Generic placeholder image

Cardiovascular & Hematological Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5257
ISSN (Online): 1875-6182

Research Article

Antihypertensive and ACE-2 Inhibitory Effects of Daphne gnidium in Rats

Author(s): Ismail Bouadid, Adil Qabouche and Mohamed Eddouks*

Volume 22, Issue 4, 2024

Published on: 24 January, 2024

Page: [432 - 440] Pages: 9

DOI: 10.2174/0118715257251651231212045407

Price: $65

Open Access Journals Promotions 2
Abstract

Aims: The antihypertensive activity of Daphne gnidium was tested.

Background: Daphne gnidium (Thymelaeaceae) is used against hypertension.

Objective: The antihypertensive effect of Daphne gnidium was evaluated in this study.

Methods: The effect of Daphne gnidium aqueous extract (DGAE, 100 and 180 mg/kg) on blood pressure was evaluated in rats. In addition, the vasorelaxant effect of this extract was also tested.

Results: DGAE lowered blood pressure in hypertensive rats and exhibited vasorelaxant activity. In addition, cumulative concentrations of DGAE induced vasodilatation through receptoractivated calcium channels (ROCCs) without affecting ACE-2.

Conclusion: The aqueous extract of Daphne gnidium exhibits antihypertensive activity and induces vasodilatation via the inhibition of Ca2+ entry.

Keywords: Daphne gnidium (L.), hypertension, vasorelaxant, receptor-activated calcium channels (ROCCs), ACE-2, antihypertensive.

Graphical Abstract
[1]
Raven, P.B.; Chapleau, M.W. Blood pressure regulation XI: Overview and future research directions. Eur. J. Appl. Physiol., 2014, 114(3), 579-586.
[http://dx.doi.org/10.1007/s00421-014-2823-z] [PMID: 24463603]
[2]
Oparil, S.; Acelajado, M.C.; Bakris, G.L.; Berlowitz, D.R.; Cífková, R.; Dominiczak, A.F.; Grassi, G.; Jordan, J.; Poulter, N.R.; Rodgers, A.; Whelton, P.K. Hypertension. Nat. Rev. Dis. Primers, 2018, 4(1), 18014.
[http://dx.doi.org/10.1038/nrdp.2018.14] [PMID: 29565029]
[3]
Zhou, B.; Perel, P.; Mensah, G.A.; Ezzati, M. Global epidemiology, health burden and effective interventions for elevated blood pressure and hypertension. Nat. Rev. Cardiol., 2021, 18(11), 785-802.
[http://dx.doi.org/10.1038/s41569-021-00559-8] [PMID: 34050340]
[4]
Chaabane, F.; Boubaker, J.; Loussaif, A.; Neffati, A.; Kilani-Jaziri, S.; Ghedira, K.; Chekir-Ghedira, L. Antioxidant, genotoxic and antigenotoxic activities of daphne gnidium leaf extracts. BMC Complement. Altern. Med., 2012, 12(1), 153.
[http://dx.doi.org/10.1186/1472-6882-12-153] [PMID: 22974481]
[5]
Khouchlaa, A.; El Menyiy, N.; Guaouguaou, F.E.; El Baaboua, A.; Charfi, S.; Lakhdar, F.; El Omari, N.; Taha, D.; Shariati, M.A.; Rebezov, M.; El-Shazly, M.; Bouyahya, A. Ethnomedicinal use, phytochemistry, pharmacology, and toxicology of Daphne gnidium: A review. J. Ethnopharmacol., 2021, 275, 114124.
[http://dx.doi.org/10.1016/j.jep.2021.114124] [PMID: 33865924]
[6]
Chaabane, F.; Pinon, A.; Simon, A.; Ghedira, K.; Chekir-Ghedira, L. Phytochemical potential of Daphne gnidium in inhibiting growth of melanoma cells and enhancing melanogenesis of B16‐F0 melanoma. Cell Biochem. Funct., 2013, 31(6), 460-467.
[http://dx.doi.org/10.1002/cbf.2919] [PMID: 23080382]
[7]
Horchani, A.; Chaabane, F.; Barboura, M.; Mokdad-Bzeouich, I.; Abbassi, A.; Trabelsi, A.; Chekir-Ghedira, L. Phytochemistry and biological evaluation of Daphne gnidium L. butanol extract. Pharmacogn. J., 2021, 13(6s), 1688-1693.
[http://dx.doi.org/10.5530/pj.2021.13.217]
[8]
Chaouki, W.; Leger, D.Y.; Liagre, B.; Cherrah, Y.; Beneytout, J.L.; Hmamouchi, M. Roots of daphne gnidium L. inhibit cell proliferation and induce apoptosis in the human breast cancer cell line MCF-7. Pharmazie, 2009, 64(8), 542-546.
[PMID: 19746845]
[9]
Chaabane, F.; Mustapha, N.; Mokdad-Bzeouich, I.; Sassi, A.; Kilani-Jaziri, S.; Dijoux Franca, M.G.; Michalet, S.; Fathallah, M.; Krifa, M.; Ghedira, K.; Chekir-Ghedira, L. In vitro and in vivo anti-melanoma effects of daphne gnidium aqueous extract via activation of the immune system. Tumour Biol., 2016, 37(5), 6511-6517.
[http://dx.doi.org/10.1007/s13277-015-4492-x] [PMID: 26637225]
[10]
Harizi, H.; Chaabane, F.; Ghedira, K.; Chekir-Ghedira, L. Inhibition of proinflammatory macrophage responses and lymphocyte proliferation in vitro by ethyl acetate leaf extract from Daphne gnidium. Cell. Immunol., 2011, 267(2), 94-101.
[http://dx.doi.org/10.1016/j.cellimm.2010.12.002] [PMID: 21190680]
[11]
Cottigli, F.; Loy, G.; Garau, D.; Floris, C.; Casu, M.; Pompei, R.; Bonsignore, L. Antimicrobial evaluation of coumarins and flavonoids from the stems of L. Phytomedicine, 2001, 8(4), 302-305.
[http://dx.doi.org/10.1078/0944-7113-00036] [PMID: 11515721]
[12]
Vidal, V.; Potterat, O.; Louvel, S.; Hamy, F.; Mojarrab, M.; Sanglier, J.J.; Klimkait, T.; Hamburger, M. Library-based discovery and characterization of daphnane diterpenes as potent and selective HIV inhibitors in Daphne gnidium. J. Nat. Prod., 2012, 75(3), 414-419.
[http://dx.doi.org/10.1021/np200855d] [PMID: 22148316]
[13]
Eddouks, M.; Bouadid, I.; Amssayef, A. Study of the antihypertensive effect of laurus nobilis in rats. Cardiovasc. Hematol. Agents Med. Chem., 2023, 21(1), 42-54.
[http://dx.doi.org/10.2174/1871525720666220512154041] [PMID: 35549860]
[14]
Eddouks, M.; Bouadid, I.; Akdad, M. Antihypertensive activity of prunus armeniaca in hypertensive rats. Cardiovasc. Hematol. Agents Med. Chem., 2023, 21(1), 20-30.
[http://dx.doi.org/10.2174/1871525720666220613164559] [PMID: 35702770]
[15]
Ajebli, M.; Eddouks, M. Antihypertensive activity of petroselinum crispum through inhibition of vascular calcium channels in rats. J. Ethnopharmacol., 2019, 242, 112039.
[http://dx.doi.org/10.1016/j.jep.2019.112039] [PMID: 31252093]
[16]
Amssayef, A.; Bouadid, I.; Eddouks, M.; Vitamin, C. Vitamin C inhibits angiotensin-converting enzyme-2 in isolated rat aortic ring. Cardiovasc. Hematol. Disord. Drug Targets, 2021, 21(4), 235-242.
[http://dx.doi.org/10.2174/1871529X21666211214153308] [PMID: 34906063]
[17]
Bootman, M.D.; Collins, T.J.; Mackenzie, L.; Roderick, H.L.; Berridge, M.J.; Peppiatt, C.M. 2‐Aminoethoxydiphenyl borate (2‐APB) is a reliable blocker of store‐operated Ca 2+ entry but an inconsistent inhibitor of InsP 3 ‐induced Ca 2+ release. FASEB J., 2002, 16(10), 1145-1150.
[http://dx.doi.org/10.1096/fj.02-0037rev] [PMID: 12153982]
[18]
Peppiatt, C.M.; Collins, T.J.; Mackenzie, L.; Conway, S.J.; Holmes, A.B.; Bootman, M.D.; Berridge, M.J.; Seo, J.T.; Roderick, H.L. 2-Aminoethoxydiphenyl borate (2-APB) antagonises inositol 1,4,5-trisphosphate-induced calcium release, inhibits calcium pumps and has a use-dependent and slowly reversible action on store-operated calcium entry channels. Cell Calcium, 2003, 34(1), 97-108.
[http://dx.doi.org/10.1016/S0143-4160(03)00026-5] [PMID: 12767897]
[19]
Iwasaki, H.; Mori, Y.; Hara, Y.; Uchida, K.; Zhou, H.; Mikoshiba, K. 2-Aminoethoxydiphenyl borate (2-APB) inhibits capacitative calcium entry independently of the function of inositol 1,4,5-trisphosphate receptors. Receptors Channels, 2001, 7(6), 429-439.
[PMID: 11918346]
[20]
Bilmen, J.G.; Wootton, L.L.; Godfrey, R.E.; Smart, O.S.; Michelangeli, F. Inhibition of SERCA Ca 2+ pumps by 2-aminoethoxydiphenyl borate (2-APB). Eur. J. Biochem., 2002, 269(15), 3678-3687.
[http://dx.doi.org/10.1046/j.1432-1033.2002.03060.x] [PMID: 12153564]
[21]
Hoe, S.Z.; Lee, C.N.; Mok, S.L.; Kamaruddin, M.Y.; Lam, S.K. Gynura procumbens Merr. decreases blood pressure in rats by vasodilatation via inhibition of calcium channels. Clinics, 2011, 66(1), 143-150.
[http://dx.doi.org/10.1590/S1807-59322011000100025] [PMID: 21437451]
[22]
Meisheri, K.D.; Hwang, O.; van Breemen, C. Evidence for two separate Ca2+ pathways in smooth muscle plasmalemma. J. Membr. Biol., 1981, 59(1), 19-25.
[http://dx.doi.org/10.1007/BF01870817] [PMID: 7241573]
[23]
Yamamoto, H.; van Breemen, C. Ca2+ compartments in saponin-skinned cultured vascular smooth muscle cells. J. Gen. Physiol., 1986, 87(3), 369-389.
[http://dx.doi.org/10.1085/jgp.87.3.369] [PMID: 3514788]
[24]
Chaumais, M.C.; Macari, E.A.; Sitbon, O. Calcium-channel blockers in pulmonary arterial hypertension. Handb. Exp. Pharmacol., 2013, 218, 161-175.
[http://dx.doi.org/10.1007/978-3-642-38664-0_7] [PMID: 24092340]
[25]
Lin, Q.; Zhao, G.; Fang, X.; Peng, X.; Tang, H.; Wang, H.; Jing, R.; Liu, J.; Lederer, W.J.; Chen, J.; Ouyang, K. IP3 receptors regulate vascular smooth muscle contractility and hypertension. JCI Insight, 2016, 1(17), e89402.
[http://dx.doi.org/10.1172/jci.insight.89402] [PMID: 27777977]
[26]
Karaki, H.; Ozaki, H.; Hori, M.; Mitsui-Saito, M.; Amano, K.; Harada, K.; Miyamoto, S.; Nakazawa, H.; Won, K.J.; Sato, K. Calcium movements, distribution, and functions in smooth muscle. Pharmacol. Rev., 1997, 49(2), 157-230.
[PMID: 9228665]
[27]
Maione, F.; Cicala, C.; Musciacco, G.; De Feo, V.; Amat, A.G.; Ialenti, A.; Mascolo, N. Phenols, alkaloids and terpenes from medicinal plants with antihypertensive and vasorelaxant activities. A review of natural products as leads to potential therapeutic agents. Nat. Prod. Commun., 2013, 8(4), 1934578X1300800.
[http://dx.doi.org/10.1177/1934578X1300800434] [PMID: 23738474]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy