Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Cu-Co Bimetallic Catalyst-based Electrochemical Sensing Platform for Determination of Bisoprolol in Clinical Samples

Author(s): Mohammad Reza Salemi, Shahla Fathi, Fereshteh Chekin* and Banafsheh Norouzi

Volume 27, Issue 12, 2024

Published on: 16 January, 2024

Page: [1830 - 1839] Pages: 10

DOI: 10.2174/0113862073270729231106090749

Price: $65

Abstract

Background: Bisoprolol (BIS) is a selective beta-blocker. It has been successfully used to treat hypertension and angina pectoris. An overdose of BIS can lead to serious complications. An overdose is a medical emergency that requires immediate medical attention to overcome the adverse effects of the overdose. Hence, sensitive, reliable, and cost-effective methods are required for the determination of BIS.

Methods: In this work, a new electrochemical sensing platform based on a bimetallic catalyst was developed for the determination of BIS. The Cu-Co nanocatalyst was easily synthesized by galvanic displacement onto a carbon paste electrode (CPE). Then, field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), and cyclic voltammetry (CV) were utilized for the characterization of the Cu-Co catalyst.

Results: The galvanic displacement of Cu metal significantly affected the electro-catalytic behavior of the Cu-Co catalyst and the Cu-Co/CPE electrode displayed a very sensitive and accurate response towards BIS. Under optimized conditions, the response was linear in the 3 to 120 μM concentration range, sensitivity of 631.1 μA mM-1 and a detection limit of as low as 0.4 μM using cyclic voltammetry. The simple proposed method was also successfully employed in the analysis of BIS in biological and pharmaceutical samples. The advantages of Cu-Co/CPE are its fast and simple manufacturing and the possibility of a repeated surface regeneration of the sensing platform, as well as its application for the detection of BIS in tablets and biological samples, making Cu-Co significant promise for use in clinical diagnostics. Besides, the synthesized catalysts showed excellent reusability and stability.

Conclusion: The presence of Cu metal due to galvanic displacement increased the sensitivity. These findings suggest that the new nanocatalyst has potential applications in sensors and electronics.

Keywords: Bisoprolol, bimetallic nanocatalyst, galvanic displacement, electrochemical sensor, clinical samples, Cu-Co bimetallic catalyst-based.

Graphical Abstract
[1]
Zeng, W.; Chu, T.T.W.; Ho, C.S.; Lo, C.W.S.; Chan, A.S.L.; Kong, A.P.S.; Tomlinson, B.; Chan, S.W.; Baom, Sh. Lack of effects of renin-angiotensin-aldosterone system activity and beta-adrenoceptor pathway polymorphisms on the response to bisoprolol in hypertension. Front. Cardiovasc. Med., 2022, 9, 842875-842884.
[http://dx.doi.org/10.3389/fcvm.2022.842875] [PMID: 35433877]
[2]
de Groote, P.; Ennezat, P.V.; Mouquet, F. Bisoprolol in the treatment of chronic heart failure. Vasc. Health Risk Manag., 2007, 3(4), 431-439.
[PMID: 17969374]
[3]
Ishiguro, H.; Ikeda, T.; Abe, A.; Tsukada, T.; Mera, H.; Nakamura, K.; Yusu, S.; Yoshino, H. Antiarrhythmic effect of bisoprolol, a highly selective beta1-blocker, in patients with paroxysmal atrial fibrillation. Int. Heart J., 2008, 49(3), 281-293.
[http://dx.doi.org/10.1536/ihj.49.281] [PMID: 18612186]
[4]
Goyal, R.N.; Chatterjee, S.; Singh, S.P.; Rana, A.R.S.; Chasta, H. The electrocatalytic activity of bare pyrolytic graphite and single wall carbon nanotube modified glassy carbon sensors is same for the quantification of bisoprolol fumarate. Am. J. Anal. Chem., 2012, 3(2), 106-112.
[http://dx.doi.org/10.4236/ajac.2012.32015]
[5]
Panainte, A.D.; Popa, G.; Vieriu, M.; Bibire, N.; Tantaru, G.; Creteanu, A.; Aposru, M. Evaluation of qualitative and quantitative stability parameters of a new tablet formulation containing bisoprolol fumarate. Farmacia, 2018, 66(3), 487-493.
[http://dx.doi.org/10.31925/farmacia.2018.3.14]
[6]
Jagdale, S.C.; Bari, N.A.; Kuchekar, B.S.; Chabukswar, A.R. Optimization studies on compression coated floating-pulsatile drug delivery of bisoprolol. BioMed Res. Int., 2013, 2013, 1-11.
[http://dx.doi.org/10.1155/2013/801769] [PMID: 24367788]
[7]
Duan, H-B.; Cao, J-T.; Wang, H.; Liu, Y-M. Determination of metoprolol tartrate and bisoprolol fumarate by capillary electrophoresis coupled with tris(2,2′-bipyridyl)-ruthenium(II) electrochemiluminescence detection and study on the interaction between the drugs and human serum albumin. Anal. Methods, 2015, 7(9), 3946-3951.
[http://dx.doi.org/10.1039/C5AY00336A]
[8]
Ulu, S.T.; Kel, E. Spectrophotometric determination of bisoprolol in pharmaceutical preparations by charge transfer reactions. Opt. Spectrosc., 2012, 112(6), 864-867.
[http://dx.doi.org/10.1134/S0030400X12060197]
[9]
El-Didamony, A.M.; Shehata, A.M. Spectrophotometric determination of β-adrenergic antagonists drugs via ion-pair complex formation using MO and EBT. Opt. Spectrosc., 2014, 117(3), 492-499.
[http://dx.doi.org/10.1134/S0030400X14090069]
[10]
Giebułtowicz, J.; Kojro, G.; Buś-Kwaśnik, K.; Rudzki, P.J.; Marszałek, R.; Leś, A.; Wroczyński, P. Cloud-point extraction is compatible with liquid chromatography coupled to electrospray ionization mass spectrometry for the determination of bisoprolol in human plasma. J. Chromatogr. A, 2015, 1423, 39-46.
[http://dx.doi.org/10.1016/j.chroma.2015.10.076] [PMID: 26572051]
[11]
Zaki, M.M.; Abdelwahab, N.S.; Ali, A.A.; Sharkawi, S.M.Z. Simultaneous determination of bisoprolol fumarate and rosuvastatin calcium in a new combined formulation by validated RP-HPLC. Eur. J. Chem., 2019, 10(1), 52-56.
[http://dx.doi.org/10.5155/eurjchem.10.1.52-56.1815]
[12]
Cvan Trobec, K.; Trontelj, J.; Springer, J.; Lainscak, M.; Kerec Kos, M. Liquid chromatography–tandem mass spectrometry method for simultaneous quantification of bisoprolol, ramiprilat, propranolol and midazolam in rat dried blood spots. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 958, 29-35.
[http://dx.doi.org/10.1016/j.jchromb.2014.03.009] [PMID: 24686237]
[13]
Chekin, F.; Teodorescu, F.; Coffinier, Y.; Pan, G.H.; Barras, A.; Boukherroub, R.; Szunerits, S. MoS2/reduced graphene oxide as active hybrid material for the electrochemical detection of folic acid in human serum. Biosens. Bioelectron., 2016, 85, 807-813.
[http://dx.doi.org/10.1016/j.bios.2016.05.095] [PMID: 27288713]
[14]
Vatandost, E. Ghorbani-HasanSaraei, A.; Chekin, F.; Naghizadeh Raeisi, S.; Shahidi, S.A. Green tea extract assisted green synthesis of reduced graphene oxide: Application for highly sensitive electrochemical detection of sunset yellow in food products. Food Chem. X, 2020, 6, 100085-100090.
[http://dx.doi.org/10.1016/j.fochx.2020.100085] [PMID: 32577617]
[15]
Ladmakhi, H.B.; Chekin, F.; Fathi, S.; Raoof, J.B. Electrochemical sensor based on magnetite graphene oxide/ordered mesoporous carbon hybrid to detection of allopurinol in clinical samples. Talanta, 2020, 211, 120759.
[http://dx.doi.org/10.1016/j.talanta.2020.120759] [PMID: 32070564]
[16]
Murugavelu, M.; Karthikeyan, B. Study of Ag–Pd bimetallic nanoparticles modified glassy carbon electrode for detection of L -cysteine. Superlattices Microstruct., 2014, 75, 916-926.
[http://dx.doi.org/10.1016/j.spmi.2014.09.025]
[17]
Tang, X.; Liu, Y.; Hou, H.; You, T. Electrochemical determination of L-Tryptophan, L-Tyrosine and L-Cysteine using electrospun carbon nanofibers modified electrode. Talanta, 2010, 80(5), 2182-2186.
[http://dx.doi.org/10.1016/j.talanta.2009.11.027] [PMID: 20152470]
[18]
Elgendy, K.; Elmosallamy, M.A.F.; Soltan, M.K.; Amin, A.S.; Elshaprawy, D.S. Novel potentiometric methods for the estimation of bisoprolol and alverine in pharmaceutical forms and human serum. Rev. Anal. Chem., 2021, 40(1), 127-135.
[http://dx.doi.org/10.1515/revac-2021-0129]
[19]
Zil’berg, R.A.; Yarkaeva, Y.A.; Sidel’nikov, A.V.; Maistrenko, V.N.; Kraikin, V.A.; Gileva, N.G. Voltammetric determination of bisoprolol on a glassy carbon electrode modified by poly(arylene phthalide). J. Anal. Chem., 2016, 71(9), 926-931.
[http://dx.doi.org/10.1134/S1061934816090173]
[20]
Bozal, B.; Gumustas, M. -Topal, B.D.; Uslu, B.; Ozkan, S.A. Fully validated simultaneous determination of bisoprolol fumarate and hydrochlorothiazide in their dosage forms using different voltammetric, chromatographic, and spectrophotometric analytical methods. J. AOAC Int., 2013, 96(1), 42-51.
[http://dx.doi.org/10.5740/jaoacint.11-364] [PMID: 23513956]
[21]
Traipop, S.; Yakoh, A.; Jampasa, S.; Chaiyo, S.; Boonyongmaneerat, Y.; Panpranot, J.; Praserthdam, P.; Chailapakul, O. Sequential electrodeposition of Cu–Pt bimetallic nanocatalysts on boron-doped diamond electrodes for the simple and rapid detection of methanol. Sci. Rep., 2021, 11(1), 14354-14365.
[http://dx.doi.org/10.1038/s41598-021-92769-w] [PMID: 34257317]
[22]
Srinoi, P.; Chen, Y.T.; Vittur, V.; Marquez, M.; Lee, T. Bimetallic nanoparticles: Enhanced magnetic and optical properties for emerging biological applications. Appl. Sci., 2018, 8(7), 1106-1137.
[http://dx.doi.org/10.3390/app8071106]
[23]
Wang, L.; Weng, Y.; Wang, X.; Yin, H.X.; Wang, F.; Xue, X.; Liu, X.; Wang, F.; Duan, P.; Zhang, Y.; Zhang, Y. Synergistic bimetallic RuMo catalysts for selective rearrangement of furfural to cyclopentanol in aqueous phase. Catal. Commun., 2019, 129, 105745.
[http://dx.doi.org/10.1016/j.catcom.2019.105745]
[24]
Ismail, M.; Khan, M.I.; Khan, S.B.; Khan, M.A.; Akhtar, K.; Asiri, A.M. Green synthesis of plant supported Cu Ag and Cu Ni bimetallic nanoparticles in the reduction of nitrophenols and organic dyes for water treatment. J. Mol. Liq., 2018, 260, 78-91.
[http://dx.doi.org/10.1016/j.molliq.2018.03.058]
[25]
Satthawong, R.; Koizumi, N.; Song, C.; Prasassarakich, P. Light olefin synthesis from CO2 hydrogenation over K-promoted Fe–Co bimetallic catalysts. Catal. Today, 2015, 251, 34-40.
[http://dx.doi.org/10.1016/j.cattod.2015.01.011]
[26]
Aziz, M.A.A.; Setiabudi, H.D.; Teh, L.P.; Asmadi, M.; Matmin, J.; Wongsakulphasatch, S. High-performance bimetallic catalysts for low-temperature carbon dioxide reforming of methane. Chem. Eng. Technol., 2020, 43(4), 661-671.
[http://dx.doi.org/10.1002/ceat.201900514]
[27]
Nikkhah, S.; Tahermansouri, H.; Chekin, F. Synthesis, characterization, and electrochemical properties of the modified graphene oxide with 4,4′-methylenedianiline. Mater. Lett., 2018, 211, 323-327.
[http://dx.doi.org/10.1016/j.matlet.2017.10.037]
[28]
Zareyy, B.; Chekin, F.; Fathi, S. NiO/porous reduced graphene oxide as active hybrid electrocatalyst for oxygen evolution reaction. Russ. J. Electrochem., 2019, 55(4), 333-338.
[http://dx.doi.org/10.1134/S102319351903011X]
[29]
Hazhir, N.; Chekin, F.; Raoof, J.B.; Fathi, S. A porous reduced graphene oxide/chitosan-based nanocarrier as a delivery system of doxorubicin. RSC Advances, 2019, 9(53), 30729-30735.
[http://dx.doi.org/10.1039/C9RA04977K] [PMID: 35529364]
[30]
Xie, R.C.; Batchelor-McAuley, C.; Rauwel, E.; Rauwel, P.; Compton, R.G. Electrochemical characterisation of Co@Co(OH)2 core-shell nanoparticles and their aggregation in solution. ChemElectroChem, 2020, 7(20), 4259-4268.
[http://dx.doi.org/10.1002/celc.202001199]
[31]
Elham Vatandost. Ghorbani-Hasan Saraei, A.; Chekin, F.; Raeisi, S.N.; Shahidi, S-A. Electrochemical sensor based on magnetic Fe3O4-reduced graphene oxide hybrid for sensitive detection of binaphthol. Russ. J. Electrochem., 2021, 57(5), 490-498.
[http://dx.doi.org/10.1134/S102319352105013X]
[32]
Reyhane Rahimpour. Sabeti, B.; Chekin, F. Electrochemical sensor based on nitrogen doped porous reduced graphene oxide to detection of ciprofloxacin in pharmaceutical samples. Russ. J. Electrochem., 2021, 57(6), 654-662.
[http://dx.doi.org/10.1134/S1023193520120186]
[33]
Tabrizi, M.; Shahidi, S.A.; Chekin, F. Ghorbani-HasanSaraei, A.; Raeisi, S.N. Reduce graphene oxide/Fe3O4 nanocomposite biosynthesized by sour lemon peel; using as electro-catalyst for fabrication of vanillin electrochemical sensor in food products analysis and anticancer activity. Top. Catal., 2022, 65(5-6), 726-732.
[http://dx.doi.org/10.1007/s11244-021-01541-x]
[34]
Davarnia, B.; Shahidi, S.A.; Karimi-Maleh, H. Ghorbani-HasanSaraei, A.; Karimi, F. Biosynthesis of Ag nanoparticle by peganum harmala extract; antimicrobial activity and ability for fabrication of quercetin food electrochemical sensor. Int. J. Electrochem. Sci., 2020, 15(3), 2549-2560.
[http://dx.doi.org/10.20964/2020.03.70]
[35]
Amirighadi, S.; Raoof, J.B.; Chekin, F.; Ojani, R. A sensitive voltammetric detection of pramipexole based on 1,1,3,3-tetramethyldisilazanecarbon nanotube modified electrode. Mater. Sci. Eng. C, 2017, 75, 784-790.
[http://dx.doi.org/10.1016/j.msec.2017.02.072] [PMID: 28415529]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy