Generic placeholder image

Current Nanomedicine

Editor-in-Chief

ISSN (Print): 2468-1873
ISSN (Online): 2468-1881

Review Article

Nanorevolution Unleashing the Power of Nanotechnology

Author(s): Divyesh H. Shastri* and Shivani Gandhi

Volume 14, Issue 3, 2024

Published on: 19 January, 2024

Page: [227 - 246] Pages: 20

DOI: 10.2174/0124681873279660231226070118

Price: $65

Open Access Journals Promotions 2
Abstract

Nanotechnology, the manipulation of matter at the nanoscale, has been an extraordinary scientific frontier that has revolutionized various fields, with one of the most promising applications being in the realm of medicine. Nanomedicine, an interdisciplinary field at the intersection of nanotechnology and medicine, holds tremendous potential to transform the landscape of healthcare, diagnosis, and treatment. This abstract delves into the burgeoning advancements of nanotechnology in nanomedicine, highlighting its significance, potential benefits, and ethical considerations.

The primary focus of nanomedicine is to engineer and utilize nanoscale materials, such as nanoparticles and nanostructures, to improve the effectiveness and precision of medical interventions. Nano-sized drug delivery systems can target specific cells or tissues, enhancing therapeutic outcomes and reducing side effects. These nanocarriers can penetrate biological barriers and accumulate at disease sites, enabling more efficient drug delivery and increasing the bioavailability of therapeutic agents. Furthermore, nanotechnology has opened new horizons in medical imaging. Nanoparticles can be engineered to be responsive to certain diseases or conditions, providing valuable information for early detection and precise diagnosis. Novel contrast agents based on nanomaterials have the potential to revolutionize imaging techniques, offering higher sensitivity and specificity, ultimately leading to improved patient outcomes.

Beyond diagnostics and drug delivery, nanotechnology is fostering breakthroughs in regenerative medicine. Nanomaterials can act as scaffolds, guiding tissue repair and promoting cellular regeneration. By harnessing the unique properties of nanoscale materials, tissue engineering, and organ transplantation may witness unparalleled advancements, bringing hope to countless patients awaiting life-saving treatments. However, the unprecedented potential of nanomedicine also raises ethical concerns that demand careful consideration. As nanotechnology progresses, concerns about the safety of nanomaterials, potential toxicity, and long-term effects must be addressed to ensure responsible and sustainable development.

Keywords: Nanomedicine, nanotechnology, nanoparticles, nanomaterials, nanoscale engineering, sustainable development.

Graphical Abstract
[1]
Boulaiz H, Alvarez PJ, Ramirez A, et al. Nanomedicine: Application areas and development prospects. Int J Mol Sci 2011; 12(5): 3303-21.
[http://dx.doi.org/10.3390/ijms12053303] [PMID: 21686186]
[2]
Nanjwade BK, Hundekar YR, Kamble MS, Srichana T. Development of cuboidal nanomedicine by nanotechnology. Austin J Nanomed Nanotechnol 2014; 2(4): 1023.
[3]
Freitas RA Jr. Nanotechnology, nanomedicine and nanosurgery. Int J Surg 2005; 3(4): 243-6.
[http://dx.doi.org/10.1016/j.ijsu.2005.10.007] [PMID: 17462292]
[4]
Wagner V, Dullaart A, Bock AK, Zweck A. The emerging nanomedicine landscape. Nat Biotechnol 2006; 24(10): 1211-7.
[http://dx.doi.org/10.1038/nbt1006-1211] [PMID: 17033654]
[5]
Prasad PN. Introduction to nanomedicine and nanobioengineering. John Wiley & Sons 2012.
[6]
Logothetidis S. Nanomedicine: The medicine of tomorrow.In: InNanomedicine and Nanobiotechnology. Berlin, Heidelberg: Springer Berlin Heidelberg 2011.
[7]
Abeer S. Future medicine: Nanomedicine. Jimsa 2012; 25(3): 187-92.
[8]
Miller J. Beyond biotechnology: FDA regulation of nanomedicine. Colum Sci & Tech L Rev 2003; 4: E5.
[PMID: 15977335]
[9]
Kumar V, Choudhary AK, Kumar P, Sharma S. Nanotechnology: Nanomedicine, nanotoxicity and future challenges. Nanosci Nanotechnol Asia 2018; 9(1): 64-78.
[http://dx.doi.org/10.2174/2210681208666180125143953]
[10]
Krukemeyer MG, Krenn V, Huebner F, Wagner W, Resch R. History and possible uses of nanomedicine based on nanoparticles and nanotechnological progress. J Nanomed Nanotechnol 2015; 6(6): 336.
[11]
Letfullin RR, George TF, Letfullin RR, George TF. Introduction to nanomedicine. Computational Nanomedicine and Nanotechnology: Lectures with Computer Practicums 2016; 1-61.
[http://dx.doi.org/10.1007/978-3-319-43577-0_1]
[12]
Kargozar S, Mozafari M. Nanotechnology and nanomedicine: Start small, think big. Mater Today Proc 2018; 5(7): 15492-500.
[http://dx.doi.org/10.1016/j.matpr.2018.04.155]
[13]
Kumar Teli M, Mutalik S, Rajanikant GK. Nanotechnology and nanomedicine: Going small means aiming big. Curr Pharm Des 2010; 16(16): 1882-92.
[http://dx.doi.org/10.2174/138161210791208992] [PMID: 20222866]
[14]
Sharon M. Ed History of nanotechnology: from prehistoric to modern times. John Wiley & Sons 2019.
[http://dx.doi.org/10.1002/9781119460534]
[15]
Walker B Jr, Mouton CP. Nanotechnology and nanomedicine: A primer. J Natl Med Assoc 2006; 98(12): 1985-8.
[PMID: 17225846]
[16]
Hu F, Sun DS, Wang KL, Shang DY. Nanomedicine of plant origin for the treatment of metabolic disorders. Front Bioeng Biotechnol 2022; 9: 811917.
[http://dx.doi.org/10.3389/fbioe.2021.811917] [PMID: 35223819]
[17]
Setyawati MI, Tay CY, Bay BH, Leong DT. Gold nanoparticles induced endothelial leakiness depends on particle size and endothelial cell origin. ACS Nano 2017; 11(5): 5020-30.
[http://dx.doi.org/10.1021/acsnano.7b01744] [PMID: 28422481]
[18]
Baer DR, Burrows PE, El-Azab AA. Enhancing coating functionality using nanoscience and nanotechnology. Progress in Organic Coatings 2003; 47(3-4): 342-56.
[http://dx.doi.org/10.1016/S0300-9440(03)00127-9]
[19]
Roco MC, Bainbridge WS. Societal implications of nanoscience and nanotechnology: Maximizing human benefit. J Nanopart Res 2005; 7(1): 1-13.
[http://dx.doi.org/10.1007/s11051-004-2336-5]
[20]
Avval ZM, Malekpour L, Raeisi F, et al. Introduction of magnetic and supermagnetic nanoparticles in new approach of targeting drug delivery and cancer therapy application. Drug Metab Rev 2020; 52(1): 157-84.
[http://dx.doi.org/10.1080/03602532.2019.1697282] [PMID: 31834823]
[21]
Namiki Y, Fuchigami T, Tada N, et al. Nanomedicine for cancer: Lipid-based nanostructures for drug delivery and monitoring. Acc Chem Res 2011; 44(10): 1080-93.
[http://dx.doi.org/10.1021/ar200011r] [PMID: 21786832]
[22]
Surnar B, Basu U, Banik B, et al. Nanotechnology-mediated crossing of two impermeable membranes to modulate the stars of the neurovascular unit for neuroprotection. Proc Natl Acad Sci 2018; 115(52): E12333-42.
[http://dx.doi.org/10.1073/pnas.1816429115] [PMID: 30530697]
[23]
Mukherjee A, Paul M, Mukherjee S. Recent progress in the theranostics application of nanomedicine in lung cancer. Cancers 2019; 11(5): 597.
[http://dx.doi.org/10.3390/cancers11050597] [PMID: 31035440]
[24]
Khang D, Carpenter J, Chun YW, Pareta R, Webster TJ. Nanotechnology for regenerative medicine. Biomed Microdevices 2010; 12(4): 575-87.
[http://dx.doi.org/10.1007/s10544-008-9264-6] [PMID: 19096767]
[25]
Goudarzi R, Dehpour AR, Partoazar A. Nanomedicine and regenerative medicine approaches in osteoarthritis therapy. Aging Clin Exp Res 2022; 34(10): 2305-15.
[http://dx.doi.org/10.1007/s40520-022-02199-5] [PMID: 35867240]
[26]
Engel E, Michiardi A, Navarro M, Lacroix D, Planell JA. Nanotechnology in regenerative medicine: The materials side. Trends Biotechnol 2008; 26(1): 39-47.
[http://dx.doi.org/10.1016/j.tibtech.2007.10.005] [PMID: 18036685]
[27]
Wu TJ, Chiu HY, Yu J, Cautela MP, Sarmento B. Nanotechnologies for early diagnosis, in situ disease monitoring, and prevention. InNanotechnologies in preventive and regenerative medicine 2018; 1-92.
[28]
Veiseh O, Kievit FM, Ellenbogen RG, Zhang M. Cancer cell invasion: Treatment and monitoring opportunities in nanomedicine. Adv Drug Deliv Rev 2011; 63(8): 582-96.
[http://dx.doi.org/10.1016/j.addr.2011.01.010] [PMID: 21295093]
[29]
Vizirianakis IS. Nanomedicine and personalized medicine toward the application of pharmacotyping in clinical practice to improve drug-delivery outcomes. Nanomedicine 2011; 7(1): 11-7.
[http://dx.doi.org/10.1016/j.nano.2010.11.002] [PMID: 21094279]
[30]
dos Santos J, de Oliveira RS, de Oliveira TV, et al. 3D printing and nanotechnology: A multiscale alliance in personalized medicine. Adv Funct Mater 2021; 31(16): 2009691.
[http://dx.doi.org/10.1002/adfm.202009691]
[31]
Demchenko AP. Nanoparticles and nanocomposites for fluorescence sensing and imaging. Methods Appl Fluoresc 2013; 1(2): 022001.
[http://dx.doi.org/10.1088/2050-6120/1/2/022001] [PMID: 29148443]
[32]
Zrazhevskiy P, Sena M, Gao X. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem Soc Rev 2010; 39(11): 4326-54.
[http://dx.doi.org/10.1039/b915139g] [PMID: 20697629]
[33]
Saha K, Agasti SS, Kim C, Li X, Rotello VM. Gold nanoparticles in chemical and biological sensing. Chem Rev 2012; 112(5): 2739-79.
[http://dx.doi.org/10.1021/cr2001178] [PMID: 22295941]
[34]
Gloag L, Mehdipour M, Chen D, Tilley RD, Gooding JJ. Advances in the application of magnetic nanoparticles for sensing. Adv Mater 2019; 31(48): 1904385.
[http://dx.doi.org/10.1002/adma.201904385] [PMID: 31538371]
[35]
Naresh V, Lee N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors 2021; 21(4): 1109.
[http://dx.doi.org/10.3390/s21041109] [PMID: 33562639]
[36]
Wang X, Li F, Guo Y. Recent trends in nanomaterial-based biosensors for point-of-care testing. Front Chem 2020; 8: 586702.
[http://dx.doi.org/10.3389/fchem.2020.586702] [PMID: 33195085]
[37]
Kilasoniya A, Garaeva L, Shtam T, et al. Potential of plant exosome vesicles from grapefruit and tomato juices as functional ingredients and targeted drug delivery vehicles. Antioxidants 2023; 12(4): 943.
[http://dx.doi.org/10.3390/antiox12040943] [PMID: 37107317]
[38]
Yang W, Wei Z, Nie Y, Tian Y. Optical detection and imaging of nonfluorescent matter at the single-molecule/particle level. J Phys Chem Lett 2022; 13(41): 9618-31.
[http://dx.doi.org/10.1021/acs.jpclett.2c02228] [PMID: 36214484]
[39]
Ye F, Zhao Y, El-Sayed R, Muhammed M, Hassan M. Advances in nanotechnology for cancer biomarkers. Nano Today 2018; 18: 103-23.
[http://dx.doi.org/10.1016/j.nantod.2017.12.008]
[40]
Banerjee HN, Verma M. Use of nanotechnology for the development of novel cancer biomarkers. Expert Rev Mol Diagn 2006; 6(5): 679-83.
[http://dx.doi.org/10.1586/14737159.6.5.679] [PMID: 17009903]
[41]
Kolesova EP, Egorova VS, Syrocheva AO, et al. Proteolytic resistance determines albumin nanoparticle drug delivery properties and increases cathepsin B, D, and G expression. Int J Mol Sci 2023; 24(12): 10245.
[http://dx.doi.org/10.3390/ijms241210245] [PMID: 37373389]
[42]
Martinez JO, Parodi A, Liu X, Kolonin MG, Ferrari M, Tasciotti E. Evaluation of cell function upon nanovector internalization. Small 2013; 9: 1696.
[http://dx.doi.org/10.1002/smll.201202001]
[43]
Rodriguez PL, Harada T, Christian DA, Pantano DA, Tsai RK, Discher DE. Minimal “Self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 2013; 339(6122): 971-5.
[http://dx.doi.org/10.1126/science.1229568] [PMID: 23430657]
[44]
Zain M, Yasmeen H, Yadav SS, et al. Applications of nanotechnology in biological systems and medicine.In: InNanotechnology for hematology, blood transfusion, and artificial blood. Elsevier 2022; pp. 215-35.
[http://dx.doi.org/10.1016/B978-0-12-823971-1.00019-2]
[45]
Knappe GA, Wamhoff EC, Bathe M. Functionalizing DNA origami to investigate and interact with biological systems. Nat Rev Mater 2022; 8(2): 123-38.
[http://dx.doi.org/10.1038/s41578-022-00517-x] [PMID: 37206669]
[46]
Kailasa SK, Mehta VN, Koduru JR, et al. An overview of molecular biology and nanotechnology based analytical methods for the detection of SARS-CoV-2: Promising biotools for the rapid diagnosis of COVID-19. Analyst 2021; 146(5): 1489-513.
[http://dx.doi.org/10.1039/D0AN01528H] [PMID: 33543178]
[47]
Zhang F, Nangreave J, Liu Y, Yan H. Structural DNA nanotechnology: State of the art and future perspective. J Am Chem Soc 2014; 136(32): 11198-211.
[http://dx.doi.org/10.1021/ja505101a] [PMID: 25029570]
[48]
Seeman NC, Sleiman HF. DNA nanotechnology. Nat Rev Mater 2018; 1811(1): 1-9.
[PMID: 29926442]
[49]
Yang D, Hartman MR, Derrien TL, et al. DNA materials: Bridging nanotechnology and biotechnology. Acc Chem Res 2014; 47(6): 1902-11.
[http://dx.doi.org/10.1021/ar5001082] [PMID: 24884022]
[50]
Ohno H, Saito H. RNA and RNP as building blocks for nanotechnology and synthetic biology. Prog Mol Biol Transl Sci 2016; 139: 165-85.
[http://dx.doi.org/10.1016/bs.pmbts.2015.12.004] [PMID: 26970194]
[51]
Yaradoddi J, Kontro MH, Ganachari SV, et al. RNA nanotechnology. Handbook of ecomaterials. 2019.
[52]
Dienerowitz M, Mazilu M, Dholakia K. Optical manipulation of nanoparticles: A review. J Nanophotonics 2008; 2(1): 021875.
[http://dx.doi.org/10.1117/1.2992045]
[53]
Sharifi M, Attar F, Saboury AA, et al. Plasmonic gold nanoparticles: Optical manipulation, imaging, drug delivery and therapy. J Control Release 2019; 311-312: 170-89.
[http://dx.doi.org/10.1016/j.jconrel.2019.08.032] [PMID: 31472191]
[54]
Yang AHJ, Moore SD, Schmidt BS, Klug M, Lipson M, Erickson D. Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. Nature 2009; 457(7225): 71-5.
[http://dx.doi.org/10.1038/nature07593] [PMID: 19122638]
[55]
Iida T, Ishihara H. Theoretical study of the optical manipulation of semiconductor nanoparticles under an excitonic resonance condition. Phys Rev Lett 2003; 90(5): 057403.
[http://dx.doi.org/10.1103/PhysRevLett.90.057403 ] [PMID: 12633396]
[56]
Fedoruk M, Meixner M, Carretero-Palacios S, Lohmüller T, Feldmann J. Nanolithography by plasmonic heating and optical manipulation of gold nanoparticles. ACS Nano 2013; 7(9): 7648-53.
[http://dx.doi.org/10.1021/nn402124p] [PMID: 23941522]
[57]
Li H, Rothberg L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci 2004; 101(39): 14036-9.
[http://dx.doi.org/10.1073/pnas.0406115101] [PMID: 15381774]
[58]
Li H, Rothberg LJ. DNA sequence detection using selective fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles. Anal Chem 2004; 76(18): 5414-7.
[http://dx.doi.org/10.1021/ac049173n] [PMID: 15362900]
[59]
Demirer GS, Silva TN, Jackson CT, et al. Nanotechnology to advance CRISPR-Cas genetic engineering of plants. Nat Nanotechnol 2021; 16(3): 243-50.
[http://dx.doi.org/10.1038/s41565-021-00854-y] [PMID: 33712738]
[60]
Ahmar S, Mahmood T, Fiaz S, et al. Advantage of nanotechnology-based genome editing system and its application in crop improvement. Front Plant Sci 2021; 12: 663849.
[http://dx.doi.org/10.3389/fpls.2021.663849] [PMID: 34122485]
[61]
Jie Chen, Wong STC. Nanotechnology for genomic signal processing in cancer research - A focus on the genomic signal processing hardware design of the nanotools for cancer ressearch. IEEE Signal Process Mag 2007; 24(1): 111-21.
[http://dx.doi.org/10.1109/MSP.2007.273064]
[62]
Ferrari M. BioMEMS and biomedical nanotechnology: Volume II: micro/nano technologies for genomics and proteomics. In: Springer Science & Business Media. 2007.
[63]
Deng H, Huang W, Zhang Z. Nanotechnology based CRISPR/Cas9 system delivery for genome editing: Progress and prospect. Nano Res 2019; 12(10): 2437-50.
[http://dx.doi.org/10.1007/s12274-019-2465-x]
[64]
Mohamadi MR, Mahmoudian L, Kaji N, Tokeshi M, Chuman H, Baba Y. Nanotechnology for genomics & proteomics. Nano Today 2006; 1(1): 38-45.
[http://dx.doi.org/10.1016/S1748-0132(06)70021-4]
[65]
Clarke J, Wu HC, Jayasinghe L, Patel A, Reid S, Bayley H. Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 2009; 4(4): 265-70.
[http://dx.doi.org/10.1038/nnano.2009.12] [PMID: 19350039]
[66]
Timp W, Mirsaidov UM, Wang D, Comer J, Aksimentiev A, Timp G. Nanopore sequencing: Electrical measurements of the code of life. IEEE Trans Nanotechnol 2010; 9(3): 281-94.
[http://dx.doi.org/10.1109/TNANO.2010.2044418] [PMID: 21572978]
[67]
Ying YL, Hu ZL, Zhang S, et al. Nanopore-based technologies beyond DNA sequencing. Nat Nanotechnol 2022; 17(11): 1136-46.
[http://dx.doi.org/10.1038/s41565-022-01193-2] [PMID: 36163504]
[68]
Marie R, Pedersen JN, Bauer DLV, et al. Integrated view of genome structure and sequence of a single DNA molecule in a nanofluidic device. Proc Natl Acad Sci 2013; 110(13): 4893-8.
[http://dx.doi.org/10.1073/pnas.1214570110] [PMID: 23479649]
[69]
Cheng J, Liu Y, Zhao Y, et al. Nanotechnology-assisted isolation and analysis of circulating tumor cells on microfluidic devices. Micromachines 2020; 11(8): 774.
[http://dx.doi.org/10.3390/mi11080774] [PMID: 32823926]
[70]
Ruggiero E, Lago S, Šket P, et al. A dynamic i-motif with a duplex stem-loop in the long terminal repeat promoter of the HIV-1 proviral genome modulates viral transcription. Nucleic Acids Res 2019; 47(21): 11057-68.
[http://dx.doi.org/10.1093/nar/gkz937] [PMID: 31665504]
[71]
Palmblad M, van Eck NJ, Bergquist J. Capillary electrophoresis-A bibliometric analysis. Trends Analyt Chem 2022; 116899.
[72]
Weber MU, Petkowski JJ, Weber RE, et al. Chip for dielectrophoretic microbial capture, separation and detection II: Experimental study. Nanotechnology 2023; 34(17): 175502.
[http://dx.doi.org/10.1088/1361-6528/acb321] [PMID: 36640445]
[73]
Wambugu PW, Brozynska M, Furtado A, Waters DL, Henry RJ. Relationships of wild and domesticated rices (Oryza AA genome species) based upon whole chloroplast genome sequences. Sci Rep 2015; 5(1): 13957.
[http://dx.doi.org/10.1038/srep13957] [PMID: 26355750]
[74]
Wheeler DA, Srinivasan M, Egholm M, et al. The complete genome of an individual by massively parallel DNA sequencing. nature 2008; 452(7189): 872-6.
[75]
Dutta P, Kumari A, Mahanta M, et al. Advances in nanotechnology as a potential alternative for plant viral disease management. Front Microbiol 2022; 13: 935193.
[http://dx.doi.org/10.3389/fmicb.2022.935193] [PMID: 35847105]
[76]
Xue HY, Liu S, Wong HL. Nanotoxicity: A key obstacle to clinical translation of siRNA-based nanomedicine. Nanomedicine 2014; 9(2): 295-312.
[http://dx.doi.org/10.2217/nnm.13.204] [PMID: 24552562]
[77]
Ren J, Cai R, Wang J, et al. Precision nanomedicine development based on specific opsonization of human cancer patient-personalized protein coronas. Nano Lett 2019; 19(7): 4692-701.
[http://dx.doi.org/10.1021/acs.nanolett.9b01774] [PMID: 31244235]
[78]
Evangelopoulos M, Parodi A, Martinez J, Tasciotti E. Trends towards biomimicry in theranostics. Nanomaterials 2018; 8(9): 637.
[http://dx.doi.org/10.3390/nano8090637] [PMID: 30134564]
[79]
Lee CS, Singh RK, Hwang HS, et al. Materials-based nanotherapeutics for injured and diseased bone. Prog Mater Sci 2023; 135: 101087.
[http://dx.doi.org/10.1016/j.pmatsci.2023.101087]
[80]
Al Badri YN, Chaw CS, Elkordy AA. Insights into asymmetric liposomes as a potential intervention for drug delivery including pulmonary nanotherapeutics. Pharmaceutics 2023; 15(1): 294.
[http://dx.doi.org/10.3390/pharmaceutics15010294 ] [PMID: 36678922]
[81]
Muppala V, Farran B, Nagaraju GP. Pyroptosis-based nanotherapeutics: Possible mechanisms for cancer treatment. Life Sci 2022; 308: 120970.
[http://dx.doi.org/10.1016/j.lfs.2022.120970] [PMID: 36115581]
[82]
Zhu H, Mah Jian Qiang J, Wang CG, et al. Flexible polymeric patch based nanotherapeutics against non-cancer therapy. Bioact Mater 2022; 18: 471-91.
[http://dx.doi.org/10.1016/j.bioactmat.2022.03.034 ] [PMID: 35415299]
[83]
Hu CMJ, Fang RH, Luk BT, Zhang L. Polymeric nanotherapeutics: Clinical development and advances in stealth functionalization strategies. Nanoscale 2014; 6(1): 65-75.
[http://dx.doi.org/10.1039/C3NR05444F] [PMID: 24280870]
[84]
Voci S, Gagliardi A, Fresta M, Cosco D. Antitumor features of vegetal protein-based nanotherapeutics. Pharmaceutics 2020; 12(1): 65.
[http://dx.doi.org/10.3390/pharmaceutics12010065 ] [PMID: 31952147]
[85]
Cheng L, Yang L, Meng F, Zhong Z. Protein nanotherapeutics as an emerging modality for cancer therapy. Adv Healthc Mater 2018; 7(20): 1800685.
[http://dx.doi.org/10.1002/adhm.201800685] [PMID: 30240152]
[86]
Yadav SC, Kumari A, Yadav R. Development of peptide and protein nanotherapeutics by nanoencapsulation and nanobioconjugation. Peptides 2011; 32(1): 173-87.
[http://dx.doi.org/10.1016/j.peptides.2010.10.003] [PMID: 20934475]
[87]
Flynn T, Wei C. The pathway to commercialization for nanomedicine. Nanomedicine 2005; 1(1): 47-51.
[http://dx.doi.org/10.1016/j.nano.2004.11.010] [PMID: 17292057]
[88]
Bawa R, Bawa SR, Maebius SB, Flynn T, Wei C. Protecting new ideas and inventions in nanomedicine with patents. Nanomedicine 2005; 1(2): 150-8.
[http://dx.doi.org/10.1016/j.nano.2005.03.009] [PMID: 17292072]
[89]
Bosetti R. Cost–effectiveness of nanomedicine: The path to a future successful and dominant market? Nanomedicine 2015; 10(12): 1851-3.
[http://dx.doi.org/10.2217/nnm.15.74] [PMID: 26139120]
[90]
Chakraborty M, Jain S, Rani V. Nanotechnology: Emerging tool for diagnostics and therapeutics. Appl Biochem Biotechnol 2011; 165(5-6): 1178-87.
[http://dx.doi.org/10.1007/s12010-011-9336-6] [PMID: 21847590]
[91]
Metselaar JM, Lammers T. Challenges in nanomedicine clinical translation. Drug Deliv Transl Res 2020; 10(3): 721-5.
[http://dx.doi.org/10.1007/s13346-020-00740-5] [PMID: 32166632]
[92]
Campos EJ, Campos A, Martins J, Ambrósio AF. Opening eyes to nanomedicine: Where we are, challenges and expectations on nanotherapy for diabetic retinopathy. Nanomedicine 2017; 13(6): 2101-13.
[http://dx.doi.org/10.1016/j.nano.2017.04.008] [PMID: 28428052]
[93]
Bawa R, Johnson S. Emerging issues in nanomedicine and ethics.In: Nanotechnology & society: Current and emerging ethical issues. Dordrecht: Springer Netherlands 2009; pp. 207-23.
[http://dx.doi.org/10.1007/978-1-4020-6209-4_11]
[94]
Varol C, Mildner A, Jung S. Macrophages: Development and tissue specialization. Annu Rev Immunol 2015; 33(1): 643-75.
[http://dx.doi.org/10.1146/annurev-immunol-032414-112220] [PMID: 25861979]
[95]
Behzadi S, Serpooshan V, Tao W, et al. Cellular uptake of nanoparticles: Journey inside the cell. Chem Soc Rev 2017; 46(14): 4218-44.
[http://dx.doi.org/10.1039/C6CS00636A] [PMID: 28585944]
[96]
Di J, Gao X, Du Y, Zhang H, Gao J, Zheng A. Size, shape, charge and “stealthy” surface: Carrier properties affect the drug circulation time in vivo. Asian J pharma sci 2021; 16(4): 444-58.
[97]
Yoo JW, Doshi N, Mitragotri S. Adaptive micro and nanoparticles: Temporal control over carrier properties to facilitate drug delivery. Adv Drug Deliv Rev 2011; 63(14-15): 1247-56.
[http://dx.doi.org/10.1016/j.addr.2011.05.004] [PMID: 21605607]
[98]
Pandey RK, Prajapati VK. Molecular and immunological toxic effects of nanoparticles. Int J Biol Macromol 2018; 07(Pt A): 1278-93.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.09.110] [PMID: 29017884]
[99]
Reuter BK, Asfaha S, Buret A, Sharkey KA, Wallace JL. Exacerbation of inflammation-associated colonic injury in rat through inhibition of cyclooxygenase-2. J Clin Invest 1996; 98(9): 2076-85.
[http://dx.doi.org/10.1172/JCI119013] [PMID: 8903327]
[100]
Grace JA, Herath CB, Mak KY, Burrell LM, Angus PW. Update on new aspects of the renin–angiotensin system in liver disease: Clinical implications and new therapeutic options. Clin Sci 2012; 123(4): 225-39.
[http://dx.doi.org/10.1042/CS20120030] [PMID: 22548407]
[101]
Campbell F, Bos FL, Sieber S, et al. Directing nanoparticle biodistribution through evasion and exploitation of Stab2-dependent nanoparticle uptake. ACS Nano 2018; 12(3): 2138-50.
[http://dx.doi.org/10.1021/acsnano.7b06995] [PMID: 29320626]
[102]
Khalil IA, Yamada Y, Harashima H. Optimization of siRNA delivery to target sites: Issues and future directions. Expert Opin Drug Deliv 2018; 15(11): 1053-65.
[http://dx.doi.org/10.1080/17425247.2018.1520836 ] [PMID: 30198792]
[103]
Kranz LM, Diken M, Haas H, et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 2016; 534(7607): 396-401.
[http://dx.doi.org/10.1038/nature18300] [PMID: 27281205]
[104]
Andretto V, Repellin M, Pujol M, et al. Hybrid core-shell particles for mRNA systemic delivery. J Control Release 2023; 353: 1037-49.
[http://dx.doi.org/10.1016/j.jconrel.2022.11.042] [PMID: 36442614]
[105]
Dirisala A, Uchida S, Toh K, et al. Transient stealth coating of liver sinusoidal wall by anchoring two-armed PEG for retargeting nanomedicines. Sci Adv 2020; 6(26): eabb8133.
[http://dx.doi.org/10.1126/sciadv.abb8133] [PMID: 32637625]
[106]
Liu T, Choi H, Zhou R, Chen IW. RES blockade: A strategy for boosting efficiency of nanoparticle drug. Nano Today 2015; 10(1): 11-21.
[http://dx.doi.org/10.1016/j.nantod.2014.12.003]
[107]
Tavares AJ, Poon W, Zhang YN, et al. Effect of removing Kupffer cells on nanoparticle tumor delivery. Proc Natl Acad Sci 2017; 114(51): E10871-80.
[http://dx.doi.org/10.1073/pnas.1713390114] [PMID: 29208719]
[108]
Zhang YN, Poon W, Tavares AJ, McGilvray ID, Chan WCW. Nanoparticle–liver interactions: Cellular uptake and hepatobiliary elimination. J Control Release 2016; 240: 332-48.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.020] [PMID: 26774224]
[109]
Chen J, Ye Z, Huang C, et al. Lipid nanoparticle-mediated lymph node–targeting delivery of mRNA cancer vaccine elicits robust CD8 + T cell response. Proc Natl Acad Sci 2022; 119(34): e2207841119.
[http://dx.doi.org/10.1073/pnas.2207841119] [PMID: 35969778]
[110]
Parhiz H, Brenner JS, Patel PN, et al. Added to pre-existing inflammation, mRNA-lipid nanoparticles induce inflammation exacerbation (IE). J Control Release 2022; 344: 50-61.
[http://dx.doi.org/10.1016/j.jconrel.2021.12.027] [PMID: 34953981]
[111]
Youssef M, Hitti C, Puppin Chaves Fulber J, Kamen AA. Enabling mRNA therapeutics: Current landscape and challenges in manufacturing. Biomolecules 2023; 13(10): 1497.
[http://dx.doi.org/10.3390/biom13101497] [PMID: 37892179]
[112]
Shchaslyvyi AY, Antonenko SV, Tesliuk MG, Telegeev GD. Current state of human gene therapy: Approved products and vectors. Pharmaceuticals 2023; 16(10): 1416.
[http://dx.doi.org/10.3390/ph16101416] [PMID: 37895887]
[113]
D’souza AA, Shegokar R. Polyethylene glycol (PEG): A versatile polymer for pharmaceutical applications. Expert Opin Drug Deliv 2016; 13(9): 1257-75.
[http://dx.doi.org/10.1080/17425247.2016.1182485] [PMID: 27116988]
[114]
Naahidi S, Jafari M, Edalat F, Raymond K, Khademhosseini A, Chen P. Biocompatibility of engineered nanoparticles for drug delivery. J Control Release 2013; 166(2): 182-94.
[http://dx.doi.org/10.1016/j.jconrel.2012.12.013] [PMID: 23262199]
[115]
Shen X, Dirisala A, Toyoda M, et al. pH-responsive polyzwitterion covered nanocarriers for DNA delivery. J Control Release 2023; 360: 928-39.
[http://dx.doi.org/10.1016/j.jconrel.2023.07.038] [PMID: 37495117]
[116]
Dirisala A, Osada K, Chen Q, et al. Optimized rod length of polyplex micelles for maximizing transfection efficiency and their performance in systemic gene therapy against stroma-rich pancreatic tumors. Biomaterials 2014; 35(20): 5359-68.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.037 ] [PMID: 24720877]
[117]
Gavas S, Quazi S, Karpiński TM. Nanoparticles for cancer therapy: Current progress and challenges. Nanoscale Res Lett 2021; 16(1): 173.
[http://dx.doi.org/10.1186/s11671-021-03628-6] [PMID: 34866166]
[118]
Agrahari V, Agrahari V. Facilitating the translation of nanomedicines to a clinical product: Challenges and opportunities. Drug Discov Today 2018; 23(5): 974-91.
[http://dx.doi.org/10.1016/j.drudis.2018.01.047] [PMID: 29406263]
[119]
Li H, Jin H, Wan W, Wu C, Wei L. Cancer nanomedicine: Mechanisms, obstacles and strategies. Nanomedicine 2018; 13(13): 1639-56.
[http://dx.doi.org/10.2217/nnm-2018-0007] [PMID: 30035660]
[120]
Nassiri Koopaei N, Abdollahi M. Opportunities and obstacles to the development of nanopharmaceuticals for human use. Daru 2016; 24(1): 23.
[http://dx.doi.org/10.1186/s40199-016-0163-8] [PMID: 27716350]
[121]
Hare JI, Lammers T, Ashford MB, Puri S, Storm G, Barry ST. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Adv Drug Deliv Rev 2017; 108: 25-38.
[http://dx.doi.org/10.1016/j.addr.2016.04.025] [PMID: 27137110]
[122]
Buschmann MD, Carrasco MJ, Alishetty S, Paige M, Alameh MG, Weissman D. Nanomaterial delivery systems for mRNA vaccines. Vaccines 2021; 9(1): 65.
[http://dx.doi.org/10.3390/vaccines9010065] [PMID: 33478109]
[123]
Chan WCW, Artzi N, Chen C, et al. Noble nanomedicine: Celebrating groundbreaking mrna vaccine innovations. ACS Nano 2023; 17(20): 19476-7.
[http://dx.doi.org/10.1021/acsnano.3c09781] [PMID: 37819863]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy