Generic placeholder image

Cardiovascular & Hematological Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5257
ISSN (Online): 1875-6182

Review Article

MicroRNAs Targeting Critical Molecular Pathways in Diabetic Cardiomyopathy Emerging Valuable for Therapy

Author(s): Priyanka Mathur, Sharad Saxena, Bhawna Saxena and Vibha Rani*

Volume 22, Issue 3, 2024

Published on: 24 January, 2024

Page: [298 - 307] Pages: 10

DOI: 10.2174/0118715257265947231129074526

Price: $65

Open Access Journals Promotions 2
Abstract

MicroRNAs have emerged as an important regulator of post-transcriptional gene expression studied extensively in many cancers, fetal development, and cardiovascular diseases. Their endogenous nature and easy manipulation have made them potential diagnostic and therapeutic molecules. Diseases with complex pathophysiology such as Diabetic Cardiomyopathy display symptoms at a late stage when the risk of heart failure has become very high. Therefore, the utilization of microRNAs as a tool to study pathophysiology and device-sustainable treatments for DCM could be considered. The present review focuses on the mechanistic insights of diabetic cardiomyopathy and the potential role of microRNAs.

Keywords: MicroRNAs, diabetes, cardiomyopathy, sarcomere, stress, glucose transporter.

Graphical Abstract
[1]
Bugger, H.; Abel, E.D. Molecular mechanisms of diabetic cardiomyopathy. Diabetologia, 2014, 57(4), 660-671.
[http://dx.doi.org/10.1007/s00125-014-3171-6] [PMID: 24477973]
[2]
Sisakian, H. Cardiomyopathies: Evolution of pathogenesis concepts and potential for new therapies. World J. Cardiol., 2014, 6(6), 478-494.
[http://dx.doi.org/10.4330/wjc.v6.i6.478] [PMID: 24976920]
[3]
Jakubik, D.; Fitas, A.; Eyileten, C.; Jarosz-Popek, J.; Nowak, A.; Czajka, P.; Wicik, Z.; Sourij, H.; Siller-Matula, J.M.; De Rosa, S.; Postula, M. MicroRNAs and long non-coding RNAs in the pathophysiological processes of diabetic cardiomyopathy: Emerging biomarkers and potential therapeutics. Cardiovasc. Diabetol., 2021, 20(1), 55.
[http://dx.doi.org/10.1186/s12933-021-01245-2] [PMID: 33639953]
[4]
Ogurtsova, K.; Guariguata, L.; Barengo, N.C.; Ruiz, P.L.D.; Sacre, J.W.; Karuranga, S.; Sun, H.; Boyko, E.J.; Magliano, D.J. IDF diabetes Atlas: Global estimates of undiagnosed diabetes in adults for 2021. Diabetes Res. Clin. Pract., 2022, 183, 109118.
[http://dx.doi.org/10.1016/j.diabres.2021.109118] [PMID: 34883189]
[5]
Marfella, R.; Sardu, C.; Mansueto, G.; Napoli, C.; Paolisso, G. Evidence for human diabetic cardiomyopathy. Acta Diabetol., 2021, 58(8), 983-988.
[http://dx.doi.org/10.1007/s00592-021-01705-x] [PMID: 33791873]
[6]
Nunes, S.; Rolo, A.P.; Palmeira, C.M.; Reis, F. “Diabetic cardiomyopathy: Focus on oxidative stress, mitochondrial dysfunction and inflammation”, Cardiomyopathies-Types and Treatments, London. IntechOpen, 2017, (Apr), 235-257.
[7]
Tham, Y.K.; Bernardo, B.C.; Ooi, J.Y.Y.; Weeks, K.L.; McMullen, J.R. Pathophysiology of cardiac hypertrophy and heart failure: Signaling pathways and novel therapeutic targets. Arch. Toxicol., 2015, 89(9), 1401-1438.
[http://dx.doi.org/10.1007/s00204-015-1477-x] [PMID: 25708889]
[8]
Ghosh, N.; Katare, R. Molecular mechanism of diabetic cardiomyopathy and modulation of microRNA function by synthetic oligonucleotides. Cardiovasc. Diabetol., 2018, 17(1), 43.
[http://dx.doi.org/10.1186/s12933-018-0684-1] [PMID: 29566757]
[9]
Ardekani, A.M.; Naeini, M.M. The role of microRNAs in human diseases. Avicenna J. Med. Biotechnol., 2010, 2(4), 161-179.
[PMID: 23407304]
[10]
Çakmak, H.A.; Demir, M. MicroRNA and cardiovascular diseases. Balkan Med. J., 2020, 37(2), 60-71.
[PMID: 32018347]
[11]
Kozomara, A.; Birgaoanu, M.; Griffiths-Jones, S. miRBase: From microRNA sequences to function. Nucleic Acids Res., 2019, 47(D1), D155-D162.
[http://dx.doi.org/10.1093/nar/gky1141] [PMID: 30423142]
[12]
Yu, M.; Liu, Y.; Zhang, B.; Shi, Y.; Cui, L.; Zhao, X. Inhibiting microRNA-144 abates oxidative stress and reduces apoptosis in hearts of streptozotocin-induced diabetic mice. Cardiovasc. Pathol., 2015, 24(6), 375-381.
[http://dx.doi.org/10.1016/j.carpath.2015.06.003] [PMID: 26164195]
[13]
Li, X.; Du, N.; Zhang, Q.; Li, J.; Chen, X.; Liu, X.; Hu, Y.; Qin, W.; Shen, N.; Xu, C.; Fang, Z.; Wei, Y.; Wang, R.; Du, Z.; Zhang, Y.; Lu, Y. MicroRNA-30d regulates cardiomyocyte pyroptosis by directly targeting foxo3a in diabetic cardiomyopathy. Cell Death Dis., 2014, 5(10), e1479-e1479.
[http://dx.doi.org/10.1038/cddis.2014.430] [PMID: 25341033]
[14]
Lee, RC.; Feinbaum, RL.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5), 843-854.
[http://dx.doi.org/10.1016/0092-8674(93)90529-y] [PMID: 8252621]
[15]
Peng, Y.; Croce, C.M. The role of MicroRNAs in human cancer. Signal Transduct. Target. Ther., 2016, 1(1), 15004.
[http://dx.doi.org/10.1038/sigtrans.2015.4] [PMID: 29263891]
[16]
O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. (Lausanne), 2018, 9, 402.
[http://dx.doi.org/10.3389/fendo.2018.00402] [PMID: 30123182]
[17]
Kosaka, N.; Yoshioka, Y.; Hagiwara, K.; Tominaga, N.; Katsuda, T.; Ochiya, T. Trash or treasure: Extracellular microRNAs and cell-to-cell communication. Front. Genet., 2013, 4, 173.
[http://dx.doi.org/10.3389/fgene.2013.00173] [PMID: 24046777]
[18]
van Rooij, E.; Kauppinen, S. Development of micro RNA therapeutics is coming of age. EMBO Mol. Med., 2014, 6(7), 851-864.
[http://dx.doi.org/10.15252/emmm.201100899] [PMID: 24935956]
[19]
Diener, C.; Keller, A.; Meese, E. Emerging concepts of miRNA therapeutics: From cells to clinic. Trends Genet., 2022, 38(6), 613-626.
[http://dx.doi.org/10.1016/j.tig.2022.02.006] [PMID: 35303998]
[20]
Loganathan, T.; Doss, C. G.P. Non-coding RNAs in human health and disease: potential function as biomarkers and therapeutic targets. Funct. Integr. Genomics, 2023, 23(1), 33.
[http://dx.doi.org/10.1007/s10142-022-00947-4] [PMID: 36625940]
[21]
Gong, C.; Tian, J.; Wang, Z.; Gao, Y.; Wu, X.; Ding, X.; Qiang, L.; Li, G.; Han, Z.; Yuan, Y.; Gao, S. Functional exosome-mediated co-delivery of doxorubicin and hydrophobically modified microRNA 159 for triple-negative breast cancer therapy. J. Nanobiotechnology, 2019, 17(1), 93.
[http://dx.doi.org/10.1186/s12951-019-0526-7] [PMID: 31481080]
[22]
Lavenniah, A.; Luu, T.D.A.; Li, Y.P.; Lim, T.B.; Jiang, J.; Ackers-Johnson, M.; Foo, R.S.Y. Engineered circular RNA sponges act as miRNA inhibitors to attenuate pressure overload-induced cardiac hypertrophy. Mol. Ther., 2020, 28(6), 1506-1517.
[http://dx.doi.org/10.1016/j.ymthe.2020.04.006] [PMID: 32304667]
[23]
Meng, L.; Chang, S.; Sang, Y.; Ding, P.; Wang, L.; Nan, X.; Xu, R.; Liu, F.; Gu, L.; Zheng, Y.; Li, Z.; Sang, M. Circular RNA circCCDC85A inhibits breast cancer progression via acting as a miR-550a-5p sponge to enhance MOB1A expression. Breast Cancer Res., 2022, 24(1), 1-13.
[http://dx.doi.org/10.1186/s13058-021-01497-6] [PMID: 34983617]
[24]
Hong, D.S.; Kang, Y.K.; Borad, M.; Sachdev, J.; Ejadi, S.; Lim, H.Y.; Brenner, A.J.; Park, K.; Lee, J.L.; Kim, T.Y.; Shin, S.; Becerra, C.R.; Falchook, G.; Stoudemire, J.; Martin, D.; Kelnar, K.; Peltier, H.; Bonato, V.; Bader, A.G.; Smith, S.; Kim, S.; O’Neill, V.; Beg, M.S. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br. J. Cancer, 2020, 122(11), 1630-1637.
[http://dx.doi.org/10.1038/s41416-020-0802-1] [PMID: 32238921]
[25]
Deiuliis, J.A. MicroRNAs as regulators of metabolic disease: pathophysiologic significance and emerging role as biomarkers and therapeutics. Int. J. Obes., 2016, 40(1), 88-101.
[http://dx.doi.org/10.1038/ijo.2015.170] [PMID: 26311337]
[26]
Abbasi, E.; Aval, S.F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H.T.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; Pashaei-Asl, R. Dendrimers: Synthesis, applications, and properties. Nanoscale Res. Lett., 2014, 9(1), 247.
[http://dx.doi.org/10.1186/1556-276X-9-247] [PMID: 24994950]
[27]
Alam, U.; Asghar, O.; Azmi, S.; Malik, R.A. General aspects of diabetes mellitus. Handb. Clin. Neurol., 2014, 126, 211-222.
[http://dx.doi.org/10.1016/B978-0-444-53480-4.00015-1] [PMID: 25410224]
[28]
Mathur, P.; Rani, V. MicroRNAs: A critical regulator and a promising therapeutic and diagnostic molecule for diabetic cardiomyopathy, 2021.
[http://dx.doi.org/10.2174/1566523221666210311111619]
[29]
Hathaway, Q.A.; Pinti, M.V.; Durr, A.J.; Waris, S.; Shepherd, D.L.; Hollander, J.M. Regulating microRNA expression: At the heart of diabetes mellitus and the mitochondrion. Am. J. Physiol. Heart Circ. Physiol., 2018, 314(2), H293-H310.
[http://dx.doi.org/10.1152/ajpheart.00520.2017] [PMID: 28986361]
[30]
Dhingra, R.; Vasan, R.S. Diabetes and the risk of heart failure. Heart Fail. Clin., 2012, 8(1), 125-133.
[http://dx.doi.org/10.1016/j.hfc.2011.08.008] [PMID: 22108732]
[31]
Unwin, N. Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia; Report of a WHO/IDF Consultation, 2006.
[32]
Mehta, S.R.; Kashyap, A.S.; Das, S. Diabetes mellitus in India: The modern scourge. Med. J. Armed Forces India, 2009, 65(1), 50-54.
[http://dx.doi.org/10.1016/S0377-1237(09)80056-7] [PMID: 27408191]
[33]
Kaveeshwar, S.; Cornwall, J. The current state of diabetes mellitus in India. Australas. Med. J., 2014, 7(1), 45-48.
[http://dx.doi.org/10.4066/AMJ.2014.1979] [PMID: 24567766]
[34]
Agiostratidou, G.; Anhalt, H.; Ball, D.; Blonde, L.; Gourgari, E.; Harriman, K.N.; Kowalski, A.J.; Madden, P.; McAuliffe-Fogarty, A.H.; McElwee-Malloy, M.; Peters, A.; Raman, S.; Reifschneider, K.; Rubin, K.; Weinzimer, S.A. Standardizing clinically meaningful outcome measures beyond HbA1c for type 1 diabetes: A consensus report of the American Association of Clinical Endocrinologists, the American Association of Diabetes Educators, the American Diabetes Association, the Endocrine Society, JDRF international, the Leona M. and Harry B. Helmsley Charitable Trust, the pediatric Endocrine Society, and the T1D exchange. Diabetes Care, 2017, 40(12), 1622-1630.
[http://dx.doi.org/10.2337/dc17-1624] [PMID: 29162582]
[35]
Assaad Khalil, S.H.; Abdelaziz, S.I.; Al Shammary, A.; Al Zahrani, A.; Amir, A.; Elkafrawy, N.; Hassoun, A.A.K.; Hostalek, U.; Jahed, A.; Jarrah, N.; Mrabeti, S.; Paruk, I.; Zilov, A.V. Prediabetes management in the Middle East, Africa and Russia: Current status and call for action. Diab. Vasc. Dis. Res., 2019, 16(3), 213-226.
[http://dx.doi.org/10.1177/1479164118819665] [PMID: 30606039]
[36]
Cai, X.; Zhang, Y.; Li, M.; Wu, J.H.Y.; Mai, L.; Li, J.; Yang, Y.; Hu, Y.; Huang, Y. Association between prediabetes and risk of all cause mortality and cardiovascular disease: Updated meta-analysis. BMJ, 2020, 370, m2297.
[http://dx.doi.org/10.1136/bmj.m2297] [PMID: 32669282]
[37]
Bansal, N. Prediabetes diagnosis and treatment: A review. World J. Diabetes, 2015, 6(2), 296-303.
[http://dx.doi.org/10.4239/wjd.v6.i2.296] [PMID: 25789110]
[38]
Sallar, A.; Dagogo-Jack, S. Regression from prediabetes to normal glucose regulation: State of the science. Exp. Biol. Med., 2020, 245(10), 889-896.
[http://dx.doi.org/10.1177/1535370220915644] [PMID: 32212859]
[39]
Kharroubi, A.T.; Darwish, H.M. Diabetes mellitus: The epidemic of the century. World J. Diabetes, 2015, 6(6), 850-867.
[http://dx.doi.org/10.4239/wjd.v6.i6.850] [PMID: 26131326]
[40]
Tuso, P. Prediabetes and lifestyle modification: Time to prevent a preventable disease. Perm. J., 2014, 18(3), 88-93.
[http://dx.doi.org/10.7812/TPP/14-002] [PMID: 25102521]
[41]
Singh, J.P.; Larson, M.G.; O’Donnell, C.J.; Wilson, P.F.; Tsuji, H.; Lloyd-Jones, D.M.; Levy, D. Association of hyperglycemia with reduced heart rate variability (The Framingham Heart Study). Am. J. Cardiol., 2000, 86(3), 309-312.
[http://dx.doi.org/10.1016/S0002-9149(00)00920-6] [PMID: 10922439]
[42]
Tesfaye, S.; Boulton, A.J.M.; Dyck, P.J.; Freeman, R.; Horowitz, M.; Kempler, P.; Lauria, G.; Malik, R.A.; Spallone, V.; Vinik, A.; Bernardi, L.; Valensi, P. Diabetic neuropathies: Update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care, 2010, 33(10), 2285-2293.
[http://dx.doi.org/10.2337/dc10-1303] [PMID: 20876709]
[43]
Lehrke, M.; Marx, N. Diabetes mellitus and heart failure. Am. J. Cardiol., 2017, 120(1), S37-S47.
[http://dx.doi.org/10.1016/j.amjcard.2017.05.014] [PMID: 28606342]
[44]
Rosano, G.M.C.; Vitale, C.; Seferovic, P. Heart failure in patients with diabetes mellitus. Card. Fail. Rev., 2017, 3(1), 52-55.
[http://dx.doi.org/10.15420/cfr.2016:20:2] [PMID: 28785476]
[45]
Kannel, W.B.; Hjortland, M.; Castelli, W.P. Role of diabetes in congestive heart failure: The framingham study. Am. J. Cardiol., 1974, 34(1), 29-34.
[http://dx.doi.org/10.1016/0002-9149(74)90089-7] [PMID: 4835750]
[46]
Bethesda Type 2 diabetes, genetic condition, Available from: https://medlineplus.gov/genetics/condition/type2diabetes/
[47]
Rubler, S.; Dlugash, J.; Yuceoglu, Y.Z.; Kumral, T.; Branwood, A.W.; Grishman, A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am. J. Cardiol., 1972, 30(6), 595-602.
[http://dx.doi.org/10.1016/0002-9149(72)90595-4] [PMID: 4263660]
[48]
Jia, G.; Hill, M.A.; Sowers, J.R. Diabetic Cardiomyopathy. Circ. Res., 2018, 122(4), 624-638.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.311586] [PMID: 29449364]
[49]
Asghar, O.; Al-Sunni, A.; Khavandi, K.; Khavandi, A.; Withers, S.; Greenstein, A.; Heagerty, A.M.; Malik, R.A. Diabetic cardiomyopathy. Clin. Sci., 2009, 116(10), 741-760.
[http://dx.doi.org/10.1042/CS20080500] [PMID: 19364331]
[50]
Wang, L.; Cai, Y.; Jian, L.; Cheung, C.W.; Zhang, L.; Xia, Z. Impact of peroxisome proliferator-activated receptor-α on diabetic cardiomyopathy. Cardiovasc. Diabetol., 2021, 20(1), 2.
[http://dx.doi.org/10.1186/s12933-020-01188-0] [PMID: 33397369]
[51]
Frati, G.; Schirone, L.; Chimenti, I.; Yee, D.; Biondi-Zoccai, G.; Volpe, M.; Sciarretta, S. An overview of the inflammatory signalling mechanisms in the myocardium underlying the development of diabetic cardiomyopathy. Cardiovasc. Res., 2017, 113(4), 378-388.
[http://dx.doi.org/10.1093/cvr/cvx011] [PMID: 28395009]
[52]
Nowotny, K.; Jung, T.; Höhn, A.; Weber, D.; Grune, T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules, 2015, 5(1), 194-222.
[http://dx.doi.org/10.3390/biom5010194] [PMID: 25786107]
[53]
a) Ma, H.; Li, S.Y.; Xu, P.; Babcock, S.A.; Dolence, E.K.; Brownlee, M.; Li, J.; Ren, J. Retracted: Advanced glycation endproduct (AGE) accumulation and AGE receptor (RAGE) up‐regulation contribute to the onset of diabetic cardiomyopathy. J. Cell. Mol. Med., 2009, 13(8b), 1751-1764.
[http://dx.doi.org/10.1111/j.1582-4934.2008.00547.x] [PMID: 19602045];
b) Torres, C.R.; Hart, G.W. Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J. Biol. Chem., 1984, 259(5), 3308-3317.
[PMID: 6421821]
[54]
Ngoh, G.A.; Facundo, H.T.; Zafir, A.; Jones, S.P. O-GlcNAc signaling in the cardiovascular system. Circ. Res., 2010, 107(2), 171-185.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.224675] [PMID: 20651294]
[55]
Kranstuber, A.L.; del Rio, C.; Biesiadecki, B.J.; Hamlin, R.L.; Ottobre, J.; Gyorke, S.; Lacombe, V.A. Advanced glycation end product cross-link breaker attenuates diabetes-induced cardiac dysfunction by improving sarcoplasmic reticulum calcium handling. Front. Physiol., 2012, 3, 292.
[http://dx.doi.org/10.3389/fphys.2012.00292] [PMID: 22934044]
[56]
Riehle, C.; Bauersachs, J. Of mice and men: Models and mechanisms of diabetic cardiomyopathy. Basic Res. Cardiol., 2019, 114(1), 2.
[http://dx.doi.org/10.1007/s00395-018-0711-0] [PMID: 30443826]
[57]
Ooi, J.Y.Y.; Bernardo, B.C.; McMullen, J.R. The therapeutic potential of miRNAs regulated in settings of physiological cardiac hypertrophy. Future Med. Chem., 2014, 6(2), 205-222.
[http://dx.doi.org/10.4155/fmc.13.196] [PMID: 24467244]
[58]
Nandi, S.S.; Mishra, P.K. Harnessing fetal and adult genetic reprograming for therapy of heart disease. J. Nat. Sci., 2015, 1(4), 1-14.
[PMID: 25879081]
[59]
Hoshijima, M. Mechanical stress-strain sensors embedded in cardiac cytoskeleton: Z disk, titin, and associated structures. Am. J. Physiol. Heart Circ. Physiol., 2006, 290(4), H1313-H1325.
[http://dx.doi.org/10.1152/ajpheart.00816.2005] [PMID: 16537787]
[60]
Hamdani, N.; Franssen, C.; Lourenço, A.; Falcão-Pires, I.; Fontoura, D.; Leite, S.; Plettig, L.; López, B.; Ottenheijm, C.A.; Becher, P.M.; González, A.; Tschöpe, C.; Díez, J.; Linke, W.A.; Leite-Moreira, A.F.; Paulus, W.J. Myocardial titin hypophosphorylation importantly contributes to heart failure with preserved ejection fraction in a rat metabolic risk model. Circ. Heart Fail., 2013, 6(6), 1239-1249.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.113.000539] [PMID: 24014826]
[61]
Crocini, C.; Gotthardt, M. Cardiac sarcomere mechanics in health and disease. Biophys. Rev., 2021, 13(5), 637-652.
[http://dx.doi.org/10.1007/s12551-021-00840-7] [PMID: 34745372]
[62]
Yin, Z.; Ren, J.; Guo, W. Sarcomeric protein isoform transitions in cardiac muscle: A journey to heart failure. Biochim. Biophys. Acta Mol. Basis Dis., 2015, 1852(1), 47-52.
[http://dx.doi.org/10.1016/j.bbadis.2014.11.003] [PMID: 25446994]
[63]
van der Velden, J.; Stienen, G.J.M. Cardiac disorders and pathophysiology of sarcomeric proteins. Physiol. Rev., 2019, 99(1), 381-426.
[http://dx.doi.org/10.1152/physrev.00040.2017] [PMID: 30379622]
[64]
Fredersdorf, S.; Thumann, C.; Zimmermann, W.H.; Vetter, R.; Graf, T.; Luchner, A.; Riegger, G.A.J.; Schunkert, H.; Eschenhagen, T.; Weil, J. Increased myocardial SERCA expression in early type 2 diabetes mellitus is insulin dependent: In vivo and in vitro data. Cardiovasc. Diabetol., 2012, 11(1), 57.
[http://dx.doi.org/10.1186/1475-2840-11-57] [PMID: 22621761]
[65]
Pierce, G.N.; Dhalla, N.S. Mechanisms of the defect in cardiac myofibrillar function during diabetes. Am. J. Physiol., 1985, 248(2 Pt 1), E170-E175.
[PMID: 3155918]
[66]
Chung, C.S.; Mitov, M.I.; Callahan, L.A.; Campbell, K.S. Increased myocardial short-range forces in a rodent model of diabetes reflect elevated content of β myosin heavy chain. Arch. Biochem. Biophys., 2014, 552-553, 92-99.
[http://dx.doi.org/10.1016/j.abb.2013.08.013] [PMID: 24012810]
[67]
Waddingham, M.T.; Edgley, A.J.; Tsuchimochi, H.; Kelly, D.J.; Shirai, M.; Pearson, J.T. Contractile apparatus dysfunction early in the pathophysiology of diabetic cardiomyopathy. World J. Diabetes, 2015, 6(7), 943-960.
[http://dx.doi.org/10.4239/wjd.v6.i7.943] [PMID: 26185602]
[68]
Teekakirikul, P.; Padera, R.F.; Seidman, J.G.; Seidman, C.E. Hypertrophic cardiomyopathy: Translating cellular cross talk into therapeutics. J. Cell Biol., 2012, 199(3), 417-421.
[http://dx.doi.org/10.1083/jcb.201207033] [PMID: 23109667]
[69]
Lorenzo-Almorós, A.; Tuñón, J.; Orejas, M.; Cortés, M.; Egido, J.; Lorenzo, Ó. Diagnostic approaches for diabetic cardiomyopathy. Cardiovasc. Diabetol., 2017, 16(1), 28.
[http://dx.doi.org/10.1186/s12933-017-0506-x] [PMID: 28231848]
[70]
Carè, A.; Catalucci, D.; Felicetti, F.; Bonci, D.; Addario, A.; Gallo, P.; Bang, M.L.; Segnalini, P.; Gu, Y.; Dalton, N.D.; Elia, L.; Latronico, M.V.G.; Høydal, M.; Autore, C.; Russo, M.A.; Dorn, G.W., II; Ellingsen, Ø.; Ruiz-Lozano, P.; Peterson, K.L.; Croce, C.M.; Peschle, C.; Condorelli, G. MicroRNA-133 controls cardiac hypertrophy. Nat. Med., 2007, 13(5), 613-618.
[http://dx.doi.org/10.1038/nm1582] [PMID: 17468766]
[71]
Soci, U.P.R.; Fernandes, T.; Hashimoto, N.Y.; Mota, G.F.; Amadeu, M.A.; Rosa, K.T.; Irigoyen, M.C.; Phillips, M.I.; Oliveira, E.M. MicroRNAs 29 are involved in the improvement of ventricular compliance promoted by aerobic exercise training in rats. Physiol. Genomics, 2011, 43(11), 665-673.
[http://dx.doi.org/10.1152/physiolgenomics.00145.2010] [PMID: 21447748]
[72]
Boettger, T.; Beetz, N.; Kostin, S.; Schneider, J.; Krüger, M.; Hein, L.; Braun, T. Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J. Clin. Invest., 2009, 119(9), 2634-2647.
[http://dx.doi.org/10.1172/JCI38864] [PMID: 19690389]
[73]
Rai, A.K.; Lee, B.; Gomez, R.; Rajendran, D.; Khan, M.; Garikipati, V.N.S. Current status and potential therapeutic strategies for using non-coding RNA to treat diabetic cardiomyopathy. Front. Physiol., 2021, 11, 612722.
[http://dx.doi.org/10.3389/fphys.2020.612722] [PMID: 33551838]
[74]
Kim, A.H.; Jang, J.E.; Han, J. Current status on the therapeutic strategies for heart failure and diabetic cardiomyopathy. Biomed. Pharmacother., 2022, 145, 112463.
[http://dx.doi.org/10.1016/j.biopha.2021.112463] [PMID: 34839258]
[75]
Dangwal, S.; Thum, T. microRNA therapeutics in cardiovascular disease models. Annu. Rev. Pharmacol. Toxicol., 2014, 54(1), 185-203.
[http://dx.doi.org/10.1146/annurev-pharmtox-011613-135957] [PMID: 24111539]
[76]
Guo, H.; Ingolia, N.T.; Weissman, J.S.; Bartel, D.P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature, 2010, 466(7308), 835-840.
[http://dx.doi.org/10.1038/nature09267] [PMID: 20703300]
[77]
Ikeda, S.; He, A.; Kong, S.W.; Lu, J.; Bejar, R.; Bodyak, N.; Lee, K.H.; Ma, Q.; Kang, P.M.; Golub, T.R.; Pu, W.T. MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes. Mol. Cell. Biol., 2009, 29(8), 2193-2204.
[http://dx.doi.org/10.1128/MCB.01222-08] [PMID: 19188439]
[78]
Qipshidze Kelm, N.; Piell, K.M.; Wang, E.; Cole, M.P. MicroRNAs as predictive biomarkers for myocardial injury in aged mice following myocardial infarction. J. Cell. Physiol., 2018, 233(7), 5214-5221.
[http://dx.doi.org/10.1002/jcp.26283] [PMID: 29150941]
[79]
Plaisance, V.; Abderrahmani, A.; Perret-Menoud, V.; Jacquemin, P.; Lemaigre, F.; Regazzi, R. MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells. J. Biol. Chem., 2006, 281(37), 26932-26942.
[http://dx.doi.org/10.1074/jbc.M601225200] [PMID: 16831872]
[80]
Li, J.; Dai, Y.; Su, Z.; Wei, G. MicroRNA-9 inhibits high glucose-induced proliferation, differentiation and collagen accumulation of cardiac fibroblasts by down-regulation of TGFBR2. Biosci. Rep., 2016, 36(6), e00417.
[http://dx.doi.org/10.1042/BSR20160346] [PMID: 27756824]
[81]
Kriegel, A.J.; Liu, Y.; Fang, Y.; Ding, X.; Liang, M. The miR-29 family: Genomics, cell biology, and relevance to renal and cardiovascular injury. Physiol. Genomics, 2012, 44(4), 237-244.
[http://dx.doi.org/10.1152/physiolgenomics.00141.2011] [PMID: 22214600]
[82]
Arnold, N.; Koppula, P.R.; Gul, R.; Luck, C.; Pulakat, L. Regulation of cardiac expression of the diabetic marker microRNA miR-29. PLoS One, 2014, 9(7), e103284.
[http://dx.doi.org/10.1371/journal.pone.0103284] [PMID: 25062042]
[83]
Kim, J.W.; You, Y.H.; Jung, S.; Suh-Kim, H.; Lee, I.K.; Cho, J.H.; Yoon, K.H. miRNA-30a-5p-mediated silencing of Beta2/NeuroD expression is an important initial event of glucotoxicity-induced beta cell dysfunction in rodent models. Diabetologia, 2013, 56(4), 847-855.
[http://dx.doi.org/10.1007/s00125-012-2812-x] [PMID: 23338554]
[84]
Mao, Y.; Schoenborn, J.; Wang, Z.; Chen, X.; Matson, K.; Mohan, R.; Zhang, S.; Tang, X.; Arunagiri, A.; Arvan, P.; Tang, X. Transgenic overexpression of microRNA-30d in pancreatic beta-cells progressively regulates beta-cell function and identity. Sci. Rep., 2022, 12(1), 11969.
[http://dx.doi.org/10.1038/s41598-022-16174-7] [PMID: 35831364]
[85]
Zhao, F.; Li, B.; Wei, Y.; Zhou, B.; Wang, H.; Chen, M.; Gan, X.; Wang, Z.; Xiong, S. MicroRNA-34a regulates high glucose-induced apoptosis in H9c2 cardiomyocytes. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2013, 33(6), 834-839.
[http://dx.doi.org/10.1007/s11596-013-1207-7] [PMID: 24337844]
[86]
Le, M.T.N.; Teh, C.; Shyh-Chang, N.; Xie, H.; Zhou, B.; Korzh, V.; Lodish, H.F.; Lim, B. MicroRNA-125b is a novel negative regulator of p53. Genes Dev., 2009, 23(7), 862-876.
[http://dx.doi.org/10.1101/gad.1767609] [PMID: 19293287]
[87]
Nagpal, V.; Rai, R.; Place, A.T.; Murphy, S.B.; Verma, S.K.; Ghosh, A.K.; Vaughan, D.E. MiR-125b is critical for fibroblast-to-myofibroblast transition and cardiac fibrosis. Circulation, 2016, 133(3), 291-301.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.018174] [PMID: 26585673]
[88]
Granjon, A.; Gustin, M.P.; Rieusset, J.; Lefai, E.; Meugnier, E.; Güller, I.; Cerutti, C.; Paultre, C.; Disse, E.; Rabasa-Lhoret, R.; Laville, M.; Vidal, H.; Rome, S. The microRNA signature in response to insulin reveals its implication in the transcriptional action of insulin in human skeletal muscle and the role of a sterol regulatory element-binding protein-1c/myocyte enhancer factor 2C pathway. Diabetes, 2009, 58(11), 2555-2564.
[http://dx.doi.org/10.2337/db09-0165] [PMID: 19720801]
[89]
Sang, H.Q.; Jiang, Z.M.; Zhao, Q.P.; Xin, F. MicroRNA-133a improves the cardiac function and fibrosis through inhibiting Akt in heart failure rats. Biomed. Pharmacother., 2015, 71, 185-189.
[http://dx.doi.org/10.1016/j.biopha.2015.02.030] [PMID: 25960234]
[90]
Costantino, S.; Paneni, F.; Lüscher, T.F.; Cosentino, F. MicroRNA profiling unveils hyperglycaemic memory in the diabetic heart. Eur. Heart J., 2016, 37(6), 572-576.
[http://dx.doi.org/10.1093/eurheartj/ehv599] [PMID: 26553540]
[91]
Li, Z.; Song, Y.; Liu, L.; Hou, N.; An, X.; Zhan, D.; Li, Y.; Zhou, L.; Li, P.; Yu, L.; Xia, J.; Zhang, Y.; Wang, J.; Yang, X. miR-199a impairs autophagy and induces cardiac hypertrophy through mTOR activation. Cell Death Differ., 2017, 24(7), 1205-1213.
[http://dx.doi.org/10.1038/cdd.2015.95] [PMID: 26160071]
[92]
el Azzouzi, H.; Leptidis, S.; Dirkx, E.; Hoeks, J.; van Bree, B.; Brand, K.; McClellan, E.A.; Poels, E.; Sluimer, J.C.; van den Hoogenhof, M.M.G.; Armand, A.S.; Yin, X.; Langley, S.; Bourajjaj, M.; Olieslagers, S.; Krishnan, J.; Vooijs, M.; Kurihara, H.; Stubbs, A.; Pinto, Y.M.; Krek, W.; Mayr, M.; Martins, P.A.C.; Schrauwen, P.; De Windt, L.J. The hypoxia-inducible microRNA cluster miR-199a∼214 targets myocardial PPARδ and impairs mitochondrial fatty acid oxidation. Cell Metab., 2013, 18(3), 341-354.
[http://dx.doi.org/10.1016/j.cmet.2013.08.009] [PMID: 24011070]
[93]
Callis, T.E.; Pandya, K.; Seok, H.Y.; Tang, R.H.; Tatsuguchi, M.; Huang, Z.P.; Chen, J.F.; Deng, Z.; Gunn, B.; Shumate, J.; Willis, M.S.; Selzman, C.H.; Wang, D.Z. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J. Clin. Invest., 2009, 119(9), 2772-2786.
[http://dx.doi.org/10.1172/JCI36154] [PMID: 19726871]
[94]
Kishore, R.; Verma, S.K.; Mackie, A.R.; Vaughan, E.E.; Abramova, T.V.; Aiko, I.; Krishnamurthy, P. Bone marrow progenitor cell therapy-mediated paracrine regulation of cardiac miRNA-155 modulates fibrotic response in diabetic hearts. PLoS One, 2013, 8(4), e60161.
[http://dx.doi.org/10.1371/journal.pone.0060161] [PMID: 23560074]
[95]
Yang, Y.; Zhou, Y.; Cao, Z.; Tong, X.Z.; Xie, H.Q.; Luo, T.; Hua, X.P.; Wang, H.Q. miR-155 functions downstream of angiotensin II receptor subtype 1 and calcineurin to regulate cardiac hypertrophy. Exp. Ther. Med., 2016, 12(3), 1556-1562.
[http://dx.doi.org/10.3892/etm.2016.3506] [PMID: 27588076]
[96]
Wang, H.J.; Huang, Y.L.; Shih, Y.Y.; Wu, H.Y.; Peng, C.T.; Lo, W.Y. MicroRNA-146a decreases high glucose/thrombin-induced endothelial inflammation by inhibiting NAPDH oxidase 4 expression. Mediators Inflamm., 2014, 2014, 1-12.
[http://dx.doi.org/10.1155/2014/379537] [PMID: 25298619]
[97]
Oh, J.G.; Watanabe, S.; Lee, A.; Gorski, P.A.; Lee, P.; Jeong, D.; Liang, L.; Liang, Y.; Baccarini, A.; Sahoo, S.; Brown, B.D.; Hajjar, R.J.; Kho, C. miR-146a suppresses SUMO1 expression and induces cardiac dysfunction in maladaptive hypertrophy. Circ. Res., 2018, 123(6), 673-685.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.312751] [PMID: 30355233]
[98]
Romaine, S.P.R.; Tomaszewski, M.; Condorelli, G.; Samani, N.J. MicroRNAs in cardiovascular disease: An introduction for clinicians. Heart, 2015, 101(12), 921-928.
[http://dx.doi.org/10.1136/heartjnl-2013-305402] [PMID: 25814653]
[99]
Giza, D.E.; Vasilescu, C.; Calin, G.A. Key principles of miRNA involvement in human diseases. Discoveries (Craiova), 2014, 2(4), e34.
[http://dx.doi.org/10.15190/d.2014.26] [PMID: 26317116]
[100]
Wang, Z. The guideline of the design and validation of MiRNA mimics. Methods Mol. Biol., 2011, 676, 211-223.
[http://dx.doi.org/10.1007/978-1-60761-863-8_15] [PMID: 20931400]
[101]
Ebert, M.S.; Sharp, P.A. MicroRNA sponges: Progress and possibilities. RNA, 2010, 16(11), 2043-2050.
[http://dx.doi.org/10.1261/rna.2414110] [PMID: 20855538]
[102]
Jing, Z.; Qi, R.; Thibonnier, M.; Ren, P. Molecular dynamics study of the hybridization between RNA and modified oligonucleotides. J. Chem. Theory Comput., 2019, 15(11), 6422-6432.
[http://dx.doi.org/10.1021/acs.jctc.9b00519] [PMID: 31553600]
[103]
Gebert, L.F.R.; Rebhan, M.A.E.; Crivelli, S.E.M.; Denzler, R.; Stoffel, M.; Hall, J. Miravirsen (SPC3649) can inhibit the biogenesis of miR-122. Nucleic Acids Res., 2014, 42(1), 609-621.
[http://dx.doi.org/10.1093/nar/gkt852] [PMID: 24068553]
[104]
Li, X.; Corbett, A.L.; Taatizadeh, E.; Tasnim, N.; Little, J.P.; Garnis, C.; Daugaard, M.; Guns, E.; Hoorfar, M.; Li, I.T.S. Challenges and opportunities in exosome research—Perspectives from biology, engineering, and cancer therapy. APL Bioeng., 2019, 3(1), 011503.
[http://dx.doi.org/10.1063/1.5087122] [PMID: 31069333]
[105]
Mellis, D.; Caporali, A. MicroRNA-based therapeutics in cardiovascular disease: Screening and delivery to the target. Biochem. Soc. Trans., 2018, 46(1), 11-21.
[http://dx.doi.org/10.1042/BST20170037] [PMID: 29196609]
[106]
Turchinovich, A.; Cho, W.C. The origin, function and diagnostic potential of extracellular microRNA in human body fluids. Front. Genet., 2014, 5, 30.
[http://dx.doi.org/10.3389/fgene.2014.00030] [PMID: 24575125]
[107]
Finotti, A.; Fabbri, E.; Lampronti, I.; Gasparello, J.; Borgatti, M.; Gambari, R. MicroRNAs and long non-coding RNAs in genetic diseases. Mol. Diagn. Ther., 2019, 23(2), 155-171.
[http://dx.doi.org/10.1007/s40291-018-0380-6] [PMID: 30610665]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy