Generic placeholder image

Current Psychopharmacology

Editor-in-Chief

ISSN (Print): 2211-5560
ISSN (Online): 2211-5579

Review Article

The Neuroanatomy, Etiopathogenesis, and Novel Therapeutic Targets in Depressive Disorders

Author(s): Indu Arora, Kunal Khurana and Manish Kumar*

Volume 12, 2024

Published on: 19 January, 2024

Article ID: e190124225864 Pages: 26

DOI: 10.2174/0122115560281804240102054639

Price: $65

Open Access Journals Promotions 2
Abstract

Depression has a high prevalence and associated comorbidities. It is still unknown what the molecular basis of depression is, regardless of many theories that have been put up to explain it. Many researchers investigate that present-day therapies for depression are ineffective due to their low efficacy, delayed onset of action (typically two weeks), and adverse effects. Novel medications that operate more quickly and effectively are thus needed. Several novel molecules (e.g., ketamine, buprenorphine) have been proven to produce quick and dependable antidepressant benefits in depressive patients who are resistant to treatment; yet, questions about their effectiveness, possible abuse, and adverse effects persist. The molecular basis and pharmacological interventions for depression were included in this study. Even if pharmaceutical treatments for depression have mostly failed to alleviate the condition, identifying and addressing possible risk factors in an effort to reduce the prevalence of this psychiatric disease is beneficial for public health. We emphasized the neuroanatomy and etiopathogenesis of depression, along with a discussion of the putative pharmacological mechanisms, novel targets, research hurdles, and prospective therapeutic futures.

Keywords: Major depressive disorder, bipolar disorders, etiopathogenesis, neurotrophic, novel antidepressants, monoamine, neurobiology, treatment.

[1]
Proudman D, Greenberg P, Nellesen D. The growing burden of major depressive disorders (MDD): Implications for researchers and policy makers. PharmacoEconomics 2021; 39(6): 619-25.
[http://dx.doi.org/10.1007/s40273-021-01040-7] [PMID: 34013439]
[2]
Salk RH, Hyde JS, Abramson LY. Gender differences in depression in representative national samples: Meta-analyses of diagnoses and symptoms. Psychol Bull 2017; 143(8): 783-822.
[http://dx.doi.org/10.1037/bul0000102] [PMID: 28447828]
[3]
Iyer K, Khan Z. Review paper depression-A review. Res J Recent Sci 2012; 1(4): 79-87.
[4]
Daly M, Robinson E. Depression and anxiety during COVID-19. Lancet 2022; 399(10324): 518.
[http://dx.doi.org/10.1016/S0140-6736(22)00187-8] [PMID: 35123689]
[5]
Park LT, Zarate CA Jr. Depression in the primary care setting. N Engl J Med 2019; 380(6): 559-68.
[http://dx.doi.org/10.1056/NEJMcp1712493] [PMID: 30726688]
[6]
Chakrabarti S. Bipolar disorder in the international classification of diseases-eleventh version: A review of the changes, their basis, and usefulness. World J Psychiatry 2022; 12(12): 1335-55.
[http://dx.doi.org/10.5498/wjp.v12.i12.1335] [PMID: 36579354]
[7]
Avasthi A, Grover S. Clinical practice guidelines for management of depression in elderly. Indian J Psychiatry 2018; 60(7): 341.
[http://dx.doi.org/10.4103/0019-5545.224474] [PMID: 29535469]
[8]
Pettersson A, Boström KB, Gustavsson P, Ekselius L. Which instruments to support diagnosis of depression have sufficient accuracy? A systematic review. Nord J Psychiatry 2015; 69(7): 497-508.
[http://dx.doi.org/10.3109/08039488.2015.1008568] [PMID: 25736983]
[9]
Ma S, Yang J, Yang B, et al. The patient health questionnaire-9 vs. the hamilton rating scale for depression in assessing major depressive disorder. Front Psychiatry 2021; 12: 747139.
[http://dx.doi.org/10.3389/fpsyt.2021.747139] [PMID: 34803766]
[10]
Bech P. Rating scales in depression: Limitations and pitfalls. Dialogues Clin Neurosci 2006; 8(2): 207-15.
[http://dx.doi.org/10.31887/DCNS.2006.8.2/pbech] [PMID: 16889106]
[11]
Thapar A, Collishaw S, Pine DS, Thapar AK. Depression in adolescence. Lancet 2012; 379(9820): 1056-67.
[http://dx.doi.org/10.1016/S0140-6736(11)60871-4] [PMID: 22305766]
[12]
Arnone D, McIntosh AM, Ebmeier KP, Munafò MR, Anderson IM. Magnetic resonance imaging studies in unipolar depression: Systematic review and meta-regression analyses. Eur Neuropsychopharmacol 2012; 22(1): 1-16.
[http://dx.doi.org/10.1016/j.euroneuro.2011.05.003] [PMID: 21723712]
[13]
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-4). 1994.
[14]
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5). 2013.
[15]
Valerio MP, Szmulewicz AG, Martino DJ. A quantitative review on outcome-to-antidepressants in melancholic unipolar depression. Psychiatry Res 2018; 265: 100-10.
[http://dx.doi.org/10.1016/j.psychres.2018.03.088] [PMID: 29702301]
[16]
Carta MG, Paribello P, Nardi AE, Preti A. Current pharmacotherapeutic approaches for dysthymic disorder and persistent depressive disorder. Expert Opin Pharmacother 2019; 20(14): 1743-54.
[http://dx.doi.org/10.1080/14656566.2019.1637419] [PMID: 31290333]
[17]
Laborde-Lahoz P, El-Gabalawy R, Kinley J, Kirwin PD, Sareen J, Pietrzak RH. Subsyndromal depression among older adults in the USA: Prevalence, comorbidity, and risk for new‐onset psychiatric disorders in late life. Int J Geriatr Psychiatry 2015; 30(7): 677-85.
[http://dx.doi.org/10.1002/gps.4204] [PMID: 25345806]
[18]
Melrose S. Seasonal affective disorder: An overview of assessment and treatment approaches. Depress Res Treat 2015; 2015: 1-6.
[http://dx.doi.org/10.1155/2015/178564] [PMID: 26688752]
[19]
Zauderer C, Ganzer CA. Seasonal affective disorder: An overview. Ment Health Pract 2015; 18(9): 21-4.
[http://dx.doi.org/10.7748/mhp.18.9.21.e973]
[20]
Saveanu RV, Nemeroff CB. Etiology of depression: Genetic and environmental factors. Psychiatr Clin North Am 2012; 35(1): 51-71.
[http://dx.doi.org/10.1016/j.psc.2011.12.001] [PMID: 22370490]
[21]
Pandya M, Altinay M, Malone DA Jr, Anand A. Where in the brain is depression? Curr Psychiatry Rep 2012; 14(6): 634-42.
[http://dx.doi.org/10.1007/s11920-012-0322-7] [PMID: 23055003]
[22]
Liu IY, Varinthra P. Molecular basis for the association between depression and circadian rhythm. Tzu-Chi Med J 2019; 31(2): 67-72.
[http://dx.doi.org/10.4103/tcmj.tcmj_181_18] [PMID: 31007484]
[23]
Zhang FF, Peng W, Sweeney JA, Jia ZY, Gong QY. Brain structure alterations in depression: Psychoradiological evidence. CNS Neurosci Ther 2018; 24(11): 994-1003.
[http://dx.doi.org/10.1111/cns.12835] [PMID: 29508560]
[24]
Nandam LS, Brazel M, Zhou M, Jhaveri DJ. Cortisol and major depressive disorder-translating findings from humans to animal models and back. Front Psychiatry 2020; 10: 974.
[http://dx.doi.org/10.3389/fpsyt.2019.00974] [PMID: 32038323]
[25]
Bao AM, Swaab DF. The human hypothalamus in mood disorders: The HPA axis in the center. IBRO Rep 2019; 6: 45-53.
[http://dx.doi.org/10.1016/j.ibror.2018.11.008] [PMID: 31211281]
[26]
Beurel E, Toups M, Nemeroff CB. The bidirectional relationship of depression and inflammation: Double trouble. Neuron 2020; 107(2): 234-56.
[http://dx.doi.org/10.1016/j.neuron.2020.06.002] [PMID: 32553197]
[27]
Opmeer EM, Kortekaas R, Aleman A. Depression and the role of genes involved in dopamine metabolism and signalling. Prog Neurobiol 2010; 92(2): 112-33.
[http://dx.doi.org/10.1016/j.pneurobio.2010.06.003] [PMID: 20558238]
[28]
Hasler G. Pathophysiology of depression: Do we have any solid evidence of interest to clinicians? World Psychiatry 2010; 9(3): 155-61.
[http://dx.doi.org/10.1002/j.2051-5545.2010.tb00298.x] [PMID: 20975857]
[29]
Shadrina M, Bondarenko EA, Slominsky PA. Genetics factors in major depression disease. Front Psychiatry 2018; 9: 334.
[http://dx.doi.org/10.3389/fpsyt.2018.00334] [PMID: 30083112]
[30]
Pizzagalli DA, Roberts AC. Prefrontal cortex and depression. Neuropsychopharmacology 2022; 47(1): 225-46.
[http://dx.doi.org/10.1038/s41386-021-01101-7] [PMID: 34341498]
[31]
Manji HK, Drevets WC, Charney DS. The cellular neurobiology of depression. Nat Med 2001; 7(5): 541-7.
[http://dx.doi.org/10.1038/87865] [PMID: 11329053]
[32]
Boes AD, McCormick LM, Coryell WH, Nopoulos P. Rostral anterior cingulate cortex volume correlates with depressed mood in normal healthy children. Biol Psychiatry 2008; 63(4): 391-7.
[http://dx.doi.org/10.1016/j.biopsych.2007.07.018] [PMID: 17916329]
[33]
Philippi CL, Motzkin JC, Pujara MS, Koenigs M. Subclinical depression severity is associated with distinct patterns of functional connectivity for subregions of anterior cingulate cortex. J Psychiatr Res 2015; 71: 103-11.
[http://dx.doi.org/10.1016/j.jpsychires.2015.10.005] [PMID: 26468907]
[34]
He C, Fan D, Liu X, et al. Insula network connectivity mediates the association between childhood maltreatment and depressive symptoms in major depressive disorder patients. Transl Psychiatry 2022; 12(1): 89.
[http://dx.doi.org/10.1038/s41398-022-01829-w] [PMID: 35236833]
[35]
Wang C, Wu H, Chen F, et al. Disrupted functional connectivity patterns of the insula subregions in drug-free major depressive disorder. J Affect Disord 2018; 234: 297-304.
[http://dx.doi.org/10.1016/j.jad.2017.12.033] [PMID: 29587165]
[36]
Schnellbächer GJ, Rajkumar R, Veselinović T, et al. Structural alterations of the insula in depression patients - A 7-Tesla-MRI study. Neuroimage Clin 2022; 36: 103249.
[http://dx.doi.org/10.1016/j.nicl.2022.103249] [PMID: 36451355]
[37]
Idunkova A, Lacinova L, Dubiel-Hoppanova L. Stress, depression, and hippocampus: From biochemistry to electrophysiology. Gen Physiol Biophys 2023; 42(2): 107-22.
[http://dx.doi.org/10.4149/gpb_2023001] [PMID: 36896941]
[38]
Yao Z, Fu Y, Wu J, et al. Morphological changes in subregions of hippocampus and amygdala in major depressive disorder patients. Brain Imaging Behav 2020; 14(3): 653-67.
[http://dx.doi.org/10.1007/s11682-018-0003-1] [PMID: 30519998]
[39]
Zhang Y, Zhang Y, Ai H, et al. Microstructural deficits of the thalamus in major depressive disorder. Brain Commun 2022; 4(5): fcac236.
[http://dx.doi.org/10.1093/braincomms/fcac236] [PMID: 36196087]
[40]
Hwang WJ, Kwak YB, Cho KIK, et al. Thalamic connectivity system across psychiatric disorders: Current status and clinical implications. Biol Psychiatry Glob Open Sci 2022; 2(4): 332-40.
[http://dx.doi.org/10.1016/j.bpsgos.2021.09.008] [PMID: 36324665]
[41]
Yang C, Xiao K, Ao Y, Cui Q, Jing X, Wang Y. The thalamus is the causal hub of intervention in patients with major depressive disorder: Evidence from the granger causality analysis. Neuroimage Clin 2023; 37: 103295.
[http://dx.doi.org/10.1016/j.nicl.2022.103295] [PMID: 36549233]
[42]
Ferri J, Eisendrath SJ, Fryer SL, Gillung E, Roach BJ, Mathalon DH. Blunted amygdala activity is associated with depression severity in treatment-resistant depression. Cogn Affect Behav Neurosci 2017; 17(6): 1221-31.
[http://dx.doi.org/10.3758/s13415-017-0544-6] [PMID: 29063521]
[43]
Kaya S, McCabe C. What role does the prefrontal cortex play in the processing of negative and positive stimuli in adolescent depression? Brain Sci 2019; 9(5): 104.
[http://dx.doi.org/10.3390/brainsci9050104] [PMID: 31067810]
[44]
Hamilton JP, Siemer M, Gotlib IH. Amygdala volume in major depressive disorder: A meta-analysis of magnetic resonance imaging studies. Mol Psychiatry 2008; 13(11): 993-1000.
[http://dx.doi.org/10.1038/mp.2008.57] [PMID: 18504424]
[45]
Gabbay V, Ely BA, Li Q, et al. Striatum-based circuitry of adolescent depression and anhedonia. J Am Acad Child Adolesc Psychiatry 2013; 52(6): 628-641.e13.
[http://dx.doi.org/10.1016/j.jaac.2013.04.003] [PMID: 23702452]
[46]
Fitzgerald ML, Kassir SA, Underwood MD, Bakalian MJ, Mann JJ, Arango V. Dysregulation of striatal dopamine receptor binding in suicide. Neuropsychopharmacology 2017; 42(4): 974-82.
[http://dx.doi.org/10.1038/npp.2016.124] [PMID: 27402414]
[47]
Dombrovski AY, Siegle GJ, Szanto K, Clark L, Reynolds CF III, Aizenstein H. The temptation of suicide: striatal gray matter, discounting of delayed rewards, and suicide attempts in late-life depression. Psychol Med 2012; 42(6): 1203-15.
[http://dx.doi.org/10.1017/S0033291711002133] [PMID: 21999930]
[48]
Hamilton JP, Sacchet MD, Hjørnevik T, et al. Striatal dopamine deficits predict reductions in striatal functional connectivity in major depression: A concurrent 11C-raclopride positron emission tomography and functional magnetic resonance imaging investigation. Transl Psychiatry 2018; 8(1): 264.
[http://dx.doi.org/10.1038/s41398-018-0316-2] [PMID: 30504860]
[49]
Lacerda ALT, Nicoletti MA, Brambilla P, et al. Anatomical MRI study of basal ganglia in major depressive disorder. Psychiatry Res Neuroimaging 2003; 124(3): 129-40.
[http://dx.doi.org/10.1016/S0925-4927(03)00123-9] [PMID: 14623065]
[50]
Sacchet MD, Camacho MC, Livermore EE, Thomas EAC, Gotlib IH. Accelerated aging of the putamen in patients with major depressive disorder. J Psychiatry Neurosci 2017; 42(3): 164-71.
[http://dx.doi.org/10.1503/jpn.160010] [PMID: 27749245]
[51]
Tao H, Guo S, Ge T, et al. Depression uncouples brain hate circuit. Mol Psychiatry 2013; 18(1): 101-11.
[http://dx.doi.org/10.1038/mp.2011.127] [PMID: 21968929]
[52]
Zeki S, Romaya JP. Neural correlates of hate. PLoS One 2008; 3(10): e3556.
[http://dx.doi.org/10.1371/journal.pone.0003556] [PMID: 18958169]
[53]
Chen Y, Jia L, Gao W, et al. Alterations of brainstem volume in patients with first-episode and recurrent major depressive disorder. BMC Psychiatry 2023; 23(1): 687.
[http://dx.doi.org/10.1186/s12888-023-05146-4] [PMID: 37735630]
[54]
Becker G, Becker T, Struck M, et al. Reduced echogenicity of brainstem raphe specific to unipolar depression: A transcranial color-coded real-time sonography study. Biol Psychiatry 1995; 38(3): 180-4.
[http://dx.doi.org/10.1016/0006-3223(94)00263-3] [PMID: 7578661]
[55]
Soriano-Mas C, Hernández-Ribas R, Pujol J, et al. Cross-sectional and longitudinal assessment of structural brain alterations in melancholic depression. Biol Psychiatry 2011; 69(4): 318-25.
[http://dx.doi.org/10.1016/j.biopsych.2010.07.029] [PMID: 20875637]
[56]
Matthews SC, Strigo IA, Simmons AN, Yang TT, Paulus MP. Decreased functional coupling of the amygdala and supragenual cingulate is related to increased depression in unmedicated individuals with current major depressive disorder. J Affect Disord 2008; 111(1): 13-20.
[http://dx.doi.org/10.1016/j.jad.2008.05.022] [PMID: 18603301]
[57]
Waselus M, Valentino RJ, Van Bockstaele EJ. Collateralized dorsal raphe nucleus projections: A mechanism for the integration of diverse functions during stress. J Chem Neuroanat 2011; 41(4): 266-80.
[http://dx.doi.org/10.1016/j.jchemneu.2011.05.011] [PMID: 21658442]
[58]
Gibbs ME, Hutchinson DS, Summers RJ. Noradrenaline release in the locus coeruleus modulates memory formation and consolidation; roles for α- and β-adrenergic receptors. Neuroscience 2010; 170(4): 1209-22.
[http://dx.doi.org/10.1016/j.neuroscience.2010.07.052] [PMID: 20709158]
[59]
Sesack SR, Grace AA. Cortico-Basal Ganglia reward network: Microcircuitry. Neuropsychopharmacology 2010; 35(1): 27-47.
[http://dx.doi.org/10.1038/npp.2009.93] [PMID: 19675534]
[60]
Strawbridge R, Javed RR, Cave J, Jauhar S, Young AH. The effects of reserpine on depression: A systematic review. J Psychopharmacol 2023; 37(3): 248-60.
[http://dx.doi.org/10.1177/02698811221115762] [PMID: 36000248]
[61]
Qian X, Zhong Z, Lu S, Zhang Y. Repeated reserpine treatment induces depressive-like behaviors accompanied with hippocampal impairment and synapse deficit in mice. Brain Res 2023; 1819: 148541.
[http://dx.doi.org/10.1016/j.brainres.2023.148541] [PMID: 37619854]
[62]
Marathe SV, D’almeida PL, Virmani G, Bathini P, Alberi L. Effects of monoamines and antidepressants on astrocyte physiology: Implications for monoamine hypothesis of depression. J Exp Neurosci 2018; 12.
[http://dx.doi.org/10.1177/1179069518789149] [PMID: 30046253]
[63]
Schultz W, Stauffer WR, Lak A. The phasic dopamine signal maturing: From reward via behavioural activation to formal economic utility. Curr Opin Neurobiol 2017; 43: 139-48.
[http://dx.doi.org/10.1016/j.conb.2017.03.013] [PMID: 28390863]
[64]
Brigitta B. Pathophysiology of depression and mechanisms of treatment. Dialogues Clin Neurosci 2002; 4(1): 7-20.
[http://dx.doi.org/10.31887/DCNS.2002.4.1/bbondy] [PMID: 22033824]
[65]
Baranyi A, Amouzadeh-Ghadikolai O, von Lewinski D, et al. Revisiting the tryptophan-serotonin deficiency and the inflammatory hypotheses of major depression in a biopsychosocial approach. PeerJ 2017; 5: e3968.
[http://dx.doi.org/10.7717/peerj.3968] [PMID: 29109914]
[66]
Neumeister A, Nugent AC, Waldeck T, et al. Neural and behavioral responses to tryptophan depletion in unmedicated patients with remitted major depressive disorder and controls. Arch Gen Psychiatry 2004; 61(8): 765-73.
[http://dx.doi.org/10.1001/archpsyc.61.8.765] [PMID: 15289275]
[67]
Shao X, Zhu G. Associations among monoamine neurotransmitter pathways, personality traits, and major depressive disorder. Front Psychiatry 2020; 11: 381.
[http://dx.doi.org/10.3389/fpsyt.2020.00381] [PMID: 32477180]
[68]
Anderson A, Oquendo MA, Parsey RV, Milak MS, Campbell C, Mann JJ. Regional brain responses to serotonin in major depressive disorder. J Affect Disord 2004; 82(3): 411-7.
[http://dx.doi.org/10.1016/j.jad.2004.04.003] [PMID: 15555692]
[69]
Langenecker SA, Mickey BJ, Eichhammer P, et al. Cognitive control as a 5-HT1A-based domain that is disrupted in major depressive disorder. Front Psychol 2019; 10: 691.
[http://dx.doi.org/10.3389/fpsyg.2019.00691] [PMID: 30984083]
[70]
Rizzardi LF, Hickey PF, Rodriguez DiBlasi V, et al. Neuronal brain-region-specific DNA methylation and chromatin accessibility are associated with neuropsychiatric trait heritability. Nat Neurosci 2019; 22(2): 307-16.
[http://dx.doi.org/10.1038/s41593-018-0297-8] [PMID: 30643296]
[71]
Gescher DM, Kahl KG, Hillemacher T, Frieling H, Kuhn J, Frodl T. Epigenetics in personality disorders: Today’s insights. Front Psychiatry 2018; 9: 579.
[http://dx.doi.org/10.3389/fpsyt.2018.00579] [PMID: 30510522]
[72]
Menon V, Kattimani S. Suicide and serotonin: Making sense of evidence. Indian J Psychol Med 2015; 37(3): 377-8.
[http://dx.doi.org/10.4103/0253-7176.162910] [PMID: 26664099]
[73]
Jokinen J, Carlborg A, Mårtensson B, Forslund K, Nordström AL, Nordström P. DST non-suppression predicts suicide after attempted suicide. Psychiatry Res 2007; 150(3): 297-303.
[http://dx.doi.org/10.1016/j.psychres.2006.12.001] [PMID: 17316825]
[74]
Weissmann D, van der Laan S, Underwood MD, et al. Region-specific alterations of A-to-I RNA editing of serotonin 2c receptor in the cortex of suicides with major depression. Transl Psychiatry 2016; 6(8): e878.
[http://dx.doi.org/10.1038/tp.2016.121] [PMID: 27576167]
[75]
Pandey GN, Dwivedi Y. Noradrenergic function in suicide. Arch Suicide Res 2007; 11(3): 235-46.
[http://dx.doi.org/10.1080/13811110701402587] [PMID: 17558608]
[76]
Saldanha D, Kumar N, Ryali VSSR, Srivastava K, Pawar AA. Serum serotonin abnormality in depression. Med J Armed Forces India 2009; 65(2): 108-12.
[http://dx.doi.org/10.1016/S0377-1237(09)80120-2] [PMID: 27408213]
[77]
Cottingham C, Wang Q. α2 adrenergic receptor dysregulation in depressive disorders: Implications for the neurobiology of depression and antidepressant therapy. Neurosci Biobehav Rev 2012; 36(10): 2214-25.
[http://dx.doi.org/10.1016/j.neubiorev.2012.07.011] [PMID: 22910678]
[78]
Kaddurah-Daouk R, Yuan P, Boyle SH, et al. Cerebrospinal fluid metabolome in mood disorders-remission state has a unique metabolic profile. Sci Rep 2012; 2(1): 667.
[http://dx.doi.org/10.1038/srep00667] [PMID: 22993692]
[79]
Goldberg JF, Burdick KE, Endick CJ. Preliminary randomized, double-blind, placebo-controlled trial of pramipexole added to mood stabilizers for treatment-resistant bipolar depression. Am J Psychiatry 2004; 161(3): 564-6.
[http://dx.doi.org/10.1176/appi.ajp.161.3.564] [PMID: 14992985]
[80]
Prata DP, Mechelli A, Fu CHY, et al. Epistasis between the DAT 3′ UTR VNTR and the COMT Val158Met SNP on cortical function in healthy subjects and patients with schizophrenia. Proc Natl Acad Sci 2009; 106(32): 13600-5.
[http://dx.doi.org/10.1073/pnas.0903007106] [PMID: 19666577]
[81]
Pandit R, Omrani A, Luijendijk MCM, et al. Melanocortin 3 receptor signaling in midbrain dopamine neurons increases the motivation for food reward. Neuropsychopharmacology 2016; 41(9): 2241-51.
[http://dx.doi.org/10.1038/npp.2016.19] [PMID: 26852738]
[82]
Targum SD. Identification and treatment of antidepressant tachyphylaxis. Innov Clin Neurosci 2014; 11(3-4): 24-8.
[PMID: 24800130]
[83]
Fornaro M, Anastasia A, Novello S, et al. The emergence of loss of efficacy during antidepressant drug treatment for major depressive disorder: An integrative review of evidence, mechanisms, and clinical implications. Pharmacol Res 2019; 139: 494-502.
[http://dx.doi.org/10.1016/j.phrs.2018.10.025] [PMID: 30385364]
[84]
Fava GA. May antidepressant drugs worsen the conditions they are supposed to treat? The clinical foundations of the oppositional model of tolerance. Ther Adv Psychopharmacol 2020; 10.
[http://dx.doi.org/10.1177/2045125320970325] [PMID: 33224471]
[85]
Jiang Y, Peng T, Gaur U, et al. Role of corticotropin releasing factor in the neuroimmune mechanisms of depression: Examination of current pharmaceutical and herbal therapies. Front Cell Neurosci 2019; 13: 290.
[http://dx.doi.org/10.3389/fncel.2019.00290] [PMID: 31312123]
[86]
Mikulska J, Juszczyk G, Gawrońska-Grzywacz M, Herbet M. HPA axis in the pathomechanism of depression and schizophrenia: new therapeutic strategies based on its participation. Brain Sci 2021; 11(10): 1298.
[http://dx.doi.org/10.3390/brainsci11101298] [PMID: 34679364]
[87]
Lee S, Jeong J, Kwak Y, Park SK. Depression research: Where are we now? Mol Brain 2010; 3(1): 8.
[http://dx.doi.org/10.1186/1756-6606-3-8] [PMID: 20219105]
[88]
Katz DA, Locke C, Greco N, Liu W, Tracy KA. Hypothalamic‐pituitary‐adrenal axis and depression symptom effects of an arginine vasopressin type 1B receptor antagonist in a one‐week randomized Phase 1b trial. Brain Behav 2017; 7(3): e00628.
[http://dx.doi.org/10.1002/brb3.628] [PMID: 28293470]
[89]
Karachaliou FH, Karavanaki K, Simatou A, Tsintzou E, Skarakis NS, Kanaka-Gatenbein C. Association of growth hormone deficiency (GHD) with anxiety and depression: Experimental data and evidence from GHD children and adolescents. Hormones 2021; 20(4): 679-89.
[http://dx.doi.org/10.1007/s42000-021-00306-1] [PMID: 34195937]
[90]
Rossi GN, Guerra LTL, Baker GB, et al. Molecular pathways of the therapeutic effects of ayahuasca, a botanical psychedelic and potential rapid-acting antidepressant. Biomolecules 2022; 12(11): 1618.
[http://dx.doi.org/10.3390/biom12111618] [PMID: 36358968]
[91]
Touma KTB, Zoucha AM, Scarff JR. Liothyronine for depression: A review and guidance for safety monitoring. Innov Clin Neurosci 2017; 14(3-4): 24-9.
[PMID: 28584694]
[92]
Rosenthal LJ, Goldner WS, O’Reardon JP. T3 augmentation in major depressive disorder: Safety considerations. Am J Psychiatry 2011; 168(10): 1035-40.
[http://dx.doi.org/10.1176/appi.ajp.2011.10030402] [PMID: 21969047]
[93]
Dulawa SC, Janowsky DS. Cholinergic regulation of mood: From basic and clinical studies to emerging therapeutics. Mol Psychiatry 2019; 24(5): 694-709.
[http://dx.doi.org/10.1038/s41380-018-0219-x] [PMID: 30120418]
[94]
Furey ML, Khanna A, Hoffman EM, Drevets WC. Scopolamine produces larger antidepressant and antianxiety effects in women than in men. Neuropsychopharmacology 2010; 35(12): 2479-88.
[http://dx.doi.org/10.1038/npp.2010.131] [PMID: 20736989]
[95]
Rubin RT, Rhodes ME, Miller TH, Jakab RL, Czambel RK. Sequence of pituitary–adrenal cortical hormone responses to low-dose physostigmine administration in young adult women and men. Life Sci 2006; 79(24): 2260-8.
[http://dx.doi.org/10.1016/j.lfs.2006.07.023] [PMID: 16935309]
[96]
Young JW, Cope ZA, Romoli B, et al. Mice with reduced DAT levels recreate seasonal-induced switching between states in bipolar disorder. Neuropsychopharmacology 2018; 43(8): 1721-31.
[http://dx.doi.org/10.1038/s41386-018-0031-y] [PMID: 29520059]
[97]
Higley MJ, Picciotto MR. Neuromodulation by acetylcholine: Examples from schizophrenia and depression. Curr Opin Neurobiol 2014; 29: 88-95.
[http://dx.doi.org/10.1016/j.conb.2014.06.004] [PMID: 24983212]
[98]
Caldarone BJ, Harrist A, Cleary MA, Beech RD, King SL, Picciotto MR. High-affinity nicotinic acetylcholine receptors are required for antidepressant effects of amitriptyline on behavior and hippocampal cell proliferation. Biol Psychiatry 2004; 56(9): 657-64.
[http://dx.doi.org/10.1016/j.biopsych.2004.08.010] [PMID: 15522249]
[99]
Je Jeon W, Dean B, Scarr E, Gibbons A. The role of muscarinic receptors in the pathophysiology of mood disorders: A potential novel treatment? Curr Neuropharmacol 2015; 13(6): 739-49.
[http://dx.doi.org/10.2174/1570159X13666150612230045] [PMID: 26630954]
[100]
Wong ML, Licinio J. Research and treatment approaches to depression. Nat Rev Neurosci 2001; 2(5): 343-51.
[http://dx.doi.org/10.1038/35072566] [PMID: 11331918]
[101]
Han QQ, Yu J. Inflammation: A mechanism of depression? Neurosci Bull 2014; 30(3): 515-23.
[http://dx.doi.org/10.1007/s12264-013-1439-3] [PMID: 24838302]
[102]
Lee C, Giuliani F. The role of inflammation in depression and fatigue. Front Immunol 2019; 10: 1696.
[http://dx.doi.org/10.3389/fimmu.2019.01696]
[103]
Howes OD, Thase ME, Pillinger T. Treatment resistance in psychiatry: State of the art and new directions. Mol Psychiatry 2022; 27(1): 58-72.
[http://dx.doi.org/10.1038/s41380-021-01200-3] [PMID: 34257409]
[104]
Orsolini L, Pompili S, Tempia Valenta S, Salvi V, Volpe U. C-Reactive protein as a biomarker for major depressive disorder? Int J Mol Sci 2022; 23(3): 1616.
[http://dx.doi.org/10.3390/ijms23031616] [PMID: 35163538]
[105]
Ryan KM, McLoughlin DM. Peripheral blood inflammatory markers in depression: Response to electroconvulsive therapy and relationship with cognitive performance. Psychiatry Res 2022; 315: 114725.
[http://dx.doi.org/10.1016/j.psychres.2022.114725] [PMID: 35870295]
[106]
Maes M, Ringel K, Kubera M, Berk M, Rybakowski J. Increased autoimmune activity against 5-HT: A key component of depression that is associated with inflammation and activation of cell-mediated immunity, and with severity and staging of depression. J Affect Disord 2012; 136(3): 386-92.
[http://dx.doi.org/10.1016/j.jad.2011.11.016] [PMID: 22166399]
[107]
Jeon SW, Kim YK. Neuroinflammation and cytokine abnormality in major depression: Cause or consequence in that illness? World J Psychiatry 2016; 6(3): 283-93.
[http://dx.doi.org/10.5498/wjp.v6.i3.283] [PMID: 27679767]
[108]
Himmerich H, Patsalos O, Lichtblau N, Ibrahim MAA, Dalton B. Cytokine research in depression: Principles, challenges, and open questions. Front Psychiatry 2019; 10: 30.
[http://dx.doi.org/10.3389/fpsyt.2019.00030] [PMID: 30792669]
[109]
Tu PC, Li CT, Lin WC, Chen MH, Su TP, Bai YM. Structural and functional correlates of serum soluble IL-6 receptor level in patients with bipolar disorder. J Affect Disord 2017; 219: 172-7.
[http://dx.doi.org/10.1016/j.jad.2017.04.036] [PMID: 28558364]
[110]
Gandhi AB, Kaleem I, Alexander J, et al. Neuroplasticity improves bipolar disorder: A Review. Cureus 2020; 12(10): e11241.
[PMID: 33274124]
[111]
Albert PR. Adult neuroplasticity: A new “cure” for major depression? J Psychiatry Neurosci 2019; 44(3): 147-50.
[http://dx.doi.org/10.1503/jpn.190072] [PMID: 31038297]
[112]
Pittenger C, Duman RS. Stress, depression, and neuroplasticity: A convergence of mechanisms. Neuropsychopharmacology 2008; 33(1): 88-109.
[http://dx.doi.org/10.1038/sj.npp.1301574] [PMID: 17851537]
[113]
Liu W, Ge T, Leng Y, Pan Z, Fan J, Yang W. The role of neural plasticity in depression: From hippocampus to prefrontal cortex. Neural Plast 2017; 2017: 6871089.
[http://dx.doi.org/10.1155/2017/6871089]
[114]
Savitz JB, Drevets WC. Imaging phenotypes of major depressive disorder: Genetic correlates. Neuroscience 2009; 164(1): 300-30.
[http://dx.doi.org/10.1016/j.neuroscience.2009.03.082] [PMID: 19358877]
[115]
Insel TR. Next-generation treatments for mental disorders. Sci Transl Med 2012; 4(155): 19.
[http://dx.doi.org/10.1126/scitranslmed.3004873]
[116]
Tong J, Meyer JH, Boileau I, et al. Serotonin transporter protein in autopsied brain of chronic users of cocaine. Psychopharmacology 2020; 237(9): 2661-71.
[http://dx.doi.org/10.1007/s00213-020-05562-4] [PMID: 32494974]
[117]
Xu W, Kannan S, Verma CS, Nacro K. Update on the development of MNK inhibitors as therapeutic agents. J Med Chem 2022; 65(2): 983-1007.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00368] [PMID: 34533957]
[118]
Vetencourt JFM, Tiraboschi E, Spolidoro M, Castrén E, Maffei L. Serotonin triggers a transient epigenetic mechanism that reinstates adult visual cortex plasticity in rats. Eur J Neurosci 2011; 33(1): 49-57.
[http://dx.doi.org/10.1111/j.1460-9568.2010.07488.x] [PMID: 21156002]
[119]
Savli M, Bauer A, Mitterhauser M, et al. Normative database of the serotonergic system in healthy subjects using multi-tracer PET. Neuroimage 2012; 63(1): 447-59.
[http://dx.doi.org/10.1016/j.neuroimage.2012.07.001] [PMID: 22789740]
[120]
Steinberg LJ, Rubin-Falcone H, Galfalvy HC, et al. Cortisol stress response and in vivo PET imaging of human brain serotonin 1A receptor binding. Int J Neuropsychopharmacol 2019; 22(5): 329-38.
[http://dx.doi.org/10.1093/ijnp/pyz009] [PMID: 30927011]
[121]
Bartlett EA, Yttredahl AA, Boldrini M, et al. In vivo serotonin 1A receptor hippocampal binding potential in depression and reported childhood adversity. Eur Psychiatry 2023; 66(1): e17.
[http://dx.doi.org/10.1192/j.eurpsy.2023.4] [PMID: 36691786]
[122]
Dutta A, McKie S, Deakin JFW. Resting state networks in major depressive disorder. Psychiatry Res Neuroimaging 2014; 224(3): 139-51.
[http://dx.doi.org/10.1016/j.pscychresns.2014.10.003] [PMID: 25456520]
[123]
Duman RS, Voleti B. Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents. Trends Neurosci 2012; 35(1): 47-56.
[http://dx.doi.org/10.1016/j.tins.2011.11.004] [PMID: 22217452]
[124]
Krishnan V, Nestler EJ. Linking molecules to mood: New insight into the biology of depression. Am J Psychiatry 2010; 167(11): 1305-20.
[http://dx.doi.org/10.1176/appi.ajp.2009.10030434] [PMID: 20843874]
[125]
Juhasz G, Dunham JS, McKie S, et al. The CREB1-BDNF-NTRK2 pathway in depression: Multiple gene-cognition-environment interactions. Biol Psychiatry 2011; 69(8): 762-71.
[http://dx.doi.org/10.1016/j.biopsych.2010.11.019] [PMID: 21215389]
[126]
Tan X, Du X, Jiang Y, Botchway BOA, Hu Z, Fang M. Inhibition of autophagy in microglia alters depressive-like behavior via BDNF pathway in postpartum depression. Front Psychiatry 2018; 9: 434.
[http://dx.doi.org/10.3389/fpsyt.2018.00434] [PMID: 30349488]
[127]
Okamoto H, Voleti B, Banasr M, et al. Wnt2 expression and signaling is increased by different classes of antidepressant treatments. Biol Psychiatry 2010; 68(6): 521-7.
[http://dx.doi.org/10.1016/j.biopsych.2010.04.023] [PMID: 20570247]
[128]
Wang JQ, Mao L. The ERK pathway: Molecular mechanisms and treatment of depression. Mol Neurobiol 2019; 56(9): 6197-205.
[http://dx.doi.org/10.1007/s12035-019-1524-3] [PMID: 30737641]
[129]
Fries GR, Saldana VA, Finnstein J, Rein T. Molecular pathways of major depressive disorder converge on the synapse. Mol Psychiatry 2023; 28(1): 284-97.
[http://dx.doi.org/10.1038/s41380-022-01806-1] [PMID: 36203007]
[130]
Pilar-Cúellar F, Vidal R, Díaz A, et al. Signaling pathways involved in antidepressant-induced cell proliferation and synaptic plasticity. Curr Pharm Des 2014; 20(23): 3776-94.
[http://dx.doi.org/10.2174/13816128113196660736] [PMID: 24180397]
[131]
Anacker C, Zunszain PA, Carvalho LA, Pariante CM. The glucocorticoid receptor: Pivot of depression and of antidepressant treatment? Psychoneuroendocrinology 2011; 36(3): 415-25.
[http://dx.doi.org/10.1016/j.psyneuen.2010.03.007] [PMID: 20399565]
[132]
Zhou L, Wang T, Yu Y, et al. The etiology of poststroke-depression: A hypothesis involving HPA axis. Biomed Pharmacother 2022; 151: 113146.
[http://dx.doi.org/10.1016/j.biopha.2022.113146] [PMID: 35643064]
[133]
Herman JP, McKlveen JM, Ghosal S, et al. Regulation of the hypothalamic-pituitary-adrenocortical stress response. Compr Physiol 2016; 6(2): 603-21.
[http://dx.doi.org/10.1002/cphy.c150015] [PMID: 27065163]
[134]
Abdul Aziz NU, Chiroma SM, Mohd Moklas MA, et al. Menhaden fish oil attenuates postpartum depression in rat model via inhibition of NLRP3-inflammasome driven inflammatory pathway. J Tradit Complement Med 2021; 11(5): 419-26.
[http://dx.doi.org/10.1016/j.jtcme.2021.02.007] [PMID: 34522636]
[135]
Décarie-Spain L, Sharma S, Hryhorczuk C, et al. Nucleus accumbens inflammation mediates anxiodepressive behavior and compulsive sucrose seeking elicited by saturated dietary fat. Mol Metab 2018; 10: 1-13.
[http://dx.doi.org/10.1016/j.molmet.2018.01.018] [PMID: 29454579]
[136]
Anderson G, Maes M. Oxidative/nitrosative stress and immuno-inflammatory pathways in depression: Treatment implications. Curr Pharm Des 2014; 20(23): 3812-47.
[http://dx.doi.org/10.2174/13816128113196660738] [PMID: 24180395]
[137]
Perez J, Tardito D, Racagni G, Smeraldi E, Zanardi R. cAMP signaling pathway in depressed patients with psychotic features. Mol Psychiatry 2002; 7(2): 208-12.
[http://dx.doi.org/10.1038/sj.mp.4000969] [PMID: 11840314]
[138]
Malemud CJ, Miller AH. Pro-inflammatory cytokine-induced SAPK/MAPK and JAK/STAT in rheumatoid arthritis and the new anti-depression drugs. Expert Opin Ther Targets 2008; 12(2): 171-83.
[http://dx.doi.org/10.1517/14728222.12.2.171] [PMID: 18208366]
[139]
Shariq AS, Brietzke E, Rosenblat JD, et al. Therapeutic potential of JAK/STAT pathway modulation in mood disorders. Rev Neurosci 2018; 30(1): 1-7.
[http://dx.doi.org/10.1515/revneuro-2018-0027] [PMID: 29902157]
[140]
Luscher B, Shen Q, Sahir N. The GABAergic deficit hypothesis of major depressive disorder. Mol Psychiatry 2011; 16(4): 383-406.
[http://dx.doi.org/10.1038/mp.2010.120] [PMID: 21079608]
[141]
Tette FM, Kwofie SK, Wilson MD. Therapeutic anti-depressant potential of microbial GABA produced by Lactobacillus rhamnosus strains for GABAergic signaling restoration and inhibition of addiction-induced HPA axis hyperactivity. Curr Issues Mol Biol 2022; 44(4): 1434-51.
[http://dx.doi.org/10.3390/cimb44040096] [PMID: 35723354]
[142]
Nakao A, Matsunaga Y, Hayashida K, Takahashi N. Role of oxidative stress and Ca2+ signaling in psychiatric disorders. Front Cell Dev Biol 2021; 9: 615569.
[http://dx.doi.org/10.3389/fcell.2021.615569] [PMID: 33644051]
[143]
Moreno C, Hermosilla T, Hardy P, Aballai V, Rojas P, Varela D. Cav1.2 Activity and downstream signaling pathways in the hippocampus of an animal model of depression. Cells 2020; 9(12): 2609.
[http://dx.doi.org/10.3390/cells9122609] [PMID: 33291797]
[144]
Dubovsky SL. Applications of calcium channel blockers in psychiatry: Pharmacokinetic and pharmacodynamic aspects of treatment of bipolar disorder. Expert Opin Drug Metab Toxicol 2019; 15(1): 35-47.
[http://dx.doi.org/10.1080/17425255.2019.1558206] [PMID: 30558453]
[145]
Duda P, Hajka D, Wójcicka O, Rakus D, Gizak A. GSK3β: A master player in depressive disorder pathogenesis and treatment responsiveness. Cells 2020; 9(3): 727.
[http://dx.doi.org/10.3390/cells9030727] [PMID: 32188010]
[146]
McCallum RT, Perreault ML. Glycogen synthase kinase-3: A focal point for advancing pathogenic inflammation in depression. Cells 2021; 10(9): 2270.
[http://dx.doi.org/10.3390/cells10092270] [PMID: 34571919]
[147]
Jelen LA, Young AH, Stone JM. Ketamine: A tale of two enantiomers. J Psychopharmacol 2021; 35(2): 109-23.
[http://dx.doi.org/10.1177/0269881120959644] [PMID: 33155503]
[148]
Zanos P, Gould TD. Mechanisms of ketamine action as an antidepressant. Mol Psychiatry 2018; 23(4): 801-11.
[http://dx.doi.org/10.1038/mp.2017.255] [PMID: 29532791]
[149]
Kato T. Role of mTOR1 signaling in the antidepressant effects of ketamine and the potential of mTORC1 activators as novel antidepressants. Neuropharmacology 2023; 223: 109325.
[http://dx.doi.org/10.1016/j.neuropharm.2022.109325] [PMID: 36334763]
[150]
Teo CH, Soga T, Parhar IS. Brain beta-catenin signalling during stress and depression. Neurosignals 2018; 26(1): 31-42.
[http://dx.doi.org/10.1159/000487764] [PMID: 29490303]
[151]
Arosio B, Guerini FR, Voshaar RCO, Aprahamian I. Blood brain-derived neurotrophic factor (BDNF) and major depression: Do we have a translational perspective? Front Behav Neurosci 2021; 15: 626906.
[http://dx.doi.org/10.3389/fnbeh.2021.626906] [PMID: 33643008]
[152]
Yang T, Nie Z, Shu H, et al. The role of BDNF on neural plasticity in depression. Front Cell Neurosci 2020; 14: 82.
[http://dx.doi.org/10.3389/fncel.2020.00082] [PMID: 32351365]
[153]
Duman RS, Deyama S, Fogaça MV. Role of BDNF in the pathophysiology and treatment of depression: Activity‐dependent effects distinguish rapid‐acting antidepressants. Eur J Neurosci 2021; 53(1): 126-39.
[http://dx.doi.org/10.1111/ejn.14630] [PMID: 31811669]
[154]
Di Benedetto B, Radecke J, Schmidt MV, Rupprecht R. Acute antidepressant treatment differently modulates ERK/MAPK activation in neurons and astrocytes of the adult mouse prefrontal cortex. Neuroscience 2013; 232: 161-8.
[http://dx.doi.org/10.1016/j.neuroscience.2012.11.061] [PMID: 23238574]
[155]
Albert-Gascó H, Ros-Bernal F, Castillo-Gómez E, Olucha-Bordonau FE. MAP/ERK signaling in developing cognitive and emotional function and its effect on pathological and neurodegenerative processes. Int J Mol Sci 2020; 21(12): 4471.
[http://dx.doi.org/10.3390/ijms21124471] [PMID: 32586047]
[156]
Galeotti N, Ghelardini C. Regionally selective activation and differential regulation of ERK, JNK and p38 MAP kinase signalling pathway by protein kinase C in mood modulation. Int J Neuropsychopharmacol 2012; 15(6): 781-93.
[http://dx.doi.org/10.1017/S1461145711000897] [PMID: 21682943]
[157]
Zhang L, Xu T, Wang S, et al. Curcumin produces antidepressant effects via activating MAPK/ERK-dependent brain-derived neurotrophic factor expression in the amygdala of mice. Behav Brain Res 2012; 235(1): 67-72.
[http://dx.doi.org/10.1016/j.bbr.2012.07.019] [PMID: 22820234]
[158]
Kitagishi Y, Kobayashi M, Kikuta K, Matsuda S. Roles of PI3K/AKT/GSK3/mTOR pathway in cell signaling of mental illnesses. Depress Res Treat 2012; 2012.
[159]
Wu Z, Wang G, Wei Y, Xiao L, Wang H. PI3K/AKT/GSK3β/CRMP-2-mediated neuroplasticity in depression induced by stress. Neuroreport 2018; 29(15): 1256-63.
[http://dx.doi.org/10.1097/WNR.0000000000001096] [PMID: 30113922]
[160]
Neis VB, Moretti M, Rosa PB, et al. The involvement of PI3K/Akt/mTOR/GSK3β signaling pathways in the antidepressant-like effect of AZD6765. Pharmacol Biochem Behav 2020; 198: 173020.
[http://dx.doi.org/10.1016/j.pbb.2020.173020] [PMID: 32861641]
[161]
Li S, Lu C, Kang L, et al. Study on correlations of BDNF, PI3K, AKT and CREB levels with depressive emotion and impulsive behaviors in drug-naïve patients with first-episode schizophrenia. BMC Psychiatry 2023; 23(1): 225.
[http://dx.doi.org/10.1186/s12888-023-04718-8] [PMID: 37013544]
[162]
Liu J-h, Wu Z-f, Sun J, Jiang L, Jiang S, Fu W-b. Role of ACcAMP-PKA cascade in antidepressant action of electroacupuncture treatment in rats. Evid Based Complement Alternat Med 2012; 2012.
[163]
Ashok AH, Marques TR, Jauhar S, et al. The dopamine hypothesis of bipolar affective disorder: The state of the art and implications for treatment. Mol Psychiatry 2017; 22(5): 666-79.
[http://dx.doi.org/10.1038/mp.2017.16] [PMID: 28289283]
[164]
Kamijima K, Higuchi T, Ishigooka J, et al. Aripiprazole augmentation to antidepressant therapy in Japanese patients with major depressive disorder: A randomized, double-blind, placebo-controlled study (ADMIRE study). J Affect Disord 2013; 151(3): 899-905.
[http://dx.doi.org/10.1016/j.jad.2013.07.035] [PMID: 24074484]
[165]
Gershon AA, Amiaz R, Shem-David H, Grunhaus L. Ropinirole augmentation for depression: A randomized controlled trial pilot study. J Clin Psychopharmacol 2019; 39(1): 78-81.
[http://dx.doi.org/10.1097/JCP.0000000000000984] [PMID: 30489382]
[166]
Yohn CN, Gergues MM, Samuels BA. The role of 5-HT receptors in depression. Mol Brain 2017; 10(1): 28.
[http://dx.doi.org/10.1186/s13041-017-0306-y] [PMID: 28646910]
[167]
Ren P, Wang J, Li N, et al. Sigma-1 receptors in depression: Mechanism and therapeutic development. Front Pharmacol 2022; 13: 925879.
[http://dx.doi.org/10.3389/fphar.2022.925879] [PMID: 35784746]
[168]
Fishback JA, Robson MJ, Xu YT, Matsumoto RR. Sigma receptors: Potential targets for a new class of antidepressant drug. Pharmacol Ther 2010; 127(3): 271-82.
[http://dx.doi.org/10.1016/j.pharmthera.2010.04.003] [PMID: 20438757]
[169]
Jacobson ML, Browne CA, Lucki I. Kappa opioid receptor antagonists as potential therapeutics for stress-related disorders. Annu Rev Pharmacol Toxicol 2020; 60(1): 615-36.
[http://dx.doi.org/10.1146/annurev-pharmtox-010919-023317] [PMID: 31914893]
[170]
Watt DF, Panksepp J. Depression: An evolutionarily conserved mechanism to terminate separation distress? A review of aminergic, peptidergic, and neural network perspectives. Neuro-psychoanalysis 2009; 11(1): 7-51.
[http://dx.doi.org/10.1080/15294145.2009.10773593]
[171]
Zięba A, Stępnicki P, Matosiuk D, Kaczor AA. Overcoming depression with 5-HT2A receptor ligands. Int J Mol Sci 2021; 23(1): 10.
[http://dx.doi.org/10.3390/ijms23010010] [PMID: 35008436]
[172]
Sattar Y, Wilson J, Khan AM, et al. A review of the mechanism of antagonism of N-methyl-D-aspartate receptor by ketamine in treatment-resistant depression. Cureus 2018; 10(5): e2652.
[http://dx.doi.org/10.7759/cureus.2652] [PMID: 30034974]
[173]
Adell A. Brain NMDA receptors in schizophrenia and depression. Biomolecules 2020; 10(6): 947.
[http://dx.doi.org/10.3390/biom10060947] [PMID: 32585886]
[174]
Biesdorf C, Stratford RE. Integrating imaging and microdialysis into systems neuropharmacology.In: Frontiers in Clinical Drug Research-CNS and Neurological Disorders. Bentham Books 2021.
[http://dx.doi.org/10.2174/9781681089041121090003]
[175]
Suzuki A, Hara H, Kimura H. Role of the AMPA receptor in antidepressant effects of ketamine and potential of AMPA receptor potentiators as a novel antidepressant. Neuropharmacology 2023; 222: 109308.
[http://dx.doi.org/10.1016/j.neuropharm.2022.109308] [PMID: 36341809]
[176]
Belujon P, Grace AA. Dopamine system dysregulation in major depressive disorders. Int J Neuropsychopharmacol 2017; 20(12): 1036-46.
[http://dx.doi.org/10.1093/ijnp/pyx056] [PMID: 29106542]
[177]
Bogdanova D. Gait disorders in unipolar and bipolar depression. Heliyon 2023; 9(5): e15864.
[http://dx.doi.org/10.1016/j.heliyon.2023.e15864] [PMID: 37305515]
[178]
Whitton AE, Reinen JM, Slifstein M, et al. Baseline reward processing and ventrostriatal dopamine function are associated with pramipexole response in depression. Brain 2020; 143(2): 701-10.
[http://dx.doi.org/10.1093/brain/awaa002] [PMID: 32040562]
[179]
Nikiforuk A. Targeting the serotonin 5-HT 7 receptor in the search for treatments for CNS disorders: Rationale and progress to date. CNS Drugs 2015; 29(4): 265-75.
[http://dx.doi.org/10.1007/s40263-015-0236-0] [PMID: 25721336]
[180]
Nautiyal KM, Hen R. Serotonin receptors in depression: From A to B. F1000 Res 2017; 6: 123.
[http://dx.doi.org/10.12688/f1000research.9736.1] [PMID: 28232871]
[181]
Balcer OM, Seager MA, Gleason SD, et al. Evaluation of 5-HT7 receptor antagonism for the treatment of anxiety, depression, and schizophrenia through the use of receptor-deficient mice. Behav Brain Res 2019; 360: 270-8.
[http://dx.doi.org/10.1016/j.bbr.2018.12.019] [PMID: 30543903]
[182]
Kulkarni SK, Dhir A. σ-1 receptors in major depression and anxiety. Expert Rev Neurother 2009; 9(7): 1021-34.
[http://dx.doi.org/10.1586/ern.09.40] [PMID: 19589051]
[183]
Fukunaga K, Moriguchi S. Stimulation of the sigma-1 receptor and the effects on neurogenesis and depressive behaviors in mice. Sigma Receptors: Their role in disease and as therapeutic targets. Adv Exp Med Biol 2017; 964: 201-11.
[http://dx.doi.org/10.1007/978-3-319-50174-1_14] [PMID: 28315273]
[184]
Hayashi T, Su TP. σ-1 receptor ligands: Potential in the treatment of neuropsychiatric disorders. CNS Drugs 2004; 18(5): 269-84.
[http://dx.doi.org/10.2165/00023210-200418050-00001] [PMID: 15089113]
[185]
Li W, Sun H, Chen H, et al. Major depressive disorder and kappa opioid receptor antagonists. Transl Perioper Pain Med 2016; 1(2): 4-16.
[PMID: 27213169]
[186]
Bailey SJ, Husbands SM. Targeting opioid receptor signaling in depression: Do we need selective κ opioid receptor antagonists? Neuronal Signal 2018; 2(2): NS20170145.
[http://dx.doi.org/10.1042/NS20170145] [PMID: 32714584]
[187]
Miller JM, Zanderigo F, Purushothaman PD, et al. Kappa opioid receptor binding in major depression: A pilot study. Synapse 2018; 72(9): e22042.
[http://dx.doi.org/10.1002/syn.22042] [PMID: 29935119]
[188]
Khan MIH, Sawyer BJ, Akins NS, Le HV. A systematic review on the kappa opioid receptor and its ligands: New directions for the treatment of pain, anxiety, depression, and drug abuse. Eur J Med Chem 2022; 243: 114785.
[http://dx.doi.org/10.1016/j.ejmech.2022.114785] [PMID: 36179400]
[189]
Celada P, Puig M, Amargós-Bosch M, Adell A, Artigas F. The therapeutic role of 5-HT1A and 5-HT2A receptors in depression. J Psychiatry Neurosci 2004; 29(4): 252-65.
[PMID: 15309042]
[190]
Dogra S, Conn PJ. Targeting metabotropic glutamate receptors for the treatment of depression and other stress-related disorders. Neuropharmacology 2021; 196: 108687.
[http://dx.doi.org/10.1016/j.neuropharm.2021.108687] [PMID: 34175327]
[191]
Esterlis I, Holmes SE, Sharma P, Krystal JH, DeLorenzo C. Metabotropic glutamatergic receptor 5 and stress disorders: Knowledge gained from receptor imaging studies. Biol Psychiatry 2018; 84(2): 95-105.
[http://dx.doi.org/10.1016/j.biopsych.2017.08.025] [PMID: 29100629]
[192]
Witkin JM, Marek GJ, Johnson BG, Schoepp DD. Metabotropic glutamate receptors in the control of mood disorders. CNS Neurol Disord Drug Targets 2007; 6(2): 87-100.
[http://dx.doi.org/10.2174/187152707780363302]
[193]
Bleakman D, Alt A, Witkin J. AMPA receptors in the therapeutic management of depression. CNS Neurol Disord Drug Targets 2007; 6(2): 117-26.
[http://dx.doi.org/10.2174/187152707780363258]
[194]
Alt A, Nisenbaum ES, Bleakman D, Witkin JM. A role for AMPA receptors in mood disorders. Biochem Pharmacol 2006; 71(9): 1273-88.
[http://dx.doi.org/10.1016/j.bcp.2005.12.022] [PMID: 16442080]
[195]
Rowe SK, Rapaport MH. Classification and treatment of sub-threshold depression. Curr Opin Psychiatry 2006; 19(1): 9-13.
[http://dx.doi.org/10.1097/01.yco.0000194148.26766.ba] [PMID: 16612172]
[196]
Cuijpers P, Quero S, Dowrick C, Arroll B. Psychological treatment of depression in primary care: Recent developments. Curr Psychiatry Rep 2019; 21(12): 129.
[http://dx.doi.org/10.1007/s11920-019-1117-x] [PMID: 31760505]
[197]
Richelson E. Pharmacology of antidepressants.In: Mayo Clinic Proceedings. Elsevier 2001; pp. 511-27.
[198]
Fasipe O. Neuropharmacological classification of antidepressant agents based on their mechanisms of action. Arch Med Health Sci 2018; 6(1): 81-94.
[http://dx.doi.org/10.4103/amhs.amhs_7_18]
[199]
Malik S, Singh R, Arora G, Dangol A, Goyal S. Biomarkers of major depressive disorder: Knowing is half the battle. Clin Psychopharmacol Neurosci 2021; 19(1): 12-25.
[http://dx.doi.org/10.9758/cpn.2021.19.1.12] [PMID: 33508785]
[200]
Rana T, Behl T, Sehgal A, et al. Integrating endocannabinoid signalling in depression. J Mol Neurosci 2021; 71(10): 2022-34.
[http://dx.doi.org/10.1007/s12031-020-01774-7] [PMID: 33471311]
[201]
Cuijpers P, Karyotaki E, de Wit L, Ebert DD. The effects of fifteen evidence-supported therapies for adult depression: A meta-analytic review. Psychother Res 2020; 30(3): 279-93.
[http://dx.doi.org/10.1080/10503307.2019.1649732] [PMID: 31394976]
[202]
Compton SN, March JS, Brent D, Albano AMV, Weersing R, Curry J. Cognitive-behavioral psychotherapy for anxiety and depressive disorders in children and adolescents: An evidence-based medicine review. J Am Acad Child Adolesc Psychiatry 2004; 43(8): 930-59.
[http://dx.doi.org/10.1097/01.chi.0000127589.57468.bf] [PMID: 15266189]
[203]
Hirayama T, Ogawa Y, Yanai Y, Suzuki S, Shimizu K. Behavioral activation therapy for depression and anxiety in cancer patients: a case series study. Biopsychosoc Med 2019; 13(1): 9.
[http://dx.doi.org/10.1186/s13030-019-0151-6] [PMID: 31168316]
[204]
Markowitz JC, Lipsitz J, Milrod BL. Critical review of outcome research on interpersonal psychotherapy for anxiety disorders. Depress Anxiety 2014; 31(4): 316-25.
[http://dx.doi.org/10.1002/da.22238] [PMID: 24493661]
[205]
Zhang A, Park S, Sullivan JE, Jing S. The effectiveness of problem-solving therapy for primary care patients’ depressive and/or anxiety disorders: A systematic review and meta-analysis. J Am Board Fam Med 2018; 31(1): 139-50.
[http://dx.doi.org/10.3122/jabfm.2018.01.170270] [PMID: 29330248]
[206]
Korte J, Bohlmeijer ET, Cappeliez P, Smit F, Westerhof GJ. Life review therapy for older adults with moderate depressive symptomatology: A pragmatic randomized controlled trial. Psychol Med 2012; 42(6): 1163-73.
[http://dx.doi.org/10.1017/S0033291711002042] [PMID: 21995889]
[207]
Churchill R, Moore THM, Furukawa TA, et al. ‘Third wave’ cognitive and behavioural therapies versus treatment as usual for depression. Cochrane Libr 2013; (10): CD008705.
[http://dx.doi.org/10.1002/14651858.CD008705.pub2] [PMID: 24142810]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy