j.jconrel.2013.04.018] [PMID: 23648833]
[41]
Gerhardt, A.; Voigt, E.; Archer, M.; Reed, S.; Larson, E.; Van Hoeven, N.; Kramer, R.; Fox, C.; Casper, C. A flexible, thermostable nanostructured lipid carrier platform for RNA vaccine delivery. Mol. Ther. Methods Clin. Dev., 2022, 25, 205-214.
[http://dx.doi.org/10.1016/j.omtm.2022.03.009] [PMID: 35308783]
[42]
Hadinoto, K.; Sundaresan, A.; Cheow, W.S. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: A review. Eur. J. Pharm. Biopharm., 2013, 85(3), 427-443.
[http://dx.doi.org/10.1016/j.ejpb.2013.07.002] [PMID: 23872180]
[43]
Zhao, W.; Zhang, C.; Li, B.; Zhang, X.; Luo, X.; Zeng, C.; Li, W.; Gao, M.; Dong, Y. Lipid polymer hybrid nanomaterials for mRNA delivery. Cell. Mol. Bioeng., 2018, 11(5), 397-406.
[http://dx.doi.org/10.1007/s12195-018-0536-9] [PMID: 30555598]
[44]
Amiri, A.; Bagherifar, R.; Ansari Dezfouli, E.; Kiaie, S.H.; Jafari, R.; Ramezani, R. Exosomes as bio-inspired nanocarriers for RNA delivery: Preparation and applications. J. Transl. Med., 2022, 20(1), 125.
[http://dx.doi.org/10.1186/s12967-022-03325-7] [PMID: 35287692]
[45]
Skotland, T.; Hessvik, N.P.; Sandvig, K.; Llorente, A. Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology. J. Lipid Res., 2019, 60(1), 9-18.
[http://dx.doi.org/10.1194/jlr.R084343] [PMID: 30076207]
[46]
Liu, Y.; Zhao, Z.; Li, M. Overcoming the cellular barriers and beyond: Recent progress on cell penetrating peptide modified nanomedicine in combating physiological and pathological barriers. Asian J. Pharm. Sci., 2022, 17(4), 523-543.
[http://dx.doi.org/10.1016/j.ajps.2022.05.002]
[47]
Peng, C.; Huang, Y.; Zheng, J. Renal clearable nanocarriers: Overcoming the physiological barriers for precise drug delivery and clearance. J. Control. Release, 2020, 322, 64-80.
[http://dx.doi.org/10.1016/j.jconrel.2020.03.020] [PMID: 32194171]
[48]
Tanaka, H.; Sakurai, Y.; Akita, H. Lipid nanoparticles for mRNA delivery. Drug Deliv. Syst., 2022, 37(3), 237-246.
[http://dx.doi.org/10.2745/dds.37.237]
[49]
Yoo, J.; Park, C.; Yi, G.; Lee, D.; Koo, H. Active targeting strategies using biological ligands for nanoparticle drug delivery systems. Cancers, 2019, 11(5), 640.
[http://dx.doi.org/10.3390/cancers11050640] [PMID: 31072061]
[50]
Behzadi, S. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev., 2017, 46(14), 4218-4244.
[http://dx.doi.org/10.1039/C6CS00636A]
[51]
Rennick, J.J.; Johnston, A.P.R.; Parton, R.G. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nat. Nanotechnol., 2021, 16(3), 266-276.
[http://dx.doi.org/10.1038/s41565-021-00858-8] [PMID: 33712737]
[52]
Wu, Z.A-O.; Li, T. Nanoparticle-mediated cytoplasmic delivery of messenger RNA vaccines: Challenges and future perspectives. Pharm. Res., 2021, 38(3), 473-478.
[http://dx.doi.org/10.1007/s11095-021-03015-x]
[53]
Reichmuth, A.M. mRNA vaccine delivery using lipid nanoparticles. Ther. Deliv., 2016, 2041-6008.
[54]
Schroeder, A. Lipid-based nanotherapeutics for siRNA delivery. J. Intern. Med., 2017, 1365-2796.
[55]
Patel, P.; Ibrahim, N.M.; Cheng, K. The importance of apparent pKa in the development of nanoparticles encapsulating siRNA and mRNA. Trends Pharmacol. Sci., 2021, 42(6), 448-460.
[http://dx.doi.org/10.1016/j.tips.2021.03.002]
[56]
Yang, L. Recent advances in lipid nanoparticles for delivery of mRNA. Pharmaceutics, 2022, 14(12), 2682.
[http://dx.doi.org/10.3390/pharmaceutics14122682]
[57]
Ramachandran, S.A-O.; Satapathy, S.R.; Dutta, T. Delivery strategies for mRNA vaccines. Pharmaceut. Med., 2022, 36(1), 11-20.
[http://dx.doi.org/10.1007/s40290-021-00417-5]
[58]
Swetha, K. Recent advances in the lipid nanoparticle-mediated delivery of mRNA vaccines. Vaccines, 2023, 11(3), 658.
[http://dx.doi.org/10.3390/vaccines11030658]
[59]
Jörgensen, A.M.; Wibel, R. Bernkop‐Schnürch, A.J.S. Biodegradable cationic and ionizable cationic lipids: A roadmap for safer pharmaceutical excipients. Small, 2023, 19(17), e2206968.
[http://dx.doi.org/10.1002/smll.202206968]
[60]
Martin, B. The design of cationic lipids for gene delivery. Curr. Pharm. Des., 2005, 11(3), 375-394.
[http://dx.doi.org/10.2174/1381612053382133]
[61]
Han, X. An ionizable lipid toolbox for RNA delivery. Nat. Commun., 2021, 12(1), 7233.
[http://dx.doi.org/10.1038/s41467-021-27493-0]
[62]
Suzuki, Y.; Ishihara, H.J.D.M. Difference in the lipid nanoparticle technology employed in three approved siRNA (Patisiran) and mRNA (COVID-19 vaccine) drugs. Drug Metab. Pharmacokinet., 2021, 41, 100424.
[63]
Zhang, R. Helper lipid structure influences protein adsorption and delivery of lipid nanoparticles to spleen and liver. Biomater. Sci., 2021, 9(4), 1449-1463.
[http://dx.doi.org/10.1039/D0BM01609H]
[64]
Szabó, G.T.; Mahiny, A.J.; Vlatkovic, I. COVID-19 mRNA vaccines: Platforms and current developments. Mol. Ther., 2022, 1525-0024.
[65]
Chavda, V.A-O. mRNA-based vaccines and therapeutics for COVID-19 and future pandemics. Vaccines, 2022, 10(12), 2150.
[http://dx.doi.org/10.3390/vaccines10122150]
[66]
Priyanka; Chopra, H.; Choudhary, O.P. mRNA vaccines as an armor to combat the infectious diseases. Travel Med. Infect. Dis., 2023, 52, 102550.
[http://dx.doi.org/10.1016/j.tmaid.2023.102550] [PMID: 36754340]
[67]
Fang, E. Advances in COVID-19 mRNA vaccine development. Signal Transduct. Target. Ther., 2022, 7, 94.
[68]
Hargadon, K.M.; Johnson, C.E.; Williams, C.J. Immune checkpoint blockade therapy for cancer: An overview of FDA-approved immune checkpoint inhibitors. Int. Immunopharmacol., 2018, 1878-1705.
[69]
Pantin, J.A-O.; Battiwalla, M. Upsetting the apple CAR-T (chimeric antigen receptor T-cell therapy) - sustainability mandates USA innovation. Br. J. Haematol., 2020, 1365-2141.
[70]
Beck, J.D.; Reidenbach, D.; Salomon, N.; Sahin, U.; Türeci, Ö.; Vormehr, M.; Kranz, L.M. mRNA therapeutics in cancer immunotherapy. Mol. Cancer, 2021, 20(1), 69.
[http://dx.doi.org/10.1186/s12943-021-01348-0] [PMID: 33858437]
[71]
Nayerossadat, N. Viral and nonviral delivery systems for gene delivery. Adv. Biomed. Res., 2012, 2277-9175.
[72]
Zhang, Z. Application of lipid-based nanoparticles in cancer immunotherapy. Front. Immunol., 2022, 13, 967505.
[http://dx.doi.org/10.3389/fimmu.2022.967505]
[73]
Baden, L.R. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. New England J. Med., 2021, 1533-4406.
[74]
Company, T.P. Takeda Announces Approval of Moderna’s COVID-19 Vaccine in Japan. 2021. Available from: https://www.takeda.com/newsroom/newsreleases/2021/takeda-announces-approval-of-modernas-covid-19-vaccine-in-japan/
[75]
Safety and Immunogenicity of ChulaCov19 BNA159 mRNA Vaccine. NCT05231369, 2023.
[76]
Pollock, K.M. Safety and immunogenicity of a self-amplifying RNA vaccine against COVID-19: COVAC1, a phase I, dose-ranging trial. EClinicalMedicine, 2022, 2589-5370.
[78]
CGTN. China’s first COVID-19 mRNA vaccine approved for clinical trials 2020. Available from: https://news.cgtn.com/news/2020-06-26/China-s-first-COVID-19-mRNA-vaccine-approved-for-clinical-trials-RDTXX0jVJK/index.html
[79]
Feldman, R.A. mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults in phase 1 randomized clinical trials. Vaccines, 2019, 1873-2518.
[80]
August, A. Safety and immunogenicity of an mRNA-based human metapneumovirus and parainfluenza virus type 3 combined vaccine in healthy adults. Open Forum Infect. Dis., 2022, 9(7), ofac206.
[http://dx.doi.org/10.1093/ofid/ofac206]
[81]
Alberer, M. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: An open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet, 2017, 390(10101), 1511-1520.
[http://dx.doi.org/10.1016/S0140-6736(17)31665-3]
[82]
Aldrich, C. Proof-of-concept of a low-dose unmodified mRNA-based rabies vaccine formulated with lipid nanoparticles in human volunteers: A phase 1 trial. Vaccine, 2021, 39(8), 1310-1318.
[http://dx.doi.org/10.1016/j.vaccine.2020.12.070]
[83]
A Study of mRNA-5671/V941 as Monotherapy and in Combination With Pembrolizumab (V941-001). NCT03948763, 2022.
[84]
Designation based on positive data from Phase 2b KEYNOTE-942/mRNA-4157-P201 trial and unmet need for additional therapeutic options for certain types of melanoma. 2023.
[85]
Lorentzen, C.L. Clinical advances and ongoing trials on mRNA vaccines for cancer treatment. Lancet Oncol., 2022, 23(10), e450-e458.
[http://dx.doi.org/10.1016/S1470-2045(22)00372-2]
[86]
Deng, Z. mRNA Vaccines: The dawn of a new era of cancer immunotherapy. Front. Immunol., 2022, 1664-3224.
[87]
Hosseini, M. Cancer vaccines for triple-negative breast cancer: A systematic review. Vaccines, 2023, 11(1), 146.
[http://dx.doi.org/10.3390/vaccines11010146]
[88]
HARE-40: HPV Anti-CD40 RNA vaccinE (HARE-40). NCT03418480, 2023.
[89]
Ovarian Cancer Treatment With a Liposome Formulated mRNA Vaccine in Combination With (Neo-)Adjuvant Chemotherapy (OLIVIA). NCT04163094, 2022.
[90]
Dose Escalation and Efficacy Study of mRNA-2416 for Intratumoral Injection Alone and in Combination With Durvalumab for Participants With Advanced Malignancies. NCT03323398, 2022.
[91]
Open Label Study of mRNA-3704 in Patients With Isolated Methylmalonic Acidemia. NCT03810690, 2020.
[92]
Open-Label Study of mRNA-3927 in Participants With Propionic Acidemia. NCT04159103, 2023.
[93]
Xiong, L.; Zhao, T.; Huang, X.; Liu, Z.; Zhao, H.; Li, M.; Wu, L.; Shu, H.; Zhu, L.; Fan, M. Heat shock protein 90 is involved in regulation of hypoxia-driven proliferation of embryonic neural stem/progenitor cells. Cell Stress Chaperones, 2009, 14(2), 183-192.
[http://dx.doi.org/10.1007/s12192-008-0071-z] [PMID: 18726712]
[94]
Magadum, A.; Kaur, K.; Zangi, L. mRNA-based protein replacement therapy for the heart. Mol. Ther., 2019, 27(4), 785-793.
[http://dx.doi.org/10.1016/j.ymthe.2018.11.018] [PMID: 30611663]
[95]
Thess, A.; Grund, S.; Mui, B.L.; Hope, M.J.; Baumhof, P.; Fotin-Mleczek, M.; Schlake, T. Sequence-engineered mRNA without chemical nucleoside modifications enables an effective protein therapy in large animals. Mol. Ther., 2015, 23(9), 1456-1464.
[http://dx.doi.org/10.1038/mt.2015.103] [PMID: 26050989]
[96]
Gómez-Aguado, I.; Rodríguez-Castejón, J.; Vicente-Pascual, M.; Rodríguez-Gascón, A.; Solinís, M.Á.; del Pozo-Rodríguez, A. Nanomedicines to deliver mRNA: State of the art and future perspectives. Nanomaterials, 2020, 10(2), 364.
[http://dx.doi.org/10.3390/nano10020364] [PMID: 32093140]
[97]
Tavernier, G.; Andries, O.; Demeester, J.; Sanders, N.N.; De Smedt, S.C.; Rejman, J. mRNA as gene therapeutic: How to control protein expression. J. Control. Release, 2011, 150(3), 238-247.
[http://dx.doi.org/10.1016/j.jconrel.2010.10.020] [PMID: 20970469]
[98]
Zhang, W. Lipid carriers for mRNA delivery. Acta Pharm. Sin. B, 2023, 13(10), 4105-4126.
[PMID: 37799378]
[99]
Yuan, M.; Han, Z.; Liang, Y.; Sun, Y.; He, B.; Chen, W.; Li, F. mRNA nanodelivery systems: Targeting strategies and administration routes. Biomater. Res., 2023, 27(1), 90.
[http://dx.doi.org/10.1186/s40824-023-00425-3] [PMID: 37740246]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy