Generic placeholder image

Current Drug Discovery Technologies

Editor-in-Chief

ISSN (Print): 1570-1638
ISSN (Online): 1875-6220

Review Article

In-silico, in-vitro and in-vivo Biological Activities of Flavonoids for the Management of Type 2 Diabetes

Author(s): Jyoshna Rani Dash, Biswakanth Kar* and Gurudutta Pattnaik

Volume 21, Issue 5, 2024

Published on: 12 January, 2024

Article ID: e120124225551 Pages: 12

DOI: 10.2174/0115701638290819231228081120

Price: $65

Open Access Journals Promotions 2
Abstract

In spite of the fact that many medicinal plants have been truly utilized for the management of diabetes all through the world, very few of them have been reported scientifically. Recently, a diverse variety of animal models have been established to better understand the pathophysiology of diabetes mellitus, and new medications to treat the condition have been introduced in the market. Flavonoids are naturally occurring substances that can be found in plants and various foods and may have health benefits in the treatment of neuropathic pain. Flavonoids have also been shown to have an anti-inflammatory impact that is significant to neuropathic pain, as indicated by a decrease in several pro-inflammatory mediators such TNF-, NF-B IL-6, and IL-1. Flavonoids appear to be a viable novel therapy option for macrovasular complications in preclinical models; however, human clinical data is still inadequate. Recently, several in silico, in-vitro and in-vivo aproaches were made to evaluate mechanisms associated with the pathogenesis of diabetes in a better way. Screening of natural antidiabetic agents from plant sources can be analysed by utilizing advanced in-vitro techniques and animal models. Natural compounds, mostly derived from plants, have been studied in diabetes models generated by chemical agents in the majority of research. The aim of this work was to review the available in silico, in-vitro and animal models of diabetes for screening of natural antidiabetic agents. This review contributes to the scientist's design of new methodologies for the development of novel therapeutic agents having potential antihyperglycemic activity.

Keywords: Diabetes mellitus, flavonoids, macrovasular complications, neuropathic pain, insulin, macrovasular complications.

Graphical Abstract
[1]
IDF diabetes atlas. International Diabetes Federation. 2017; pp. 905-11.
[2]
World Health Organization. World health statistics 2016: Monitoring health for the SDGs sustainable development goals. 2016.
[3]
Zamora-Ros R, Forouhi NG, Sharp SJ, et al. Dietary intakes of individual flavanols and flavonols are inversely associated with incident type 2 diabetes in European populations. J Nutr 2014; 144(3): 335-43.
[http://dx.doi.org/10.3945/jn.113.184945] [PMID: 24368432]
[4]
Vessal M, Hemmati M, Vasei M. Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comp Biochem Physiol C Toxicol Pharmacol 2003; 135(3): 357-64.
[http://dx.doi.org/10.1016/S1532-0456(03)00140-6] [PMID: 12927910]
[5]
Coskun O, Kanter M, Korkmaz A, Oter S. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and? -cell damage in rat pancreas. Pharmacol Res 2005; 51(2): 117-23.
[http://dx.doi.org/10.1016/j.phrs.2004.06.002] [PMID: 15629256]
[6]
Prasath GS, Subramanian SP. Fisetin, a tetra hydroxy flavone recuperates antioxidant status and protects hepatocellular ultrastructure from hyperglycemia mediated oxidative stress in streptozotocin induced experimental diabetes in rats. Food Chem Toxicol 2013; 59: 249-55.
[http://dx.doi.org/10.1016/j.fct.2013.05.062] [PMID: 23791753]
[7]
Kang YJ, Jung UJ, Lee MK, et al. Eupatilin, isolated from Artemisia princeps Pampanini, enhances hepatic glucose metabolism and pancreatic β-cell function in type 2 diabetic mice. Diabetes Res Clin Pract 2008; 82(1): 25-32.
[http://dx.doi.org/10.1016/j.diabres.2008.06.012] [PMID: 18703253]
[8]
Bak EJ, Kim J, Choi YH, et al. Wogonin ameliorates hyperglycemia and dyslipidemia via PPARα activation in db/db mice. Clin Nutr 2014; 33(1): 156-63.
[http://dx.doi.org/10.1016/j.clnu.2013.03.013] [PMID: 23623334]
[9]
Nazreen S, Kaur G, Alam MM, et al. New flavones with antidiabetic activity from Callistemon lanceolatus DC. Fitoterapia 2012; 83(8): 1623-7.
[http://dx.doi.org/10.1016/j.fitote.2012.09.012] [PMID: 22999989]
[10]
Squadrito F, Marini H, Bitto A, et al. Genistein in the metabolic syndrome: Results of a randomized clinical trial. J Clin Endocrinol Metab 2013; 98(8): 3366-74.
[http://dx.doi.org/10.1210/jc.2013-1180] [PMID: 23824420]
[11]
Choi MS, Jung UJ, Yeo J, Kim MJ, Lee MK. Genistein and daidzein prevent diabetes onset by elevating insulin level and altering hepatic gluconeogenic and lipogenic enzyme activities in Non-Obese Diabetic (NOD) mice. Diabetes Metab Res Rev 2008; 24(1): 74-81.
[http://dx.doi.org/10.1002/dmrr.780] [PMID: 17932873]
[12]
Harini R, Ezhumalai M, Pugalendi KV. Antihyperglycemic effect of biochanin A, a soy isoflavone, on streptozotocin-diabetic rats. Eur J Pharmacol 2012; 676(1-3): 89-94.
[http://dx.doi.org/10.1016/j.ejphar.2011.11.051] [PMID: 22178203]
[13]
Wu F, Jin Z, Jin J. Hypoglycemic effects of glabridin, a polyphenolic flavonoid from licorice, in an animal model of diabetes mellitus. Mol Med Rep 2013; 7(4): 1278-82.
[http://dx.doi.org/10.3892/mmr.2013.1330] [PMID: 23426874]
[14]
Annadurai T, Muralidharan AR, Joseph T, Hsu MJ, Thomas PA, Geraldine P. Antihyperglycemic and antioxidant effects of a flavanone, naringenin, in streptozotocin-nicotinamide-induced experimental diabetic rats. J Physiol Biochem 2012; 68(3): 307-18.
[http://dx.doi.org/10.1007/s13105-011-0142-y] [PMID: 22234849]
[15]
Jang HJ, Ridgeway SD, Kim J. Effects of the green tea polyphenol epigallocatechin-3-gallate on high-fat diet-induced insulin resistance and endothelial dysfunction. Am J Physiol Endocrinol Metab 2013; 305(12): E1444-51.
[http://dx.doi.org/10.1152/ajpendo.00434.2013] [PMID: 24148349]
[16]
Fu Z, Yuskavage J, Liu D. Dietary flavonol epicatechin prevents the onset of type 1 diabetes in nonobese diabetic mice. J Agric Food Chem 2013; 61(18): 4303-9.
[http://dx.doi.org/10.1021/jf304915h] [PMID: 23578364]
[17]
Roy M, Sen S, Chakraborti AS. Action of pelargonidin on hyperglycemia and oxidative damage in diabetic rats: Implication for glycation-induced hemoglobin modification. Life Sci 2008; 82(21-22): 1102-10.
[http://dx.doi.org/10.1016/j.lfs.2008.03.011] [PMID: 18440560]
[18]
Lirussi F, Beccarello A, Zanette G, et al. Silybin-beta-cyclodextrin in the treatment of patients with diabetes mellitus and alcoholic liver disease. Efficacy study of a new preparation of an anti-oxidant agent. Diabetes Nutr Metab 2002; 15(4): 222-31.
[PMID: 12416659]
[19]
Cazarolli LH, Folador P, Moresco HH, Brighente IMC, Pizzolatti MG, Silva FRMB. Mechanism of action of the stimulatory effect of apigenin-6-C-(2″-O-α-l-rhamnopyranosyl)-β-l-fucopyranoside on 14C-glucose uptake. Chem Biol Interact 2009; 179(2-3): 407-12.
[http://dx.doi.org/10.1016/j.cbi.2008.11.012] [PMID: 19070612]
[20]
Michael HN, Salib JY, Eskander EF. Bioactivity of diosmetin glycosides isolated from the epicarp of date fruits, Phoenix dactylifera, on the biochemical profile of alloxan diabetic male rats. Phytother Res 2013; 27(5): 699-704.
[http://dx.doi.org/10.1002/ptr.4777] [PMID: 22761049]
[21]
Jung UJ, Choi M-S, Lee M-K, Jeong K-S. The hypoglycemic effects of hesperidin and naringin are partly mediated by hepatic glucose-regulating enzymes in C57BL/KsJ-db/db mice. J Nutr 2004; 134(10): 2499-503.
[http://dx.doi.org/10.1093/jn/134.10.2499] [PMID: 15465737]
[22]
Andrade-Cetto A, Wiedenfeld H. Hypoglycemic effect of Cecropia obtusifolia on streptozotocin diabetic rats. J Ethnopharmacol 2001; 78(2-3): 145-9.
[http://dx.doi.org/10.1016/S0378-8741(01)00335-X] [PMID: 11694359]
[23]
de Sousa E, Zanatta L, Seifriz I, et al. Hypoglycemic effect and antioxidant potential of kaempferol-3,7-O-(α)-dirhamnoside from Bauhinia forficata leaves. J Nat Prod 2004; 67(5): 829-32.
[http://dx.doi.org/10.1021/np030513u] [PMID: 15165145]
[24]
Kamalakkannan N, Prince PSM. Antihyperglycaemic and antioxidant effect of rutin, a polyphenolic flavonoid, in streptozotocin-induced diabetic wistar rats. Basic Clin Pharmacol Toxicol 2006; 98(1): 97-103.
[http://dx.doi.org/10.1111/j.1742-7843.2006.pto_241.x] [PMID: 16433898]
[25]
Venkatesan T, Sorimuthu Pillai S. Antidiabetic activity of gossypin, a pentahydroxyflavone glucoside, in streptozotocin‐induced experimental diabetes in rats. J Diabetes 2012; 4(1): 41-6.
[http://dx.doi.org/10.1111/j.1753-0407.2011.00145.x] [PMID: 21722326]
[26]
Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: Food sources and bioavailability. Am J Clin Nutr 2004; 79(5): 727-47.
[http://dx.doi.org/10.1093/ajcn/79.5.727] [PMID: 15113710]
[27]
Hanhineva K, Törrönen R, Bondia-Pons I, et al. Impact of dietary polyphenols on carbohydrate metabolism. Int J Mol Sci 2010; 11(4): 1365-402.
[http://dx.doi.org/10.3390/ijms11041365] [PMID: 20480025]
[28]
Cai EP, Lin JK. Epigallocatechin gallate (EGCG) and rutin suppress the glucotoxicity through activating IRS2 and AMPK signaling in rat pancreatic β cells. J Agric Food Chem 2009; 57(20): 9817-27.
[http://dx.doi.org/10.1021/jf902618v] [PMID: 19803520]
[29]
Harnly JM, Doherty RF, Beecher GR, et al. Flavonoid content of U.S. fruits, vegetables, and nuts. J Agric Food Chem 2006; 54(26): 9966-77.
[http://dx.doi.org/10.1021/jf061478a] [PMID: 17177529]
[30]
Khan HY, Zubair H, Faisal M, et al. Plant polyphenol induced cell death in human cancer cells involves mobilization of intracellular copper ions and reactive oxygen species generation: A mechanism for cancer chemopreventive action. Mol Nutr Food Res 2014; 58(3): 437-46.
[http://dx.doi.org/10.1002/mnfr.201300417] [PMID: 24123728]
[31]
Testa R, Bonfigli A, Genovese S, De Nigris V, Ceriello A. The possible role of flavonoids in the prevention of diabetic complications. Nutrients 2016; 8(5): 310.
[http://dx.doi.org/10.3390/nu8050310] [PMID: 27213445]
[32]
Choi EJ, Kim GH. 5-Fluorouracil combined with apigenin enhances anticancer activity through induction of apoptosis in human breast cancer MDA-MB-453 cells. Oncol Rep 2009; 22(6): 1533-7.
[http://dx.doi.org/10.3892/or_00000598] [PMID: 19885610]
[33]
Jadhav R, Puchchakayala G. Hypoglycemic and antidiabetic activity of flavonoids: Boswellic acid, ellagic acid, quercetin, rutin on streptozotocin-nicotinamide induced type 2 diabetic rats. Group 2012; 1: 100g.
[34]
Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2009; 2(5): 270-8.
[http://dx.doi.org/10.4161/oxim.2.5.9498] [PMID: 20716914]
[35]
Reinehr T. Type 2 diabetes mellitus in children and adolescents. World J Diabetes 2013; 4(6): 270-81.
[http://dx.doi.org/10.4239/wjd.v4.i6.270] [PMID: 24379917]
[36]
Onasanwo SA, Velagapudi R, El-Bakoush A, Olajide OA. Inhibition of neuroinflammation in BV2 microglia by the biflavonoid kolaviron is dependent on the Nrf2/ARE antioxidant protective mechanism. Mol Cell Biochem 2016; 414(1-2): 23-36.
[http://dx.doi.org/10.1007/s11010-016-2655-8] [PMID: 26838169]
[37]
Li KC, Ho YL, Hsieh WT, Huang SS, Chang YS, Huang GJ. Apigenin-7-glycoside prevents LPS-induced acute lung injury via downregulation of oxidative enzyme expression and protein activation through inhibition of MAPK phosphorylation. Int J Mol Sci 2015; 16(1): 1736-54.
[http://dx.doi.org/10.3390/ijms16011736] [PMID: 25590301]
[38]
Vauzour D, Vafeiadou K, Rodriguez-Mateos A, Rendeiro C, Spencer JPE. The neuroprotective potential of flavonoids: A multiplicity of effects. Genes Nutr 2008; 3(3-4): 115-26.
[http://dx.doi.org/10.1007/s12263-008-0091-4] [PMID: 18937002]
[39]
Said G. Diabetic neuropathy-a review. Nat Clin Pract Neurol 2007; 3(6): 331-40.
[http://dx.doi.org/10.1038/ncpneuro0504] [PMID: 17549059]
[40]
Selvarajah D, Wilkinson ID, Emery CJ, et al. Early involvement of the spinal cord in diabetic peripheral neuropathy. Diabetes Care 2006; 29(12): 2664-9.
[http://dx.doi.org/10.2337/dc06-0650] [PMID: 17130202]
[41]
Ding Y, Dai X, Zhang Z, et al. Proanthocyanidins protect against early diabetic peripheral neuropathy by modulating endoplasmic reticulum stress. J Nutr Biochem 2014; 25(7): 765-72.
[http://dx.doi.org/10.1016/j.jnutbio.2014.03.007] [PMID: 24791737]
[42]
Boulton AJM, Vinik AI, Arezzo JC, et al. Diabetic neuropathies. Diabetes Care 2005; 28(4): 956-62.
[http://dx.doi.org/10.2337/diacare.28.4.956] [PMID: 15793206]
[43]
Klein R, Klein BE, Moss SE, Wong TY. The relationship of retinopathy in persons without diabetes to the 15-year incidence of diabetes and hypertension: Beaver Dam Eye Study. Trans Am Ophthalmol Soc 2006; 104: 98-107.
[PMID: 17471330]
[44]
Duarte D, Silva K, Rosales M, Lopes de Faria J, Lopes de Faria J. The concomitance of hypertension and diabetes exacerbating retinopathy: the role of inflammation and oxidative stress. Curr Clin Pharmacol 2013; 8(4): 266-77.
[http://dx.doi.org/10.2174/1574884711308040002] [PMID: 23173956]
[45]
Grassi D, Necozione S, Lippi C, et al. Cocoa reduces blood pressure and insulin resistance and improves endothelium-dependent vasodilation in hypertensives. Hypertension 2005; 46(2): 398-405.
[http://dx.doi.org/10.1161/01.HYP.0000174990.46027.70] [PMID: 16027246]
[46]
Duarte DA, Rosales MAB, Papadimitriou A, et al. Polyphenol-enriched cocoa protects the diabetic retina from glial reaction through the sirtuin pathway. J Nutr Biochem 2015; 26(1): 64-74.
[http://dx.doi.org/10.1016/j.jnutbio.2014.09.003] [PMID: 25448608]
[47]
Rimbach G, Melchin M, Moehring J, Wagner A. Polyphenols from cocoa and vascular health-a critical review. Int J Mol Sci 2009; 10(10): 4290-309.
[http://dx.doi.org/10.3390/ijms10104290] [PMID: 20057946]
[48]
Lee H, Jun JH, Jung EH, Koo B, Kim Y. Epigalloccatechin-3-gallate inhibits ocular neovascularization and vascular permeability in human retinal pigment epithelial and human retinal microvascular endothelial cells via suppression of MMP-9 and VEGF activation. Molecules 2014; 19(8): 12150-72.
[http://dx.doi.org/10.3390/molecules190812150] [PMID: 25123184]
[49]
Zhu D, Wang L, Zhou Q, et al. (+)‐Catechin ameliorates diabetic nephropathy by trapping methylglyoxal in type 2 diabetic mice. Mol Nutr Food Res 2014; 58(12): 2249-60.
[http://dx.doi.org/10.1002/mnfr.201400533] [PMID: 25243815]
[50]
Álvarez-Cilleros D, López-Oliva E, Goya L, Martín MÁ, Ramos S. Cocoa intake attenuates renal injury in Zucker Diabetic fatty rats by improving glucose homeostasis. Food Chem Toxicol 2019; 127: 101-9.
[http://dx.doi.org/10.1016/j.fct.2019.03.002] [PMID: 30851367]
[51]
Hakim FA, Pflueger A. Role of oxidative stress in diabetic kidney disease. Med Sci Monit 2010; 16(2): RA37-48.
[PMID: 20110930]
[52]
Ayepola OR, Cerf ME, Brooks NL, Oguntibeju OO. Kolaviron, a biflavonoid complex of Garcinia kola seeds modulates apoptosis by suppressing oxidative stress and inflammation in diabetes-induced nephrotoxic rats. Phytomedicine 2014; 21(14): 1785-93.
[http://dx.doi.org/10.1016/j.phymed.2014.09.006] [PMID: 25481391]
[53]
Bao L, Zhang Z, Dai X, et al. Effects of grape seed proanthocyanidin extract on renal injury in type 2 diabetic rats. Mol Med Rep 2015; 11(1): 645-52.
[http://dx.doi.org/10.3892/mmr.2014.2768] [PMID: 25351255]
[54]
Shoichet BK, McGovern SL, Wei B, Irwin JJ. Lead discovery using molecular docking. Curr Opin Chem Biol 2002; 6(4): 439-46.
[http://dx.doi.org/10.1016/S1367-5931(02)00339-3] [PMID: 12133718]
[55]
Park H, Hwang KY, Oh KH, Kim YH, Lee JY, Kim K. Discovery of novel α-glucosidase inhibitors based on the virtual screening with the homology-modeled protein structure. Bioorg Med Chem 2008; 16(1): 284-92.
[http://dx.doi.org/10.1016/j.bmc.2007.09.036] [PMID: 17920282]
[56]
Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: Methods and applications. Nat Rev Drug Discov 2004; 3(11): 935-49.
[http://dx.doi.org/10.1038/nrd1549] [PMID: 15520816]
[57]
Bharatam P, Patel D, Adane L, Mittal A, Sundriyal S. Modeling and informatics in designing anti-diabetic agents. Curr Pharm Des 2007; 13(34): 3518-30.
[http://dx.doi.org/10.2174/138161207782794239] [PMID: 18220788]
[58]
Jhong CH, Riyaphan J, Lin SH, Chia YC, Weng CF. S creening alpha‐glucosidase and alpha‐amylase inhibitors from natural compounds by molecular docking in silico. Biofactors 2015; 41(4): 242-51.
[http://dx.doi.org/10.1002/biof.1219] [PMID: 26154585]
[59]
Perola E, Walters WP, Charifson PS. A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance. Proteins 2004; 56(2): 235-49.
[http://dx.doi.org/10.1002/prot.20088] [PMID: 15211508]
[60]
El-Houri RB, Mortier J, Murgueitio MS, Wolber G, Christensen LP. Identification of PPARγ agonists from natural sources using different In silico approaches. Planta Med 2015; 81(6): 488-94.
[PMID: 25251562]
[61]
Srinivasan P, Vijayakumar S, Kothandaraman S, Palani M. Anti-diabetic activity of quercetin extracted from Phyllanthus emblica L. fruit: In silico and in vivo approaches. J Pharm Anal 2018; 8(2): 109-18.
[http://dx.doi.org/10.1016/j.jpha.2017.10.005] [PMID: 29736297]
[62]
Bansode T, Gupta A, Chaphalkar S, Salalkar B. Integrating in-silico and in-vitro approaches to screen the antidiabetic drug from Trigonellafoenumgraecum Linn. Int J Biochem Res Rev 2016; 14(3): 1-10.
[http://dx.doi.org/10.9734/IJBCRR/2016/29875]
[63]
Khanal P, Patil BM, Hullatti KK. In silico antidiabetic screening of borapetoside C, cordifolioside A and magnoflorine. Indian J Pharm Sci 2019; 81(3): 550-5.
[64]
Sharma S, Srivastav S, Singh G, et al. In silico strategies for probing novel DPP-IV inhibitors as anti-diabetic agents. J Biomol Struct Dyn 2020; 1-15.
[PMID: 32248758]
[65]
Rodbard HW, Jellinger PS, Davidson JA, et al. Statement by an american association of clinical endocrinologists/american college of endocrinology consensus panel on type 2 diabetes mellitus: An algorithm for glycemic control. Endocr Pract 2009; 15(6): 540-59.
[http://dx.doi.org/10.4158/EP.15.6.540] [PMID: 19858063]
[66]
World Health Organization. Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia: Report of a WHO/IDF consultation. 2006. Available from:https://who.int/publications/i/item/definition-and-diagnosis-of-diabetes-mellitus-and-intermediate-hyperglycaemia
[67]
Zhou X. Mechanism-based discovery of new anti-diabetic drugs from the natural products in traditional Chinese medicine. Doctoral dissertation, dissertation, Melbourne. VIC: RMIT University 2014.
[68]
Chan SM, Ye JM. Strategies for the discovery and development of anti-diabetic drugs from the natural products of traditional medicines. J Pharm Pharm Sci 2013; 16(2): 207-16.
[http://dx.doi.org/10.18433/J3T60G] [PMID: 23958190]
[69]
Bernfeld P. Amylases, α and β. Methods Enzymol 1955; 1: 149-58.
[http://dx.doi.org/10.1016/0076-6879(55)01021-5]
[70]
Subramanian R, Asmawi MZ, Sadikun A. In vitro alpha-glucosidase and alpha-amylase enzyme inhibitory effects of Andrographis paniculata extract and andrographolide. Acta Biochim Pol 2008; 55(2): 391-8.
[http://dx.doi.org/10.18388/abp.2008_3087] [PMID: 18511986]
[71]
Sharma J, Yadav D, Paliwal S. Discovery of novel DPP IV inhibitors: Application of pharmacophore-based virtual screening. Med Chem Res 2013; 22(2): 558-72.
[http://dx.doi.org/10.1007/s00044-012-0044-8]
[72]
Matsui T, Tanaka T, Tamura S, et al. α-Glucosidase inhibitory profile of catechins and theaflavins. J Agric Food Chem 2007; 55(1): 99-105.
[http://dx.doi.org/10.1021/jf0627672] [PMID: 17199319]
[73]
Honda M, Hara Y. Inhibition of rat small intestinal sucrase and α -glucosidase activities by tea polyphenols. Biosci Biotechnol Biochem 1993; 57(1): 123-4.
[http://dx.doi.org/10.1271/bbb.57.123] [PMID: 27316886]
[74]
Sattar NA, Hussain F, Iqbal T, Sheikh MA. Determination of in vitro antidiabetic effects of Zingiber officinale Roscoe. Braz J Pharm Sci 2012; 48(4): 601-7.
[http://dx.doi.org/10.1590/S1984-82502012000400003]
[75]
Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus-present and future perspectives. Nat Rev Endocrinol 2012; 8(4): 228-36.
[http://dx.doi.org/10.1038/nrendo.2011.183] [PMID: 22064493]
[76]
Gallagher AM, Flatt PR, Duffy G, Abdel-Wahab YHA. The effects of traditional antidiabetic plants on in vitro glucose diffusion. Nutr Res 2003; 23(3): 413-24.
[http://dx.doi.org/10.1016/S0271-5317(02)00533-X]
[77]
Saleem S, Jafri L, Haq I, et al. Plants Fagonia cretica L. and Hedera nepalensis K. Koch contain natural compounds with potent dipeptidyl peptidase-4 (DPP-4) inhibitory activity. J Ethnopharmacol 2014; 156: 26-32.
[http://dx.doi.org/10.1016/j.jep.2014.08.017] [PMID: 25169215]
[78]
Kozuka M, Yamane T, Nakano Y, Nakagaki T, Ohkubo I, Ariga H. Identification and characterization of a dipeptidyl peptidase IV inhibitor from aronia juice. Biochem Biophys Res Commun 2015; 465(3): 433-6.
[http://dx.doi.org/10.1016/j.bbrc.2015.08.031] [PMID: 26296465]
[79]
Wiesmann C, Barr KJ, Kung J, et al. Allosteric inhibition of protein tyrosine phosphatase 1B. Nat Struct Mol Biol 2004; 11(8): 730-7.
[http://dx.doi.org/10.1038/nsmb803] [PMID: 15258570]
[80]
Deacon CF. Dipeptidyl peptidase-4 inhibitors in the treatment of type 2 diabetes: A comparative review. Diabetes Obes Metab 2011; 13(1): 7-18.
[http://dx.doi.org/10.1111/j.1463-1326.2010.01306.x] [PMID: 21114598]
[81]
Kennedy BP. Role of protein tyrosine phosphatase-1B in diabetes and obesity. Biomed Pharmacother 1999; 53(10): 466-70.
[http://dx.doi.org/10.1016/S0753-3322(00)88105-6] [PMID: 10665340]
[82]
Wang Q, Khayat Z, Kishi K, Ebina Y, Klip A. GLUT4 translocation by insulin in intact muscle cells: Detection by a fast and quantitative assay. FEBS Lett 1998; 427(2): 193-7.
[http://dx.doi.org/10.1016/S0014-5793(98)00423-2] [PMID: 9607310]
[83]
Govers R, Coster ACF, James DE. Insulin increases cell surface GLUT4 levels by dose dependently discharging GLUT4 into a cell surface recycling pathway. Mol Cell Biol 2004; 24(14): 6456-66.
[http://dx.doi.org/10.1128/MCB.24.14.6456-6466.2004] [PMID: 15226445]
[84]
Ansarullah , Bharucha B, Dwivedi M, et al. Antioxidant rich flavonoids from Oreocnide integrifolia enhance glucose uptake and insulin secretion and protects pancreatic β-cells from streptozotocin insult. BMC Complement Altern Med 2011; 11(1): 126.
[http://dx.doi.org/10.1186/1472-6882-11-126] [PMID: 22169757]
[85]
Harbilas D, Martineau LC, Harris CS, et al. Evaluation of the antidiabetic potential of selected medicinal plant extracts from the Canadian boreal forest used to treat symptoms of diabetes: Part II. Can J Physiol Pharmacol 2009; 87(6): 479-92.
[http://dx.doi.org/10.1139/Y09-029] [PMID: 19526043]
[86]
Arya A, Yeng Looi C, Chuen Cheah S, Rais Mustafa M, Ali Mohd M. Anti-diabetic effects of Centratherum anthelminticum seeds methanolic fraction on pancreatic cells, β-TC6 and its alleviating role in type 2 diabetic rats. J Ethnopharmacol 2012; 144(1): 22-32.
[http://dx.doi.org/10.1016/j.jep.2012.08.014] [PMID: 22954496]
[87]
Skelin M, Rupnik M, Cencič A. Pancreatic beta cell lines and their applications in diabetes mellitus research. Altern Anim Exp 2010; 27(2): 105-13.
[http://dx.doi.org/10.14573/altex.2010.2.105] [PMID: 20686743]
[88]
Newgard CB. Regulatory role of glucose transport and phosphorylation in pancreatic islet b-cells. Diabetes Rev 1996; 4(2): 191-206.
[89]
Halban PA, Praz GA, Wollheim CB. Abnormal glucose metabolism accompanies failure of glucose to stimulate insulin release from a rat pancreatic cell line (RINm5F). Biochem J 1983; 212(2): 439-43.
[http://dx.doi.org/10.1042/bj2120439] [PMID: 6349618]
[90]
Rosenberg IL, Russell CW, Giles GR. Cell viability studies on the exfoliated colonic cancer cell. Br J Surg 2005; 65(3): 188-90.
[http://dx.doi.org/10.1002/bjs.1800650314] [PMID: 638432]
[91]
Van Meerloo J, Kaspers GJ, Cloos J. Cell sensitivity assays: The MTT assay. In: Cancer cell culture. Humana Press 2011; pp. 237-45.
[http://dx.doi.org/10.1007/978-1-61779-080-5_20]
[92]
Chatzigeorgiou A, Halapas A, Kalafatakis K, Kamper E. The use of animal models in the study of diabetes mellitus. In vivo 2009; 23(2): 245-58.
[PMID: 19414410]
[93]
Iannaccone PM, Jacob HJ. Rats! Dis Model Mech 2009; 2(5-6): 206-10.
[http://dx.doi.org/10.1242/dmm.002733] [PMID: 19407324]
[94]
Radenković M, Stojanović M, Prostran M. Experimental diabetes induced by alloxan and streptozotocin: The current state of the art. J Pharmacol Toxicol Methods 2016; 78: 13-31.
[http://dx.doi.org/10.1016/j.vascn.2015.11.004] [PMID: 26596652]
[95]
Szkudelski T, Kandulska K, Okulicz M. Alloxan in vivo does not only exert deleterious effects on pancreatic B cells. Physiol Res 1998; 47(5): 343-6.
[PMID: 10052602]
[96]
Park BH, Rho HW, Park JW, et al. Protective mechanism of glucose against alloxan-induced pancreatic β-cell damage. Biochem Biophys Res Commun 1995; 210(1): 1-6.
[http://dx.doi.org/10.1006/bbrc.1995.1619] [PMID: 7741727]
[97]
Lankatillake C, Huynh T, Dias DA. Understanding glycaemic control and current approaches for screening antidiabetic natural products from evidence-based medicinal plants. Plant Methods 2019; 15(1): 105.
[http://dx.doi.org/10.1186/s13007-019-0487-8] [PMID: 31516543]
[98]
Chen J, Mangelinckx S, Adams A, Wang ZT, Li WL, De Kimpe N. Natural flavonoids as potential herbal medication for the treatment of diabetes mellitus and its complications. Nat Prod Commun 2015; 10(1): 1934578X1501000140.
[99]
Anuradha CV. Phytochemicals targeting genes relevant for type 2 diabetes. Can J Physiol Pharmacol 2013; 91(6): 397-411.
[http://dx.doi.org/10.1139/cjpp-2012-0350] [PMID: 23745945]
[100]
Liu Y, Fu X, Lan N, et al. Luteolin protects against high fat diet-induced cognitive deficits in obesity mice. Behav Brain Res 2014; 267: 178-88.
[http://dx.doi.org/10.1016/j.bbr.2014.02.040] [PMID: 24667364]
[101]
Kim JK. Endothelial nuclear factor κB in obesity and aging: Is endothelial nuclear factor κB a master regulator of inflammation and insulin resistance? Circulation 2012; 125(9): 1081-3.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.090134] [PMID: 22302839]
[102]
Haddad PS, Eid HM, Nachar A, Thong F, Sweeney G. The molecular basis of the antidiabetic action of quercetin in cultured skeletal muscle cells and hepatocytes. Pharmacogn Mag 2015; 11(41): 74-81.
[http://dx.doi.org/10.4103/0973-1296.149708] [PMID: 25709214]
[103]
Babu PVA, Si H, Fu Z, Zhen W, Liu D. Genistein prevents hyperglycemia-induced monocyte adhesion to human aortic endothelial cells through preservation of the cAMP signaling pathway and ameliorates vascular inflammation in obese diabetic mice. J Nutr 2012; 142(4): 724-30.
[http://dx.doi.org/10.3945/jn.111.152322] [PMID: 22399524]
[104]
Zhang Y, Liu D. Flavonol kaempferol improves chronic hyperglycemia-impaired pancreatic beta-cell viability and insulin secretory function. Eur J Pharmacol 2011; 670(1): 325-32.
[http://dx.doi.org/10.1016/j.ejphar.2011.08.011] [PMID: 21914439]
[105]
Ahad A, Ganai AA, Mujeeb M, Siddiqui WA. Chrysin, an anti-inflammatory molecule, abrogates renal dysfunction in type 2 diabetic rats. Toxicol Appl Pharmacol 2014; 279(1): 1-7.
[http://dx.doi.org/10.1016/j.taap.2014.05.007] [PMID: 24848621]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy