Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

Research Article

Formulation of Solid Lipid Nanoparticles Loaded with Rosiglitazone and Probiotic: Optimization and In-vitro Characterization

Author(s): Nitish Kumar*, Nidhi Tyagi, Sidharth Mehan and Alok Pratap Singh

Volume 18, Issue 4, 2024

Published on: 15 January, 2024

Page: [527 - 542] Pages: 16

DOI: 10.2174/0118722105268801231203144554

Price: $65

Abstract

Introduction: In the present study, solid lipid nanoparticles loaded with Rosiglitazone and probiotics were prepared via solvent emulsification diffusion method which is patented. As a lipid and surfactant, Gleceryl monostearate and Pluronic -68 were used in the formulation process.

Methods: During characterization, it was determined that ingredient quantity variations significantly impacted Rosiglitazone loading capacity, particle size, polydispersity index, etc. In an optimized formulation of RSG-PB loaded SLNs, spherical particles with a mean particle size of 147.66 ± 1.52 nm, PDI of 0.42 ± 0.02, and loading capacity of 45.36 ± 0.20 were identified.

Results: Moreover, the developed SLNs had the potential to discharge the drug for up to 24 hours, as predicted by Higuchi's pharmacokinetic model. The SLNs were stable at 25°C/60%RH for up to 60 days. There was little to no change in particle size, PDI, or loading capacity. In addition, the number of probiotic bacteria was determined using the standard plate count procedure. Further, the antioxidant effect of the prepared formulation is evaluated using the DPPH assay method.

Conclusion: This study concludes that the method used to fabricate RSG-probiotic-loaded SLNs is straightforward and yields favorable results regarding various parameters, including sustained release property, particle size, PDI, and percent drug loading stability. Furthermore, DPPH radical scavenging activity shows the high antioxidant potential of RSG-PB SLNs when compared to RSG and probiotics alone.

Keywords: Nanoparticle, rosiglitazone, probiotics, glyceryl monostearate, pharmacokinetic, antioxidant.

Graphical Abstract
[1]
Hanada S, Fujioka K, Inoue Y, Kanaya F, Manome Y, Yamamoto K. Cell-based in vitro blood-brain barrier model can rapidly evaluate nanoparticles’ brain permeability in association with particle size and surface modification. Int J Mol Sci 2014; 15(2): 1812-25.
[http://dx.doi.org/10.3390/ijms15021812] [PMID: 24469316]
[2]
Wohlfart S, Gelperina S, Kreuter J. Transport of drugs across the blood–brain barrier by nanoparticles. J Control Release 2012; 161(2): 264-73.
[http://dx.doi.org/10.1016/j.jconrel.2011.08.017] [PMID: 21872624]
[3]
Pinheiro RGR, Coutinho AJ, Pinheiro M, Neves AR. Nanoparticles for targeted brain drug delivery: What do we know? Int J Mol Sci 2021; 22(21): 11654.
[http://dx.doi.org/10.3390/ijms222111654] [PMID: 34769082]
[4]
Lockman PR, Koziara JM, Mumper RJ, Allen DD. Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J Drug Target 2004; 12(9-10): 635-41.
[http://dx.doi.org/10.1080/10611860400015936] [PMID: 15621689]
[5]
Birnbaum DT, Kosmala JD, Brannon-Peppas L. Optimization of preparation techniques for poly (lactic acid-co-glycolic acid) nanoparticles. J Nanopart Res 2000; 2(2): 173-81.
[http://dx.doi.org/10.1023/A:1010038908767]
[6]
Kamble VA, Jagdale DM, Kadam VJ. Solid lipid nanoparticles as drug delivery system. Int J Pharma Bio Sci 2010; 1(3): 1-9.
[7]
Wolfgang M, Karsten M. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 2012; 64: 83-101.
[8]
Li H, Zhao X, Ma Y, Zhai G, Li L, Lou H. Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J Control Release 2009; 133(3): 238-44.
[http://dx.doi.org/10.1016/j.jconrel.2008.10.002] [PMID: 18951932]
[9]
Rupenagunta A, Somasundaram I, Ravichandiram V, Kausalya J, Senthilnathan B. Solid lipid nanoparticles-A versatile carrier system. J Pharm Res 2011; 4(7): 2069-75.
[10]
Garud A, Singh D, Garud N. Solid lipid nanoparticles (SLN): Method, characterization and applications. Int Curr Pharm J 2012; 1(11): 384-93.
[http://dx.doi.org/10.3329/icpj.v1i11.12065]
[11]
Zhang XJ, Xiong ZB, Tang AL, et al. Rosiglitazone‐induced myocardial protection against ischaemia–reperfusion injury is mediated via a phosphatidylinositol 3‐kinase/Akt‐dependent pathway. Clin Exp Pharmacol Physiol 2010; 37(2): 156-61.
[http://dx.doi.org/10.1111/j.1440-1681.2009.05232.x] [PMID: 19566839]
[12]
Jiang C, Ting AT, Seed B. PPAR-γ agonists inhibit production of monocyte inflammatory cytokines. Nature 1998; 391(6662): 82-6.
[http://dx.doi.org/10.1038/34184] [PMID: 9422509]
[13]
Tontonoz P, Hu E, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. Cell 1994; 79(7): 1147-56.
[http://dx.doi.org/10.1016/0092-8674(94)90006-X] [PMID: 8001151]
[14]
Wagstaff AJ, Goa KL. Rosiglitazone. Drugs 2002; 62(12): 1805-37.
[http://dx.doi.org/10.2165/00003495-200262120-00007] [PMID: 12149047]
[15]
Nakajima A, Wada K, Miki H, et al. Endogenous PPARγ mediates anti-inflammatory activity in murine ischemia-reperfusion injury. Gastroenterology 2001; 120(2): 460-9.
[http://dx.doi.org/10.1053/gast.2001.21191] [PMID: 11159886]
[16]
Niino M, Iwabuchi K, Kikuchi S, et al. Amelioration of experimental autoimmune encephalomyelitis in C57BL/6 mice by an agonist of peroxisome proliferator-activated receptor-γ. J Neuroimmunol 2001; 116(1): 40-8.
[http://dx.doi.org/10.1016/S0165-5728(01)00285-5] [PMID: 11311328]
[17]
Mandrekar-Colucci S, Sauerbeck A, Popovich PG, McTigue DM. PPAR agonists as therapeutics for CNS trauma and neurological diseases. ASN Neuro 2013; 5(5): AN20130030.
[http://dx.doi.org/10.1042/AN20130030] [PMID: 24215544]
[18]
Boyle JG, Logan PJ, Ewart MA, et al. Rosiglitazone stimulates nitric oxide synthesis in human aortic endothelial cells via AMP-activated protein kinase. J Biol Chem 2008; 283(17): 11210-7.
[http://dx.doi.org/10.1074/jbc.M710048200] [PMID: 18303014]
[19]
Ceolotto G, Gallo A, Papparella I, et al. Rosiglitazone reduces glucose-induced oxidative stress mediated by NAD(P)H oxidase via AMPK-dependent mechanism. Arterioscler Thromb Vasc Biol 2007; 27(12): 2627-33.
[http://dx.doi.org/10.1161/ATVBAHA.107.155762] [PMID: 17916771]
[20]
Jia F, Wu C, Chen Z, Lu G. AMP-activated protein kinase inhibits homocysteine-induced dysfunction and apoptosis in endothelial progenitor cells. Cardiovasc Drugs Ther 2011; 25(1): 21-9.
[http://dx.doi.org/10.1007/s10557-010-6277-1] [PMID: 21258964]
[21]
Karin M. How NF-κB is activated: The role of the IκB kinase (IKK) complex. Oncogene 1999; 18(49): 6867-74.
[http://dx.doi.org/10.1038/sj.onc.1203219] [PMID: 10602462]
[22]
de Vries MC, Vaughan EE, Kleerebezem M, de Vos WM. Lactobacillus plantarum—survival, functional and potential probiotic properties in the human intestinal tract. Int Dairy J 2006; 16(9): 1018-28.
[http://dx.doi.org/10.1016/j.idairyj.2005.09.003]
[23]
Kailasapathy K, Chin J. Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunol Cell Biol 2000; 78(1): 80-8.
[http://dx.doi.org/10.1046/j.1440-1711.2000.00886.x] [PMID: 10651933]
[24]
Pandey S, Senthilguru K, Uvanesh K, et al. Natural gum modified emulsion gel as single carrier for the oral delivery of probiotic-drug combination. Int J Biol Macromol 2016; 92: 504-14.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.07.053] [PMID: 27431793]
[25]
Baral KC, Bajracharya R, Lee SH, Han HK. Advancements in the pharmaceutical applications of probiotics: Dosage forms and formulation technology. Int J Nanomedicine 2021; 16: 7535-56.
[http://dx.doi.org/10.2147/IJN.S337427] [PMID: 34795482]
[26]
Ebrahimnezhad P, Khavarpour M, Khalili S. Survival of Lactobacillus acidophilus as probiotic bacteria using chitosan nanoparticles. Int J Eng 2017; 30(4): 456-63.
[27]
Blasi P, Giovagnoli S, Schoubben A, Ricci M, Rossi C. Solid lipid nanoparticles for targeted brain drug delivery. Adv Drug Deliv Rev 2007; 59(6): 454-77.
[http://dx.doi.org/10.1016/j.addr.2007.04.011] [PMID: 17570559]
[28]
Mukherjee S, Ray S, Thakur RS. Design and evaluation of itraconazole loaded solid lipid nanoparticulate system for improving the antifungal therapy. Pak J Pharm Sci 2009; 22(2): 131-8.
[PMID: 19339221]
[29]
Ferreira L, Seiller M, Grossiord J, Marty J, Wepierre J. Vehicle influence on in vitro release of metronidazole: Role of w/o/w multiple emulsion. Int J Pharm 1994; 109(3): 251-9.
[http://dx.doi.org/10.1016/0378-5173(94)90387-5]
[30]
Young JC. True melting point determination. Chem Educ 2013; 18: 203-8.
[31]
Singh AP, Sharma SK, Gaur PK, Gupta DK. Fabrication of mupirocin-loaded nanostructured lipid carrier and its in vitro characterization. Assay Drug Dev Technol 2021; 19(4): 216-25.
[http://dx.doi.org/10.1089/adt.2020.1070] [PMID: 33781090]
[32]
Thakur V, Singh A, Joshi N, Mishra N. Spray dried formulation of mesalamine embedded with probiotic biomass for the treatment of ulcerative colitis: In-vitro and in-vivo studies. Drug Dev Ind Pharm 2019; 45(11): 1807-20.
[http://dx.doi.org/10.1080/03639045.2019.1665059] [PMID: 31489829]
[33]
Yasir M, Sara UV, Chauhan I, Gaur PK, Singh AP, Puri D. Ameeduzzafar. Solid lipid nanoparticles for nose to brain delivery of donepezil: Formulation, optimization by Box–Behnken design, in vitro and in vivo evaluation. Artif Cells Nanomed Biotechnol 2018; 46(8): 1838-51.
[34]
Shah K, Date A, Joshi M, Patravale V. Solid lipid nanoparticles (SLN) of tretinoin: Potential in topical delivery. Int J Pharm 2007; 345(1-2): 163-71.
[http://dx.doi.org/10.1016/j.ijpharm.2007.05.061] [PMID: 17644288]
[35]
Lewis GA. Optimization methods. In: Swarbrick J, Ed. Encyclopedia of pharmaceutical technology. (3rd ed.). New York: The Informa Health Care 2007; 4: pp. 2452-67.
[36]
Singh AP, Saraf SK, Saraf SA. SLN approach for nose-to-brain delivery of alprazolam. Drug Deliv Transl Res 2012; 2(6): 498-507.
[http://dx.doi.org/10.1007/s13346-012-0110-2] [PMID: 25787328]
[37]
Jores K, Mehnert W, Drechsler M, Bunjes H, Johann C, Mäder K. Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy. J Control Release 2004; 95(2): 217-27.
[http://dx.doi.org/10.1016/j.jconrel.2003.11.012] [PMID: 14980770]
[38]
Jain R, Kashaw SK, Mishra P. Spectrophotometric determination of rosiglitazone maleate in tablets. Asian J Chem 2008; 20(3): 1781.
[39]
Xing-guo Z, Jing M, Min-wei L, Sai-ping J, Fu-qiang H, Yong-zhong D. Solid lipid nanoparticles loading adefovir dipivoxil for antiviral therapy. J Zhejiang Univ Sci B 2008; 9(6): 506-10.
[http://dx.doi.org/10.1631/jzus.B0820047] [PMID: 18543406]
[40]
Chen DB, Yang T, Lu WL, Zhang Q. In vitro and in vivo study of two types of long-circulating solid lipid nanoparticles containing paclitaxel. Chem Pharm Bull 2001; 49(11): 1444-7.
[http://dx.doi.org/10.1248/cpb.49.1444] [PMID: 11724235]
[41]
Rostami E, Kashanian S, Azandaryani AH. Preparation of solid lipid nanoparticles as drug carriers for levothyroxine sodium with in vitro drug delivery kinetic characterization. Mol Biol Rep 2014; 41(5): 3521-7.
[http://dx.doi.org/10.1007/s11033-014-3216-4] [PMID: 24515386]
[42]
Krithika B, Preetha R. Formulation of protein based inulin incorporated synbiotic nanoemulsion for enhanced stability of probiotic. Mater Res Express 2019; 6(11): 114003.
[http://dx.doi.org/10.1088/2053-1591/ab4d1a]
[43]
Makoni PA, Wa Kasongo K, Walker RB. Short term stability testing of efavirenzloaded solid lipid nanoparticle (SLN) and nanostructured lipid carrier (NLC) dispersions. Pharmaceutics 2019; 11(8): 397.
[http://dx.doi.org/10.3390/pharmaceutics11080397] [PMID: 31398820]
[44]
Attia AK, Ibrahim MM, El-Ries MA. Thermal analysis of some antidiabetic pharmaceutical compounds. Adv Pharm Bull 2013; 3(2): 419-24.
[PMID: 24312870]
[45]
Vijayaraj S, Chakravarthi GK, Shanmugam R. Synthesis and characterization of novel amino acid prodrug of rosiglitazone.
[46]
Tayade PT, Kale RD. Encapsulation of water-insoluble drug by a cross-linking technique: Effect of process and formulation variables on encapsulation efficiency, particle size, and in vitro dissolution rate. AAPS PharmSci 2004; 6(1): 112-9.
[http://dx.doi.org/10.1208/ps060112] [PMID: 15198513]
[47]
Pandita D, Ahuja A, Velpandian T, Lather V, Dutta T, Khar RK. Characterization and in vitro assessment of paclitaxel loaded lipid nanoparticles formulated using modified solvent injection technique. Pharmazie 2009; 64(5): 301-10.
[PMID: 19530440]
[48]
Mehnert W, Mäder K. Solid lipid nanoparticles. Adv Drug Deliv Rev 2012; 64: 83-101.
[http://dx.doi.org/10.1016/j.addr.2012.09.021] [PMID: 11311991]
[49]
Ferreira M, Chaves LL, Lima SAC, Reis S. Optimization of nanostructured lipid carriers loaded with methotrexate: A tool for inflammatory and cancer therapy. Int J Pharm 2015; 492(1-2): 65-72.
[http://dx.doi.org/10.1016/j.ijpharm.2015.07.013] [PMID: 26169145]
[50]
Hunter RJ. Zeta potential in colloid science: Principles and applications. 2013.
[51]
Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 1). Trop J Pharm Res 2013; 12(2): 255-64.
[52]
Mitri K, Shegokar R, Gohla S, Anselmi C, Müller RH. Lipid nanocarriers for dermal delivery of lutein: Preparation, characterization, stability and performance. Int J Pharm 2011; 414(1-2): 267-75.
[http://dx.doi.org/10.1016/j.ijpharm.2011.05.008] [PMID: 21596122]
[53]
Khan S, Shaharyar M, Fazil M, Baboota S, Ali J. Tacrolimus-loaded nanostructured lipid carriers for oral delivery – optimization of production and characterization. Eur J Pharm Biopharm 2016; 108: 277-88.
[http://dx.doi.org/10.1016/j.ejpb.2016.07.017] [PMID: 27449630]
[54]
Freitas C, Müller RH. Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN™) dispersions. Int J Pharm 1998; 168(2): 221-9.
[http://dx.doi.org/10.1016/S0378-5173(98)00092-1]
[55]
Shakeri M, Razavi SH, Shakeri S. Carvacrol and astaxanthin co-entrapment in beeswax solid lipid nanoparticles as an efficient nano-system with dual antioxidant and anti-biofilm activities. Lebensm Wiss Technol 2019; 107: 280-90.
[http://dx.doi.org/10.1016/j.lwt.2019.03.031]
[56]
Singh AP, Puri D, Gaur PK, Chauhan I, Jayendra , Singh PK. A process for fabrication of solid lipid nanoparticles. Indian Patent, 398301, June 1, 2022.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy