[5]
Luo, P; Tian, LP; Ruan, J; Wu, FX Disease gene prediction by integrating PPI networks, clinical RNA-Seq data and OMIM data. IEEE/ACM Trans Comput Biol Bioinforma., 2019, 16(1), 222-232.
[7]
Yang, K; Zheng, Y; Lu, K; Chang, K; Wang, N; Shu, Z PDGNet: Predicting disease genes using a deep neural network with multiview features. IEEE/ACM Trans Comput Biol Bioinforma., 2022, 19(1), 575-584.
[9]
Shang, H; Liu,, ZP Prioritizing type 2 diabetes genes by weighted PageRank on bilayer heterogeneous networks. IEEE/ACM Trans Comput Biol Bioinforma., 2021, 18(1), 336-346.
[11]
Zhao, X; Yang, Y; Yin, M. MHRWR: Prediction of lncRNAdisease associations based on multiple heterogeneous networks. IEEE/ACM Trans Comput Biol Bioinforma., 2021, 18(6), 2577-2585.
[16]
Qin, R; Duan, L; Zheng, H; Li-Ling, J; Song, K; Zhang, Y An ontology-independent representation learning for similar disease detection based on multi-layer similarity network. IEEE/ACM Trans Comput Biol Bioinforma., 2021, 18(1), 183-193.
[23]
Caballé, N.C.; Castillo-Sequera, J.L.; Gómez-Pulido, J.A.; Gómez-Pulido, J.M.; Polo-Luque, M.L. Machine learning applied to diagnosis of human diseases: A systematic review. Appl. Sci., 2020, 10(15), 1-27.
[25]
Neelaveni, J.; Geetha Devasana, M.S. 2020.
[31]
Schlosser, P; Knaus, J; Schmutz, M; Dohner, K; Plass, C; Bullinger, L L Netboost: Boosting-supported network analysis improves high-dimensional omics prediction in acute myeloid leukemia and huntington’s disease. IEEE/ACM Trans Comput Biol Bioinforma., 2021, 18(6), 2635-2648.
[35]
Chakrabarty, B; Das, D; Bulusu, G; Roy, A Network-based analysis of fatal comorbidities of COVID-19 and potential therapeutics. IEEE/ACM Trans Comput Biol Bioinforma., 2021, 18(4), 1271-1280.
[45]
Fergus, P; Montanez, CC; Abdulaimma, B; Lisboa, P; Chalmers, C; Pineles, B Utilizing deep learning and genome wide association studies for epistatic-driven preterm birth classification in african-american women. IEEE/ACM Trans Comput Biol Bioinforma., 2020, 17(2), 668-678.
[47]
Lee, CY; Zeng, JH; Lee, SY; Lu, RB; Kuo, PH SNP data science for classification of bipolar disorder I and bipolar disorder II. IEEE/ACM Trans Comput Biol Bioinforma., 2021, 18(6), 2862-2869.
[53]
Hind, J; Lisboa, P; Hussain, AJ; Al-Jumeily, D A novel approach to detecting epistasis using random sampling regularisation. IEEE/ACM Trans Comput Biol Bioinforma., 2020, 17(5), 1535-1545.
[69]
Perera, S.; Hewage, K.; Gunarathne, C.; Navarathna, R.; Herath, D.; Ragel, R.G. Detection of novel biomarker genes of alzheimer’s disease using gene expression data. In: 2020 Moratuwa Engineering Research Conference (MERCon); , 2020, pp. 1-6.
[75]
Jo, T. Deep learning-based identification of genetic variants: application to Alzheimer’s disease classification. Brief. Bioinform., 2022, 23(2), bbac022.