Generic placeholder image

Journal of Current Toxicology and Venomics

Editor-in-Chief

ISSN (Print): 2950-5704
ISSN (Online): 2950-5712

Research Article

Novel 1,2,3-triazoles as Inhibitors of the Toxic Effects of the Venom of the Snake Lachesis muta muta

Author(s): Luiz Carlos Simas Pereira Junior, Nayanna de Mello Amorim, Eduardo Coriolano de Oliveira, Eladio Flores Sanchez, Vitor Francisco Ferreira, Gabriel Alves Souto de Aquino, Sabrina Baptista Ferreira and Andre Lopes Fuly*

Volume 4, 2024

Published on: 12 January, 2024

Article ID: e120124225594 Pages: 11

DOI: 10.2174/0126661217272344231208060944

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Snakebites are a worldwide health problem and produce pathological symptoms, such as hemorrhage, tissue necrosis, blood coagulation disorder, edema, and death. Although serum therapy protects victims from death, it does not prevent amputation of the affected limb. Therefore, alternative treatments deserve attention.

Objective: To test a new series of twelve disubstituted triazoles, TRI 02, TRI 03, TRI 04, TRI 05, TRI 07, TRI 08, TRI 09, TRI 11, TRI 14, TRI 16, TRI 17, and TRI 18 against the hemorrhagic, edematogenic, hemolytic, coagulant, and proteolytic activities of Lachesis muta muta venom.

Methods: The derivatives were incubated with L. muta venom (incubation protocol), then the toxic activities were measured. L. m. muta venom was injected before (treatment protocol) or after (prevention protocol) the derivatives.

Results: Most of the derivatives inhibited the proteolytic and hemolytic activity of L. m. muta venom, but only TRI 17 inhibited coagulation activity. The derivatives TRI 03, TRI 05, TRI 07, TRI 14, and TRI 17 inhibited hemorrhage, while TRI 07, TRI 08, and TRI 16 inhibited edema. The derivatives TRI 03, TRI 07, and TRI 11 inhibited hemorrhage whether they were administered before or after L. m. muta venom. According to in silico tool, TRI 03, TRI 04, TRI 07, TRI 08, TRI 09, TRI 16, TRI 17, and TRI 18 were not toxic. The derivatives did not violate Lipinksi’s rule of five.

Conclusion: These triazoles serve as molecules able to improve the treatment of L. m. muta envenoming.

Keywords: Triazole, lachesis muta muta, snake venom, antivenom, medicinal chemistry, neutralization.

[1]
Gutiérrez JM, Calvete JJ, Habib AG, Harrison RA, Williams DJ, Warrell DA. Snakebite envenoming. Nat Rev Dis Primers 2017; 3(17063): 1-21.
[2]
Chippaux JP. Snakebite envenomation turns again into a neglected tropical disease! J Venom Anim Toxins Incl Trop Dis 2017; 23(1): 38.
[http://dx.doi.org/10.1186/s40409-017-0127-6] [PMID: 28804495]
[3]
WHO. Snakebite envenoming. 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/snakebite-envenoming (Accessed on February 2021).
[4]
Williams DJ, Faiz MA, Abela-Ridder B, et al. Strategy for a globally coordinated response to a priority neglected tropical disease: Snakebite envenoming. PLoS Negl Trop Dis 2019; 13(2): e0007059.
[http://dx.doi.org/10.1371/journal.pntd.0007059] [PMID: 30789906]
[5]
da Silva AR, Anholeti MC, Pietroluongo M, et al. Utilization of the plant Clusia fluminensis planch & triana against some toxic activities of the venom of Bothrops jararaca and B. jararacussu snake venom toxic activities. Curr Top Med Chem 2019; 19(22): 1990-2002.
[http://dx.doi.org/10.2174/1568026619666190724160711] [PMID: 31339072]
[6]
Mora-Obando D, Pla D, Lomonte B, Guerrero-Vargas JA, Ayerbe S, Calvete JJ. Antivenomics and in vivo preclinical efficacy of six Latin American antivenoms towards south-western Colombian Bothrops asper lineage venoms. PLoS Negl Trop Dis 2021; 15(2): e0009073.
[http://dx.doi.org/10.1371/journal.pntd.0009073] [PMID: 33524033]
[7]
Cañas CA, Castaño-Valencia S, Castro-Herrera F. The Colombian bushmasters Lachesis acrochorda (García, 1896) and Lachesis muta (Linnaeus, 1766): Snake species, venoms, envenomation, and its management. Toxicon 2023; 230(230): 107152.
[http://dx.doi.org/10.1016/j.toxicon.2023.107152] [PMID: 37178796]
[8]
Ministério da Saúde. 2023. Available form: http://tabnet.datasus.gov.br/cgi/deftohtm.exe?sinannet/cnv/animaisbr.def (Cited 25/05/2023).
[9]
Warrell DA. Snakebites in Central and South America: Epidemiology, clinical features, and clinical managementThe venomous reptiles of the western hemisphere. Ithaca: Cornell University Press 2004; pp. 709-61.
[10]
Barrio-Amorós CL, Corrales G, Rodríguez S, Culebras J, Dwyer Q, Flores DA. The Bushmasters (Lachesis spp.): Queens of the rainforest. Reptiles Amphib 2020; 27(3): 358-81.
[http://dx.doi.org/10.17161/randa.v27i3.14978]
[11]
Madrigal M, Sanz L, Flores-Díaz M, et al. Snake venomics across genus Lachesis. Ontogenetic changes in the venom composition of Lachesis stenophrys and comparative proteomics of the venoms of adult Lachesis melanocephala and Lachesis acrochorda. J Proteomics 2012; 77(77): 280-97.
[http://dx.doi.org/10.1016/j.jprot.2012.09.003] [PMID: 22982523]
[12]
IUCN. The IUCN Red List of threatened species. 2023. Available from: https://www.iucnredlist.org (Accessed on February 2023).
[13]
Zamudio K, Greene HW. Phylogeography of the bushmaster (Lachesis muta: Viperidae): implications for neotropical biogeography, systematics, and conservation. Biol J Linn Soc Lond 1997; 62(3): 421-42.
[http://dx.doi.org/10.1006/bijl.1997.0162]
[14]
Angel-Camilo KL, Guerrero-Vargas JA, Carvalho EF, et al. Disorders on cardiovascular parameters in rats and in human blood cells caused by Lachesis acrochorda snake venom. Toxicon 2020; 184(9): 180-91.
[http://dx.doi.org/10.1016/j.toxicon.2020.06.009] [PMID: 32585218]
[15]
Stephano MA, Guidolin R, Higashi HG, Tambourgi DV, Sant’Anna OA. The improvement of the therapeutic anti-Lachesis muta serum production in horses. Toxicon 2005; 45(4): 467-73.
[http://dx.doi.org/10.1016/j.toxicon.2004.12.006] [PMID: 15733568]
[16]
Sanz L, Escolano J, Ferretti M, et al. Snake venomics of the south and central american bushmasters. Comparison of the toxin composition of Lachesis muta gathered from proteomic versus transcriptomic analysis. J Proteomics 2008; 71(1): 46-60.
[http://dx.doi.org/10.1016/j.jprot.2007.10.004] [PMID: 18541473]
[17]
Diniz-Sousa R, Moraes JN, Rodrigues-da-Silva TM, Oliveira CS, Caldeira CAS. A brief review on the natural history, venomics and the medical importance of bushmaster (Lachesis) pit viper snakes. Toxicon X 2020; 7(10): 100053.
[http://dx.doi.org/10.1016/j.toxcx.2020.100053] [PMID: 32793880]
[18]
de Lima ME, Fortes-Dias CL, Carlini CR, Guimarães JA. Toxinology in Brazil: A big challenge for a rich biodiversity. Toxicon 2010; 56(7): 1084-91.
[http://dx.doi.org/10.1016/j.toxicon.2010.05.005] [PMID: 20685368]
[19]
Camey KU, Velarde DT, Sanchez EF. Pharmacological characterization and neutralization of the venoms used in the production of Bothropic antivenom in Brazil. Toxicon 2002; 40(5): 501-9.
[http://dx.doi.org/10.1016/S0041-0101(01)00245-8] [PMID: 11821121]
[20]
Patikorn C, Ismail AK, Zainal Abidin SA, Othman I, Chaiyakunapruk N, Taychakhoonavudh S. Potential economic and clinical implications of improving access to snake antivenom in five ASEAN countries: A cost-effectiveness analysis. PLoS Negl Trop Dis 2022; 16(11): e0010915.
[http://dx.doi.org/10.1371/journal.pntd.0010915] [PMID: 36383562]
[21]
Saethang T, Somparn P, Payungporn S, et al. Identification of Daboia siamensis venome using integrated multi-omics data. Sci Rep 2022; 12(1): 13140.
[http://dx.doi.org/10.1038/s41598-022-17300-1] [PMID: 35907887]
[22]
Gutiérrez JM. Improving antivenom availability and accessibility: Science, technology, and beyond. Toxicon 2012; 60(4): 676-87.
[http://dx.doi.org/10.1016/j.toxicon.2012.02.008] [PMID: 22781134]
[23]
Lee LP, Tan CH, Khomvilai S, Sitprija V, Chaiyabutr N, Tan KY. Characterizing and applying immunoglobulins in snakebite diagnostics: A simple and rapid venom detection assay for four medically important snake species in Southeast Asia. Int J Biol Macromol 2023; 236(1): 123727-54.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.123727] [PMID: 36863668]
[24]
Simas Pereira Junior LC, Coriolano de Oliveira E, Valle Rorig TD, et al. The plant Stryphnodendron adstringens (Mart.) Coville as a neutralizing source against some toxic activities of Bothrops jararacussu snake venom. Toxicon 2020; 186(186): 182-90.
[http://dx.doi.org/10.1016/j.toxicon.2020.08.011] [PMID: 32822735]
[25]
Mors WB, Nascimento MC, Pereira BM, Pereira NA. Plant natural products active against snake bite--the molecular approach. Phytochemistry 2000; 55(6): 627-42.
[http://dx.doi.org/10.1016/S0031-9422(00)00229-6] [PMID: 11130675]
[26]
Singh A, Singh K, Sharma A, et al. 1,2,3‐Triazole Derivatives as an Emerging Scaffold for Antifungal Drug Development against Candida albicans: A Comprehensive Review. Chem Biodivers 2023; 20(5): e202300024.
[http://dx.doi.org/10.1002/cbdv.202300024] [PMID: 37017338]
[27]
Dantas WM, de Oliveira VNM, Santos DAL, et al. Searching anti-zika virus activity in 1h-1,2,3-triazole based compounds. Molecules 2021; 26(19): 5869.
[http://dx.doi.org/10.3390/molecules26195869] [PMID: 34641413]
[28]
Constantinescu T, Lungu CN. Anticancer activity of natural and synthetic chalcones. Int J Mol Sci 2021; 22(21): 11306.
[http://dx.doi.org/10.3390/ijms222111306] [PMID: 34768736]
[29]
Moura LA, de Almeida ACM, da Silva AV, et al. Synthesis, anticlotting and antiplatelet effects of 1,2,3-triazoles derivatives. Med Chem 2016; 12(8): 733-41.
[http://dx.doi.org/10.2174/1573406412666160502153417] [PMID: 27140186]
[30]
Campos VR, Abreu PA, Castro HC, et al. Synthesis, biological, and theoretical evaluations of new 1,2,3-triazoles against the hemolytic profile of the Lachesis muta snake venom. Bioorg Med Chem 2009; 17(21): 7429-34.
[http://dx.doi.org/10.1016/j.bmc.2009.09.031] [PMID: 19815419]
[31]
Souza JF, Santana MVS, da Silva ACR, et al. Study on the synthesis and structure-activity relationship of 1,2,3-triazoles against toxic activities of Bothrops jararaca venom. Zeitschrift für Naturfors C 2022; 77((11-12)): 459-71.
[32]
Kharb R, Sharma PC, Yar MS. Pharmacological significance of triazole scaffold. J Enzyme Inhib Med Chem 2011; 26(1): 1-21.
[http://dx.doi.org/10.3109/14756360903524304] [PMID: 20583859]
[33]
Gonnet L, Baron M, Baltas M. Synthesis of biologically relevant 1,2,3- and 1,3,4-triazoles: from classical pathway to green chemistry. Molecules 2021; 26(18): 5667.
[http://dx.doi.org/10.3390/molecules26185667] [PMID: 34577138]
[34]
Amorim NM, Pereira Junior LCS, Sanchez EF, et al. Synthesis, characterization and utilization of a new series of 1,2,3-triazole derivatives to neutralize some toxic activities of Bothrops jararaca snake venom. Braz J Pharm Sci 2022; 58: e201143.
[http://dx.doi.org/10.1590/s2175-9790202x000x2e201143]
[35]
Garcia ES, Guimarães JA, Prado JL. Purification and characterization of a sulfhydryl-dependent protease from Rhodnius prolixus midgut. Arch Biochem Biophys 1978; 188(2): 315-22.
[http://dx.doi.org/10.1016/S0003-9861(78)80015-0] [PMID: 28087]
[36]
Fuly AL, Machado OLT, Alves EW, Carlinis CR. Mechanism of inhibitory action on platelet activation of a phospholipase A2 isolated from Lachesis muta (Bushmaster) snake venom. Thromb Haemost 1997; 78(5): 1372-80.
[http://dx.doi.org/10.1055/s-0038-1665414] [PMID: 9408022]
[37]
Kondo H, Kondo S, Ikezawa H, Murata R, Ohsaka A. Studies on the quantitative method for determination of hemorrhagic activity of Habu snake venom. Jpn J Med Sci Biol 1960; 13(1-2): 43-51.
[http://dx.doi.org/10.7883/yoken1952.13.43] [PMID: 13853435]
[38]
Sannanaik Vishwanath B, Manjunatha Kini R, Veerabasappa Gowda T. Characterization of three edema-inducing phospholipase A2 enzymes from habu (Trimeresurus flavoviridis) venom and their interaction with the alkaloid aristolochic acid. Toxicon 1987; 25(5): 501-15.
[http://dx.doi.org/10.1016/0041-0101(87)90286-8] [PMID: 3617087]
[39]
Boechat N, Pinheiro LCS, Santos-Filho OA, Silva IC. Design and synthesis of new N-(5-trifluoromethyl)-1H-1,2,4-triazol-3-yl benzenesulfonamides as possible antimalarial prototypes. Molecules 2011; 16(9): 8083-97.
[http://dx.doi.org/10.3390/molecules16098083] [PMID: 21934646]
[40]
Konrath EL, Strauch I, Boeff DD, Arbo MD. The potential of Brazilian native plant species used in the therapy for snakebites: A literature review. Toxicon 2022; 217(217): 17-40.
[http://dx.doi.org/10.1016/j.toxicon.2022.08.002] [PMID: 35952835]
[41]
Coriolano de Oliveira E, Alves Soares Cruz R, de Mello Amorim N, et al. Protective effect of the plant extracts of Erythroxylum sp. against toxic effects induced by the venom of Lachesis muta snake. Molecules 2016; 21(10): 1350.
[http://dx.doi.org/10.3390/molecules21101350] [PMID: 27727185]
[42]
Chazin E, Martins L, de Souza MV, et al. Synthesis and biological evaluation of novel 1,3-benzoxathiol-2-one sulfonamides against toxic activities of the venom of Bothrops jararaca and Bothrops jararacussu snakes. J Braz Chem Soc 2022; 33(1): 2-12.
[http://dx.doi.org/10.21577/0103-5053.20210119]
[43]
Gutiérrez JM, Albulescu LO, Clare RH, et al. The search for natural and synthetic inhibitors that would complement antivenoms as therapeutics for snakebite envenoming. Toxins 2021; 13(7): 451.
[http://dx.doi.org/10.3390/toxins13070451] [PMID: 34209691]
[44]
Keri RS, Patil SA, Budagumpi S, Nagaraja BM. Triazole: A promising antitubercular agent. Chem Biol Drug Des 2015; 86(4): 410-23.
[http://dx.doi.org/10.1111/cbdd.12527] [PMID: 25643871]
[45]
Strauch MA, Tomaz MA, Monteiro-Machado M, et al. Lapachol and synthetic derivatives: In vitro and in vivo activities against Bothrops snake venoms. PLoS One 2019; 14(1): e0211229.
[http://dx.doi.org/10.1371/journal.pone.0211229] [PMID: 30689661]
[46]
Alam MI, Quasimi H, Kumar A, et al. Protective effects of novel diazepinone derivatives in snake venom induced sterile inflammation in experimental animals. Eur J Pharmacol 2022; 928(5): 175095.
[http://dx.doi.org/10.1016/j.ejphar.2022.175095] [PMID: 35728626]
[47]
Salvador GHM, Borges RJ, Lomonte B, Lewin MR, Fontes MRM. The synthetic varespladib molecule is a multi-functional inhibitor for PLA2 and PLA2-like ophidic toxins. Biochim Biophys Acta, Gen Subj 2021; 1865(7): 129913.
[http://dx.doi.org/10.1016/j.bbagen.2021.129913] [PMID: 33865953]
[48]
Henao Castañeda IC, Pereañez JA, Preciado LM. Synthetic inhibitors of snake venom enzymes: Thioesters derived from 2-sulfenyl ethylacetate. Pharmaceuticals 2019; 12(2): 80.
[http://dx.doi.org/10.3390/ph12020080] [PMID: 31126073]
[49]
de la Rosa G, Pastor N, Alagón A, Corzo G. Synthetic peptide antigens derived from long-chain alpha-neurotoxins: Immunogenicity effect against elapid venoms. Peptides 2017; 88(2): 80-6.
[http://dx.doi.org/10.1016/j.peptides.2016.12.006] [PMID: 28010961]
[50]
Camperi SA, Acosta G, Barredo GR, et al. Synthetic peptides to produce antivenoms against the Cys-rich toxins of arachnids. Toxicon X 2020; 6(5): 100038.
[http://dx.doi.org/10.1016/j.toxcx.2020.100038] [PMID: 32550593]
[51]
Gao F, Wang T, Xiao J, Huang G. Antibacterial activity study of 1,2,4-triazole derivatives. Eur J Med Chem 2019; 173(1): 274-81.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.043] [PMID: 31009913]
[52]
Alam MM. 1,2,3-Triazole hybrids as anticancer agents: A review. Arch Pharm 2002; 355(1): e2100158.
[53]
Yang W, Xuan B, Li X, Si H, Chen A. Therapeutic potential of 1,2,3‐triazole hybrids for leukemia treatment. Arch Pharm 2022; 355(9): 2200106.
[http://dx.doi.org/10.1002/ardp.202200106] [PMID: 35532286]
[54]
Olaoba OT, Karina dos Santos P, Selistre-de-Araujo HS, Ferreira de Souza DH. Snake venom metalloproteinases (SVMPs): A structure-function update. Toxicon X 2020; 7(7): 100052.
[http://dx.doi.org/10.1016/j.toxcx.2020.100052] [PMID: 32776002]
[55]
Vaiyapuri S, Wagstaff SC, Harrison RA, Gibbins JM, Hutchinson EG. Evolutionary analysis of novel serine proteases in the venom gland transcriptome of Bitis gabonica rhinoceros. PLoS One 2011; 6(6): e21532.
[http://dx.doi.org/10.1371/journal.pone.0021532] [PMID: 21731776]
[56]
Xiao H, Pan H, Liao K, Yang M, Huang C. Snake venom PLA2, a promising target for broad-spectrum antivenom drug development. BioMed Res Int 2017; 2017: 1-10.
[http://dx.doi.org/10.1155/2017/6592820] [PMID: 29318152]
[57]
Domingos TFS, Moura LA, Carvalho C, et al. Antivenom effects of 1,2,3-triazoles against Bothrops jararaca and Lachesis muta snakes. BioMed Res Int 2013; 2013: 1-7.
[http://dx.doi.org/10.1155/2013/294289] [PMID: 23710441]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy