Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

To Investigate Growth Factor Receptor Targets and Generate Cancer Targeting Inhibitors

Author(s): Debroop Basu, Riya Pal, Maitrayee Sarkar, Soubhik Barma, Sumit Halder, Harekrishna Roy, Sisir Nandi* and Asmita Samadder*

Volume 23, Issue 30, 2023

Published on: 29 November, 2023

Page: [2877 - 2972] Pages: 96

DOI: 10.2174/0115680266261150231110053650

Price: $65

Open Access Journals Promotions 2
Abstract

Receptor tyrosine kinase (RTK) regulates multiple pathways, including Mitogenactivated protein kinases (MAPKs), PI3/AKT, JAK/STAT pathway, etc. which has a significant role in the progression and metastasis of tumor. As RTK activation regulates numerous essential bodily processes, including cell proliferation and division, RTK dysregulation has been identified in many types of cancers. Targeting RTK is a significant challenge in cancer due to the abnormal upregulation and downregulation of RTK receptors subfamily EGFR, FGFR, PDGFR, VEGFR, and HGFR in the progression of cancer, which is governed by multiple RTK receptor signalling pathways and impacts treatment response and disease progression. In this review, an extensive focus has been carried out on the normal and abnormal signalling pathways of EGFR, FGFR, PDGFR, VEGFR, and HGFR and their association with cancer initiation and progression. These are explored as potential therapeutic cancer targets and therefore, the inhibitors were evaluated alone and merged with additional therapies in clinical trials aimed at combating global cancer.

Keywords: RTK, EGFR, FGFR, PDGFR, VEGFR, HGFR, Potential inhibitors, Cancer treatment.

Graphical Abstract
[1]
WHO. Cancer. Available from: https://www.who.int/health-topics/cancer
[2]
[4]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[5]
Nandi, S.; Dey, R.; Samadder, A.; Saxena, A.; Saxena, A.K. Natural Sourced Inhibitors of EGFR, PDGFR, FGFR and VEGFRMediated Signaling Pathways as Potential Anticancer Agents. Curr. Med. Chem., 2022, 29(2), 212-234.
[http://dx.doi.org/10.2174/0929867328666210303101345] [PMID: 33655823]
[6]
Du, Z.; Lovly, C.M. Mechanisms of receptor tyrosine kinase activation in cancer. Mol. Cancer, 2018, 17(1), 58.
[http://dx.doi.org/10.1186/s12943-018-0782-4] [PMID: 29455648]
[7]
Herbst, R.S. Review of epidermal growth factor receptor biology. Int. J. Radiat. Oncol. Biol. Phys., 2004, 59(2), 21-26.
[http://dx.doi.org/10.1016/j.ijrobp.2003.11.041]
[8]
Hartwell, L.H.; Kastan, M.B. Cell cycle control and cancer. Science, 1994, 266(5192), 1821-1828.
[http://dx.doi.org/10.1126/science.7997877] [PMID: 7997877]
[9]
Nandi, S.; Bagchi, M.C. EGFr, FGFr and PDGFr: Emerging targets for anticancer drug design. J. Cancer Res., 2016, 5, 99-108.
[10]
Vermeulen, K.; Berneman, Z.N.; Van Bockstaele, D.R. Cell cycle and apoptosis. Cell Prolif., 2003, 36(3), 165-175.
[http://dx.doi.org/10.1046/j.1365-2184.2003.00267.x] [PMID: 12814432]
[11]
Story, M.; Kodym, R. Signal transduction during apoptosis implications for cancer therapy. Front. Biosci., 1998, 3(4), A281.
[http://dx.doi.org/10.2741/A281] [PMID: 9512454]
[12]
Bergman, P.J.; Harris, D. Radioresistance, chemoresistance, and apoptosis resistance. The past, present, and future. Vet. Clin. North Am. Small Anim. Pract., 1997, 27(1), 47-57.
[http://dx.doi.org/10.1016/S0195-5616(97)50005-2] [PMID: 9002166]
[13]
McDonnell, T.J.; Meyn, R.E.; Robertson, L.E. Implications of apoptotic cell death regulation in cancer therapy. Semin. Cancer Biol., 1995, 6(1), 53-60.
[http://dx.doi.org/10.1006/scbi.1995.0007] [PMID: 7548842]
[14]
Hartwell, L.H.; Weinert, T.A. Checkpoints: controls that ensure the order of cell cycle events. Science, 1989, 246(4930), 629-634.
[http://dx.doi.org/10.1126/science.2683079] [PMID: 2683079]
[15]
Foster, I. Cancer: A cell cycle defect. Radiography, 2008, 14(2), 144-149.
[http://dx.doi.org/10.1016/j.radi.2006.12.001]
[16]
Hunter, T.; Pines, J. Cyclins and cancer II: Cyclin D and CDK inhibitors come of age. Cell, 1994, 79(4), 573-582.
[http://dx.doi.org/10.1016/0092-8674(94)90543-6] [PMID: 7954824]
[17]
Park, M.T.; Lee, S.J. Cell cycle and cancer. BMB Rep., 2003, 36(1), 60-65.
[http://dx.doi.org/10.5483/BMBRep.2003.36.1.060] [PMID: 12542976]
[18]
Kamb, A. Cell-cycle regulators and cancer. Trends Genet., 1995, 11(4), 136-140.
[http://dx.doi.org/10.1016/S0168-9525(00)89027-7] [PMID: 7732591]
[19]
Vermeulen, K.; Van Bockstaele, D.R.; Berneman, Z.N. The cell cycle: A review of regulation, deregulation and therapeutic targets in can-cer. Cell Prolif., 2003, 36(3), 131-149.
[http://dx.doi.org/10.1046/j.1365-2184.2003.00266.x] [PMID: 12814430]
[20]
Li, Y.; Wei, J.; Xu, C.; Zhao, Z.; You, T. Prognostic significance of cyclin D1 expression in colorectal cancer: A meta-analysis of obser-vational studies. PLoS One, 2014, 9(4), e94508.
[http://dx.doi.org/10.1371/journal.pone.0094508] [PMID: 24728073]
[21]
Comstock, C.E.S.; Revelo, M.P.; Buncher, C.R.; Knudsen, K.E. Impact of differential cyclin D1 expression and localisation in prostate cancer. Br. J. Cancer, 2007, 96(6), 970-979.
[http://dx.doi.org/10.1038/sj.bjc.6603615] [PMID: 17375037]
[22]
Heichman, K.A.; Roberts, J.M. Rules to replicate by. Cell, 1994, 79(4), 557-562.
[http://dx.doi.org/10.1016/0092-8674(94)90541-X] [PMID: 7954822]
[23]
Motokura, T.; Bloom, T.; Kim, H.G.; Jüppner, H.; Ruderman, J.V.; Kronenberg, H.M.; Arnold, A. A novel cyclin encoded by a bcl1-linked candidate oncogene. Nature, 1991, 350(6318), 512-515.
[http://dx.doi.org/10.1038/350512a0] [PMID: 1826542]
[24]
Wölfel, T.; Hauer, M.; Schneider, J.; Serrano, M.; Wölfel, C.; Klehmann-Hieb, E.; De Plaen, E.; Hankeln, T.; Meyer zum Büschenfelde, K.H.; Beach, D.A. p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science, 1995, 269(5228), 1281-1284.
[http://dx.doi.org/10.1126/science.7652577] [PMID: 7652577]
[25]
Metibemu, D.S.; Akinloye, O.A.; Akamo, A.J.; Ojo, D.A.; Okeowo, O.T.; Omotuyi, I.O. Exploring receptor tyrosine kinases-inhibitors in Cancer treatments. Egypt. J. Med. Hum. Genet., 2019, 20(1), 35.
[http://dx.doi.org/10.1186/s43042-019-0035-0]
[26]
Porter, A.C.; Vaillancourt, R.R. Tyrosine kinase receptor-activated signal transduction pathways which lead to oncogenesis. Oncogene, 1998, 17, 1343-1352.
[http://dx.doi.org/10.1038/sj.onc.1202171]
[27]
Manning, G.; Whyte, D.B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The protein kinase complement of the human genome. Science, 2002, 298(5600), 1912-1934.
[http://dx.doi.org/10.1126/science.1075762] [PMID: 12471243]
[28]
Paul, M.K.; Mukhopadhyay, A.K. Tyrosine kinase – Role and significance in Cancer. Int. J. Med. Sci., 2004, 1(2), 101-115.
[http://dx.doi.org/10.7150/ijms.1.101] [PMID: 15912202]
[29]
Fantl, W.J.; Johnson, D.E.; Williams, L.T. Signalling by receptor tyrosine kinases. Annu. Rev. Biochem., 1993, 62(1), 453-481.
[http://dx.doi.org/10.1146/annurev.bi.62.070193.002321] [PMID: 7688944]
[30]
van der Geer, P.; Hunter, T.; Lindberg, R.A. Receptor protein-tyrosine kinases and their signal transduction pathways. Annu. Rev. Cell Biol., 1994, 10(1), 251-337.
[http://dx.doi.org/10.1146/annurev.cb.10.110194.001343] [PMID: 7888178]
[31]
Eswarakumar, V.P.; Lax, I.; Schlessinger, J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev., 2005, 16(2), 139-149.
[http://dx.doi.org/10.1016/j.cytogfr.2005.01.001] [PMID: 15863030]
[32]
Abram, C.L.; Courtneidge, S.A. Src family tyrosine kinases and growth factor signaling. Exp. Cell Res., 2000, 254(1), 1-13.
[http://dx.doi.org/10.1006/excr.1999.4732] [PMID: 10623460]
[33]
Thomas, S.J.; Snowden, J.A.; Zeidler, M.P.; Danson, S.J. The role of JAK/STAT signalling in the pathogenesis, prognosis and treatment of solid tumours. Br. J. Cancer, 2015, 113(3), 365-371.
[http://dx.doi.org/10.1038/bjc.2015.233] [PMID: 26151455]
[34]
Blume-Jensen, P.; Hunter, T. Oncogenic kinase signalling. Nature, 2001, 411(6835), 355-365.
[http://dx.doi.org/10.1038/35077225] [PMID: 11357143]
[35]
Robertson, S.C.; Tynan, J.A.; Donoghue, D.J. RTK mutations and human syndromes. Trends Genet., 2000, 16(6), 265-271.
[http://dx.doi.org/10.1016/S0168-9525(00)02021-7] [PMID: 10827454]
[36]
Yarden, Y.; Schlessinger, J. Epidermal growth factor induces rapid, reversible aggregation of the purified epidermal growth factor recep-tor. Biochemistry, 1987, 26(5), 1443-1451.
[http://dx.doi.org/10.1021/bi00379a035] [PMID: 3494473]
[37]
Carpenter, G.; King, L., Jr; Cohen, S. Epidermal growth factor stimulates phosphorylation in membrane preparations in vitro. Nature, 1978, 276(5686), 409-410.
[http://dx.doi.org/10.1038/276409a0] [PMID: 309559]
[38]
Holbro, T.; Civenni, G.; Hynes, N.E. The ErbB receptors and their role in cancer progression. Exp. Cell Res., 2003, 284(1), 99-110.
[http://dx.doi.org/10.1016/S0014-4827(02)00099-X] [PMID: 12648469]
[39]
Barker, F.G., II; Simmons, M.L.; Chang, S.M.; Prados, M.D.; Larson, D.A.; Sneed, P.K.; Wara, W.M.; Berger, M.S.; Chen, P.; Israel, M.A.; Aldape, K.D. EGFR overexpression and radiation response in glioblastoma multiforme. Int. J. Radiat. Oncol. Biol. Phys., 2001, 51(2), 410-418.
[http://dx.doi.org/10.1016/S0360-3016(01)01609-1] [PMID: 11567815]
[40]
Slamon, D.J.; Godolphin, W.; Jones, L.A.; Holt, J.A.; Wong, S.G.; Keith, D.E.; Levin, W.J.; Stuart, S.G.; Udove, J.; Ullrich, A.; Press, M.F. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science, 1989, 244(4905), 707-712.
[http://dx.doi.org/10.1126/science.2470152] [PMID: 2470152]
[41]
Fry, D.W. Inhibition of the epidermal growth factor receptor family of tyrosine kinases as an approach to cancer chemotherapy: progres-sion from reversible to irreversible inhibitors. Pharmacol. Ther., 1999, 82(2-3), 207-218.
[http://dx.doi.org/10.1016/S0163-7258(98)00050-3] [PMID: 10454198]
[42]
Klapper, L.N.; Kirschbaum, M.H.; Seta, M.; Yarden, Y. Biochemical and clinical implications of the ErbB/HER signaling network of growth factor receptors. Adv. Cancer Res., 1999, 77, 25-79.
[http://dx.doi.org/10.1016/S0065-230X(08)60784-8] [PMID: 10549355]
[43]
Mendelsohn, J.; Baselga, J. Epidermal growth factor receptor targeting in cancer. Semin. Oncol., 2006, 33(4), 369-385.
[http://dx.doi.org/10.1053/j.seminoncol.2006.04.003] [PMID: 16890793]
[44]
Hynes, N.E.; Lane, H.A. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat. Rev. Cancer, 2005, 5(5), 341-354.
[http://dx.doi.org/10.1038/nrc1609] [PMID: 15864276]
[45]
Yarden, Y.; Sliwkowski, M.X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol., 2001, 2(2), 127-137.
[http://dx.doi.org/10.1038/35052073] [PMID: 11252954]
[46]
Lurje, G.; Lenz, H.J. EGFR signaling and drug discovery. Oncology, 2009, 77(6), 400-410.
[http://dx.doi.org/10.1159/000279388] [PMID: 20130423]
[47]
Bollu, L.R.; Mazumdar, A.; Savage, M.I.; Brown, P.H. Molecular pathways: Targeting protein tyrosine phosphatases in cancer. Clin. Cancer Res., 2017, 23(9), 2136-2142.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0934] [PMID: 28087641]
[48]
Yu, Z.H.; Zhang, Z.Y. Regulatory mechanisms and novel therapeutic targeting strategies for protein tyrosine phosphatases. Chem. Rev., 2018, 118(3), 1069-1091.
[http://dx.doi.org/10.1021/acs.chemrev.7b00105] [PMID: 28541680]
[49]
Roda-Navarro, P.; Bastiaens, P.I. Dynamic recruitment of protein tyrosine phosphatase PTPD1 to EGF stimulation sites potentiates EGFR activation. PLoS One, 2014, 9(7), e103203.
[http://dx.doi.org/10.1371/journal.pone.0103203] [PMID: 25062045]
[50]
Falls, D. Neuregulins: functions, forms, and signaling strategies. Exp. Cell Res., 2003, 284(1), 14-30.
[http://dx.doi.org/10.1016/S0014-4827(02)00102-7] [PMID: 12648463]
[51]
Derynck, R.; Roberts, A.B.; Winkler, M.E.; Chen, E.Y.; Goeddel, D.V. Human transforming growth factor-α: Precursor structure and expression in E. coli. Cell, 1984, 38(1), 287-297.
[http://dx.doi.org/10.1016/0092-8674(84)90550-6] [PMID: 6088071]
[52]
Shoyab, M.; Plowman, G.D.; McDonald, V.L.; Bradley, J.G.; Todaro, G.J. Structure and function of human amphiregulin: A member of the epidermal growth factor family. Science, 1989, 243(4894), 1074-1076.
[http://dx.doi.org/10.1126/science.2466334] [PMID: 2466334]
[53]
Higashiyama, S.; Abraham, J.A.; Miller, J.; Fiddes, J.C.; Klagsbrun, M. A heparin-binding growth factor secreted by macrophage-like cells that is related to EGF. Science, 1991, 251(4996), 936-939.
[http://dx.doi.org/10.1126/science.1840698] [PMID: 1840698]
[54]
Sasada, R.; Ono, Y.; Taniyama, Y.; Shing, Y.; Folkman, J.; Igarashi, K. Cloning and expression of cDNA encoding human betacellulin, a new member of the EGF family. Biochem. Biophys. Res. Commun., 1993, 190(3), 1173-1179.
[http://dx.doi.org/10.1006/bbrc.1993.1173] [PMID: 8439318]
[55]
Isobe, T.; Okuyama, T.; Toyoda, H.; Komurasaki, T.; Uchida, D.; Takayama, Y.; Hanada, K. Epiregulin. J. Biol. Chem., 1995, 270(13), 7495-7500.
[http://dx.doi.org/10.1074/jbc.270.13.7495] [PMID: 7706296]
[56]
Strachan, L.; Murison, J.G.; Prestidge, R.L.; Sleeman, M.A.; Watson, J.D.; Kumble, K.D. Cloning and biological activity of epigen, a nov-el member of the epidermal growth factor superfamily. J. Biol. Chem., 2001, 276(21), 18265-18271.
[http://dx.doi.org/10.1074/jbc.M006935200] [PMID: 11278323]
[57]
Higashiyama, S.; Horikawa, M.; Yamada, K.; Ichino, N.; Nakano, N.; Nakagawa, T.; Miyagawa, J.; Matsushita, N.; Nagatsu, T.; Tanigu-chi, N.; Ishiguro, H. A novel brain-derived member of the epidermal growth factor family that interacts with ErbB3 and ErbB4. J. Biochem., 1997, 122(3), 675-680.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a021806] [PMID: 9348101]
[58]
Hobbs, S.S.; Coffing, S.L.; Le, A.T.D.; Cameron, E.M.; Williams, E.E.; Andrew, M.; Blommel, E.N.; Hammer, R.P.; Chang, H.; Riese, D.J. II Neuregulin isoforms exhibit distinct patterns of ErbB family receptor activation. Oncogene, 2002, 21(55), 8442-8452.
[http://dx.doi.org/10.1038/sj.onc.1205960] [PMID: 12466964]
[59]
Uchida, T.; Wada, K.; Akamatsu, T.; Yonezawa, M.; Noguchi, H.; Mizoguchi, A.; Kasuga, M.; Sakamoto, C. A novel epidermal growth factor-like molecule containing two follistatin modules stimulates tyrosine phosphorylation of erbB-4 in MKN28 gastric cancer cells. Biochem. Biophys. Res. Commun., 1999, 266(2), 593-602.
[http://dx.doi.org/10.1006/bbrc.1999.1873] [PMID: 10600548]
[60]
Kinugasa, Y.; Ishiguro, H.; Tokita, Y.; Oohira, A.; Ohmoto, H.; Higashiyama, S. Neuroglycan C, a novel member of the neuregulin fami-ly. Biochem. Biophys. Res. Commun., 2004, 321(4), 1045-1049.
[http://dx.doi.org/10.1016/j.bbrc.2004.07.066] [PMID: 15358134]
[61]
Lemmon, M.A.; Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell, 2010, 141(7), 1117-1134.
[http://dx.doi.org/10.1016/j.cell.2010.06.011] [PMID: 20602996]
[62]
Ferguson, K.M.; Berger, M.B.; Mendrola, J.M.; Cho, H.S.; Leahy, D.J.; Lemmon, M.A. EGF activates its receptor by removing interac-tions that autoinhibit ectodomain dimerization. Mol. Cell, 2003, 11(2), 507-517.
[http://dx.doi.org/10.1016/S1097-2765(03)00047-9] [PMID: 12620237]
[63]
Zhang, X.; Gureasko, J.; Shen, K.; Cole, P.A.; Kuriyan, J. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell, 2006, 125(6), 1137-1149.
[http://dx.doi.org/10.1016/j.cell.2006.05.013] [PMID: 16777603]
[64]
Jura, N.; Endres, N.F.; Engel, K.; Deindl, S.; Das, R.; Lamers, M.H.; Wemmer, D.E.; Zhang, X.; Kuriyan, J. Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment. Cell, 2009, 137(7), 1293-1307.
[http://dx.doi.org/10.1016/j.cell.2009.04.025] [PMID: 19563760]
[65]
Honegger, A.M.; Kris, R.M.; Ullrich, A.; Schlessinger, J. Evidence that autophosphorylation of solubilized receptors for epidermal growth factor is mediated by intermolecular cross-phosphorylation. Proc. Natl. Acad. Sci., 1989, 86(3), 925-929.
[http://dx.doi.org/10.1073/pnas.86.3.925] [PMID: 2915986]
[66]
Hu, P.; Margolis, B.; Skolnik, E.Y.; Lammers, R.; Ullrich, A.; Schlessinger, J. Interaction of phosphatidylinositol 3-kinase-associated p85 with epidermal growth factor and platelet-derived growth factor receptors. Mol. Cell. Biol., 1992, 12(3), 981-990.
[http://dx.doi.org/10.1128/mcb.12.3.981-990.1992] [PMID: 1372091]
[67]
Lowenstein, E.J.; Daly, R.J.; Batzer, A.G.; Li, W.; Margolis, B.; Lammers, R.; Ullrich, A.; Skolnik, E.Y.; Bar-Sagi, D.; Schlessinger, J. The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell, 1992, 70(3), 431-442.
[http://dx.doi.org/10.1016/0092-8674(92)90167-B] [PMID: 1322798]
[68]
Tomas, A.; Futter, C.E.; Eden, E.R. EGF receptor trafficking: consequences for signaling and cancer. Trends Cell Biol., 2014, 24(1), 26-34.
[http://dx.doi.org/10.1016/j.tcb.2013.11.002] [PMID: 24295852]
[69]
Paul, M.D.; Grubb, H.N.; Hristova, K. Quantifying the strength of heterointeractions among receptor tyrosine kinases from different subfamilies: Implications for cell signaling. J. Biol. Chem., 2020, 295(29), 9917-9933.
[http://dx.doi.org/10.1074/jbc.RA120.013639] [PMID: 32467228]
[70]
Salomon, D.S.; Brandt, R.; Ciardiello, F.; Normanno, N. Epidermal growth factor-related peptides and their receptors in human malignan-cies. Crit. Rev. Oncol. Hematol., 1995, 19(3), 183-232.
[http://dx.doi.org/10.1016/1040-8428(94)00144-I] [PMID: 7612182]
[71]
Hemming, A.W.; Davis, N.L.; Kluftinger, A.; Robinson, B.; Quenville, N.F.; Liseman, B.; Lcriche, J. Prognostic markers of colorectal cancer: An evaluation of DNA content, epidermal growth factor receptor, and Ki-67. J. Surg. Oncol., 1992, 51(3), 147-152.
[http://dx.doi.org/10.1002/jso.2930510304] [PMID: 1434639]
[72]
Batzer, A.G.; Rotin, D.; Ureña, J.M.; Skolnik, E.Y.; Schlessinger, J. Hierarchy of binding sites for Grb2 and Shc on the epidermal growth factor receptor. Mol. Cell. Biol., 1994, 14(8), 5192-5201.
[http://dx.doi.org/10.1128/mcb.14.8.5192-5201.1994] [PMID: 7518560]
[73]
Hallberg, B.; Rayter, S.I.; Downward, J. Interaction of Ras and Raf in intact mammalian cells upon extracellular stimulation. J. Biol. Chem., 1994, 269(6), 3913-3916.
[http://dx.doi.org/10.1016/S0021-9258(17)41718-2] [PMID: 8307946]
[74]
Liebmann, C. Regulation of MAP kinase activity by peptide receptor signalling pathway: Paradigms of multiplicity. Cell. Signal., 2001, 13(11), 777-785.
[http://dx.doi.org/10.1016/S0898-6568(01)00192-9] [PMID: 11583913]
[75]
Hill, C.S.; Treisman, R. Transcriptional regulation by extracellular signals: mechanisms and specificity. Cell, 1995, 80(2), 199-211.
[http://dx.doi.org/10.1016/0092-8674(95)90403-4] [PMID: 7834740]
[76]
Kharbanda, A.; Walter, D.M.; Gudiel, A.A.; Schek, N.; Feldser, D.M.; Witze, E.S. Blocking EGFR palmitoylation suppresses PI3K signal-ing and mutant KRAS lung tumorigenesis. Sci. Signal., 2020, 13(621), eaax2364.
[http://dx.doi.org/10.1126/scisignal.aax2364] [PMID: 32127496]
[77]
Mayer, I.A.; Arteaga, C.L. The PI3K/AKT Pathway as a Target for Cancer Treatment. Annu. Rev. Med., 2016, 67(1), 11-28.
[http://dx.doi.org/10.1146/annurev-med-062913-051343] [PMID: 26473415]
[78]
Andl, C.D.; Mizushima, T.; Oyama, K.; Bowser, M.; Nakagawa, H.; Rustgi, A.K. EGFR-induced cell migration is mediated predominantly by the JAK-STAT pathway in primary esophageal keratinocytes. Am. J. Physiol. Gastrointest. Liver Physiol., 2004, 287(6), G1227-G1237.
[http://dx.doi.org/10.1152/ajpgi.00253.2004] [PMID: 15284024]
[79]
Kloth, M.T.; Laughlin, K.K.; Biscardi, J.S.; Boerner, J.L.; Parsons, S.J.; Silva, C.M. STAT5b, a Mediator of Synergism between c-Src and the Epidermal Growth Factor Receptor. J. Biol. Chem., 2003, 278(3), 1671-1679.
[http://dx.doi.org/10.1074/jbc.M207289200] [PMID: 12429742]
[80]
Darnell, J.E. Jr STATs and gene regulation. Science, 1997, 277(5332), 1630-1635.
[http://dx.doi.org/10.1126/science.277.5332.1630] [PMID: 9287210]
[81]
Zhong, Z.; Wen, Z.; Darnell, J.E., Jr Stat3: A STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science, 1994, 264(5155), 95-98.
[http://dx.doi.org/10.1126/science.8140422] [PMID: 8140422]
[82]
Yu, H.; Jove, R. The STATs of cancer — new molecular targets come of age. Nat. Rev. Cancer, 2004, 4(2), 97-105.
[http://dx.doi.org/10.1038/nrc1275] [PMID: 14964307]
[83]
Bowman, T.; Garcia, R.; Turkson, J.; Jove, R. STATs in oncogenesis. Oncogene, 2000, 19(21), 2474-2488.
[http://dx.doi.org/10.1038/sj.onc.1203527] [PMID: 10851046]
[84]
Haura, E.B.; Turkson, J.; Jove, R. Mechanisms of Disease: insights into the emerging role of signal transducers and activators of tran-scription in cancer. Nat. Clin. Pract. Oncol., 2005, 2(6), 315-324.
[http://dx.doi.org/10.1038/ncponc0195] [PMID: 16264989]
[85]
Bromberg, J. Stat proteins and oncogenesis. J. Clin. Invest., 2002, 109(9), 1139-1142.
[http://dx.doi.org/10.1172/JCI0215617] [PMID: 11994401]
[86]
Downward, J.; Yarden, Y.; Mayes, E.; Scrace, G.; Totty, N.; Stockwell, P.; Ullrich, A.; Schlessinger, J.; Waterfield, M.D. Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature, 1984, 307(5951), 521-527.
[http://dx.doi.org/10.1038/307521a0] [PMID: 6320011]
[87]
De Larco, J.E.; Reynolds, R.; Carlberg, K.; Engle, C.; Todaro, G.J. Sarcoma growth factor from mouse sarcoma virus-transformed cells. Purification by binding and elution from epidermal growth factor receptor-rich cells. J. Biol. Chem., 1980, 255(8), 3685-3690.
[http://dx.doi.org/10.1016/S0021-9258(19)85758-7] [PMID: 6245088]
[88]
Scaltriti, M.; Baselga, J. The epidermal growth factor receptor pathway: A model for targeted therapy. Clin. Cancer Res., 2006, 12(18), 5268-5272.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1554] [PMID: 17000658]
[89]
Slamon, D.J.; Clark, G.M.; Wong, S.G.; Levin, W.J.; Ullrich, A.; McGuire, W.L. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science, 1987, 235(4785), 177-182.
[http://dx.doi.org/10.1126/science.3798106] [PMID: 3798106]
[90]
Hussain, S.; Singh, A.; Nazir, S.U.; Tulsyan, S.; Khan, A.; Kumar, R.; Bashir, N.; Tanwar, P.; Mehrotra, R. Cancer drug resistance: A fleet to conquer. J. Cell. Biochem., 2019, 120(9), 14213-14225.
[http://dx.doi.org/10.1002/jcb.28782] [PMID: 31037763]
[91]
Yarden, Y.; Pines, G. The ERBB network: At last, cancer therapy meets systems biology. Nat. Rev. Cancer, 2012, 12(8), 553-563.
[http://dx.doi.org/10.1038/nrc3309] [PMID: 22785351]
[92]
Paez, J.G.; Jänne, P.A.; Lee, J.C.; Tracy, S.; Greulich, H.; Gabriel, S.; Herman, P.; Kaye, F.J.; Lindeman, N.; Boggon, T.J.; Naoki, K.; Sasaki, H.; Fujii, Y.; Eck, M.J.; Sellers, W.R.; Johnson, B.E.; Meyerson, M. EGFR mutations in lung cancer: Correlation with clinical re-sponse to gefitinib therapy. Science, 2004, 304(5676), 1497-1500.
[http://dx.doi.org/10.1126/science.1099314] [PMID: 15118125]
[93]
Lynch, T.J.; Bell, D.W.; Sordella, R.; Gurubhagavatula, S.; Okimoto, R.A.; Brannigan, B.W.; Harris, P.L.; Haserlat, S.M.; Supko, J.G.; Haluska, F.G.; Louis, D.N.; Christiani, D.C.; Settleman, J.; Haber, D.A. Activating mutations in the epidermal growth factor receptor un-derlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med., 2004, 350(21), 2129-2139.
[http://dx.doi.org/10.1056/NEJMoa040938] [PMID: 15118073]
[94]
Jaiswal, B.S.; Kljavin, N.M.; Stawiski, E.W.; Chan, E.; Parikh, C.; Durinck, S.; Chaudhuri, S.; Pujara, K.; Guillory, J.; Edgar, K.A.; Jana-kiraman, V.; Scholz, R.P.; Bowman, K.K.; Lorenzo, M.; Li, H.; Wu, J.; Yuan, W.; Peters, B.A.; Kan, Z.; Stinson, J.; Mak, M.; Modrusan, Z.; Eigenbrot, C.; Firestein, R.; Stern, H.M.; Rajalingam, K.; Schaefer, G.; Merchant, M.A.; Sliwkowski, M.X.; de Sauvage, F.J.; Seshagiri, S. Oncogenic ERBB3 mutations in human cancers. Cancer Cell, 2013, 23(5), 603-617.
[http://dx.doi.org/10.1016/j.ccr.2013.04.012] [PMID: 23680147]
[95]
Gilbertson, R.; Hernan, R.; Pietsch, T.; Pinto, L.; Scotting, P.; Allibone, R.; Ellison, D.; Perry, R.; Pearson, A.; Lunec, J. NovelERBB4 juxtamembrane splice variants are frequently expressed in childhood medulloblastoma. Genes Chromosomes Cancer, 2001, 31(3), 288-294.
[http://dx.doi.org/10.1002/gcc.1146] [PMID: 11391800]
[96]
Prickett, T.D.; Agrawal, N.S.; Wei, X.; Yates, K.E.; Lin, J.C.; Wunderlich, J.R.; Cronin, J.C.; Cruz, P.; Rosenberg, S.A.; Samuels, Y. Anal-ysis of the tyrosine kinome in melanoma reveals recurrent mutations in ERBB4. Nat. Genet., 2009, 41(10), 1127-1132.
[http://dx.doi.org/10.1038/ng.438] [PMID: 19718025]
[97]
Pao, W.; Miller, V.; Zakowski, M.; Doherty, J.; Politi, K.; Sarkaria, I.; Singh, B.; Heelan, R.; Rusch, V.; Fulton, L.; Mardis, E.; Kupfer, D.; Wilson, R.; Kris, M.; Varmus, H. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl. Acad. Sci., 2004, 101(36), 13306-13311.
[http://dx.doi.org/10.1073/pnas.0405220101] [PMID: 15329413]
[98]
Sugawa, N.; Ekstrand, A.J.; James, C.D.; Collins, V.P. Identical splicing of aberrant epidermal growth factor receptor transcripts from amplified rearranged genes in human glioblastomas. Proc. Natl. Acad. Sci., 1990, 87(21), 8602-8606.
[http://dx.doi.org/10.1073/pnas.87.21.8602]
[99]
Hynes, N.E.; MacDonald, G. ErbB receptors and signaling pathways in cancer. Curr. Opin. Cell Biol., 2009, 21(2), 177-184.
[http://dx.doi.org/10.1016/j.ceb.2008.12.010] [PMID: 19208461]
[100]
Shigematsu, H.; Gazdar, A.F. Somatic mutations of epidermal growth factor receptor signaling pathway in lung cancers. Int. J. Cancer, 2006, 118(2), 257-262.
[http://dx.doi.org/10.1002/ijc.21496] [PMID: 16231326]
[101]
Hynes, N.E.; Schlange, T. Targeting ADAMS and ERBBs in lung cancer. Cancer Cell, 2006, 10(1), 7-11.
[http://dx.doi.org/10.1016/j.ccr.2006.06.012] [PMID: 16843261]
[102]
Sharma, S.V.; Settleman, J. ErbBs in lung cancer. Exp. Cell Res., 2009, 315(4), 557-571.
[http://dx.doi.org/10.1016/j.yexcr.2008.07.026] [PMID: 18721806]
[103]
Oprita, A.; Baloi, S.C.; Staicu, G.A.; Alexandru, O.; Tache, D.E.; Danoiu, S.; Micu, E.S.; Sevastre, A.S. Updated Insights on EGFR Sig-naling Pathways in Glioma. Int. J. Mol. Sci., 2021, 22(2), 587.
[http://dx.doi.org/10.3390/ijms22020587] [PMID: 33435537]
[104]
Motoyama, A.B.; Hynes, N.E.; Lane, H.A. The efficacy of ErbB receptor-targeted anticancer therapeutics is influenced by the availability of epidermal growth factor-related peptides. Cancer Res., 2002, 62(11), 3151-3158.
[PMID: 12036928]
[105]
Engelman, J.A.; Jänne, P.A.; Mermel, C.; Pearlberg, J.; Mukohara, T.; Fleet, C.; Cichowski, K.; Johnson, B.E.; Cantley, L.C. ErbB-3 me-diates phosphoinositide 3-kinase activity in gefitinib-sensitive non-small cell lung cancer cell lines. Proc. Natl. Acad. Sci., 2005, 102(10), 3788-3793.
[http://dx.doi.org/10.1073/pnas.0409773102] [PMID: 15731348]
[106]
Holbro, T.; Beerli, R.R.; Maurer, F.; Koziczak, M.; Barbas, C.F., III; Hynes, N.E. The ErbB2/ErbB3 heterodimer functions as an onco-genic unit: ErbB2 requires ErbB3 to drive breast tumor cell proliferation. Proc. Natl. Acad. Sci., 2003, 100(15), 8933-8938.
[http://dx.doi.org/10.1073/pnas.1537685100] [PMID: 12853564]
[107]
Fujimoto, N.; Wislez, M.; Zhang, J.; Iwanaga, K.; Dackor, J.; Hanna, A.E.; Kalyankrishna, S.; Cody, D.D.; Price, R.E.; Sato, M.; Shay, J.W.; Minna, J.D.; Peyton, M.; Tang, X.; Massarelli, E.; Herbst, R.; Threadgill, D.W.; Wistuba, I.I.; Kurie, J.M. High expression of ErbB family members and their ligands in lung adenocarcinomas that are sensitive to inhibition of epidermal growth factor receptor. Cancer Res., 2005, 65(24), 11478-11485.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1977] [PMID: 16357156]
[108]
Sundvall, M.; Iljin, K.; Kilpinen, S.; Sara, H.; Kallioniemi, O.P.; Elenius, K. Role of ErbB4 in breast cancer. J. Mammary Gland Biol. Neoplasia, 2008, 13(2), 259-268.
[http://dx.doi.org/10.1007/s10911-008-9079-3] [PMID: 18454307]
[109]
Gullick, W.J. c-erbB-4/HER4: friend or foe? J. Pathol., 2003, 200(3), 279-281.
[http://dx.doi.org/10.1002/path.1335] [PMID: 12845622]
[110]
Junttila, T.; Sundvall, M.; Määttä, J.A.; Elenius, K. Erbb4 and its isoforms: selective regulation of growth factor responses by naturally occurring receptor variants. Trends Cardiovasc. Med., 2000, 10(7), 304-310.
[http://dx.doi.org/10.1016/S1050-1738(01)00065-2] [PMID: 11343971]
[111]
Kumagai, S.; Koyama, S.; Nishikawa, H. Antitumour immunity regulated by aberrant ERBB family signalling. Nat. Rev. Cancer, 2021, 21(3), 181-197.
[http://dx.doi.org/10.1038/s41568-020-00322-0] [PMID: 33462501]
[112]
Thomas, R.; Weihua, Z. Rethink of EGFR in cancer with its kinase independent function on board. Front. Oncol., 2019, 9, 800.
[http://dx.doi.org/10.3389/fonc.2019.00800] [PMID: 31508364]
[113]
Huang, P.H.; Xu, A.M.; White, F.M. Oncogenic EGFR signaling networks in glioma. Sci. Signal., 2009, 2(87), re6.
[http://dx.doi.org/10.1126/scisignal.287re6] [PMID: 19738203]
[114]
Furnari, F.B.; Cloughesy, T.F.; Cavenee, W.K.; Mischel, P.S. Heterogeneity of epidermal growth factor receptor signalling networks in glioblastoma. Nat. Rev. Cancer, 2015, 15(5), 302-310.
[http://dx.doi.org/10.1038/nrc3918] [PMID: 25855404]
[115]
Zeineldin, R.; Ning, Y.; Hudson, L.G. The constitutive activity of epidermal growth factor receptor vIII leads to activation and differen-tial trafficking of wild-type epidermal growth factor receptor and erbB2. J. Histochem. Cytochem., 2010, 58(6), 529-541.
[http://dx.doi.org/10.1369/jhc.2010.955104] [PMID: 20159766]
[116]
Felsberg, J.; Hentschel, B.; Kaulich, K.; Gramatzki, D.; Zacher, A.; Malzkorn, B.; Kamp, M.; Sabel, M.; Simon, M.; Westphal, M.; Schackert, G.; Tonn, J.C.; Pietsch, T. Epidermal Growth Factor Receptor Variant III (EGFRvIII) Positivity in EGFR-amplififiedglioblastomas: Prognostic role and comparison between primary and recurrent tumors. Clin. Cancer Res., 2017, 23(22), 6846-6855.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0890] [PMID: 28855349]
[117]
Platten, M. EGFRvIII vaccine in glioblastoma-InACT-IVe or not ReACTive enough? Neuro-oncol., 2017, 19(11), 1425-1426.
[http://dx.doi.org/10.1093/neuonc/nox167] [PMID: 29059447]
[118]
Struve, N.; Binder, Z.A.; Stead, L.F.; Brend, T.; Bagley, S.J.; Faulkner, C.; Ott, L.; Müller-Goebel, J.; Weik, A.S.; Hoffer, K.; Krug, L.; Rieckmann, T.; Bußmann, L.; Henze, M.; Morrissette, J.J.D.; Kurian, K.M.; Schüller, U.; Petersen, C.; Rothkamm, K.; O´ Rourke, D.M.; Short, S.C.; Kriegs, M. EGFRvIII upregulates DNA mismatch repair resulting in increased temozolomide sensitivity of MGMT promoter methylated glioblastoma. Oncogene, 2020, 39(15), 3041-3055.
[http://dx.doi.org/10.1038/s41388-020-1208-5] [PMID: 32066879]
[119]
Brito, C.; Azevedo, A.; Esteves, S.; Marques, A.R.; Martins, C.; Costa, I.; Mafra, M.; Bravo Marques, J.M.; Roque, L.; Pojo, M. Clinical insights gained by refining the 2016 WHO classification of diffuse gliomas with: EGFR amplification, TERT mutations, PTEN deletion and MGMT methylation. BMC Cancer, 2019, 19(1), 968.
[http://dx.doi.org/10.1186/s12885-019-6177-0] [PMID: 31623593]
[120]
Ohgaki, H.; Kleihues, P. Genetic pathways to primary and secondary glioblastoma. Am. J. Pathol., 2007, 170(5), 1445-1453.
[http://dx.doi.org/10.2353/ajpath.2007.070011] [PMID: 17456751]
[121]
Watanabe, K.; Tachibana, O.; Sato, K.; Yonekawa, Y.; Kleihues, P.; Ohgaki, H. Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol., 1996, 6(3), 217-223.
[http://dx.doi.org/10.1111/j.1750-3639.1996.tb00848.x] [PMID: 8864278]
[122]
Sarkisian, C.J.; Keister, B.A.; Stairs, D.B.; Boxer, R.B.; Moody, S.E.; Chodosh, L.A. Dose-dependent oncogene-induced senescence in vivo and its evasion during mammary tumorigenesis. Nat. Cell Biol., 2007, 9(5), 493-505.
[http://dx.doi.org/10.1038/ncb1567] [PMID: 17450133]
[123]
Koga, T.; Li, B.; Figueroa, J.M.; Ren, B.; Chen, C.C.; Carter, B.S.; Furnari, F.B. Mapping of genomic EGFRvIII deletions in glioblastoma: insight into rearrangement mechanisms and biomarker development. Neuro-oncol., 2018, 20(10), 1310-1320.
[http://dx.doi.org/10.1093/neuonc/noy058] [PMID: 29660021]
[124]
Lopez-Gines, C.; Cerda-Nicolas, M.; Gil-Benso, R.; Pellin, A.; Lopez-Guerrero, J.A.; Callaghan, R.; Benito, R.; Roldan, P.; Piquer, J.; Llacer, J.; Barbera, J. Association of chromosome 7, chromosome 10 and EGFR gene amplification in glioblastoma multiforme. Clin. Neuropathol., 2005, 24(5), 209-218.
[PMID: 16167544]
[125]
Singh, B.; Carpenter, G.; Coffey, R.J. EGF receptor ligands: Recent advances. F1000 Res., 2016, 5, 2270.
[http://dx.doi.org/10.12688/f1000research.9025.1]
[126]
Ramnarain, D.B.; Park, S.; Lee, D.Y.; Hatanpaa, K.J.; Scoggin, S.O.; Otu, H.; Libermann, T.A.; Raisanen, J.M.; Ashfaq, R.; Wong, E.T.; Wu, J.; Elliott, R.; Habib, A.A. Differential gene expression analysis reveals generation of an autocrine loop by a mutant epidermal growth factor receptor in glioma cells. Cancer Res., 2006, 66(2), 867-874.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2753] [PMID: 16424019]
[127]
Tang, P.; Steck, P.A.; Yung, W.K.A. The autocrine loop of TGF-α/EGFR and brain tumors. J. Neurooncol., 1997, 35(3), 303-314.
[http://dx.doi.org/10.1023/A:1005824802617] [PMID: 9440027]
[128]
Filmus, J.; Shi, W.; Spencer, T. Role of transforming growth factor α (TGF-α) in the transformation of ras-transfected rat intestinal epi-thelial cells. Oncogene, 1993, 8(4), 1017-1022.
[PMID: 8455929]
[129]
Wilkie, A.O.; Morriss-Kay, G.M.; Jones, E.Y.; Heath, J.K. Functions of fibroblast growth factors and their receptors. Curr. Biol., 1995, 5(5), 500-507.
[http://dx.doi.org/10.1016/S0960-9822(95)00102-3] [PMID: 7583099]
[130]
Kornmann, M.; Beger, H.G.; Korc, M. Role of fibroblast growth factors and their receptors in pancreatic cancer and chronic pancreatitis. Pancreas, 1998, 17(2), 169-175.
[http://dx.doi.org/10.1097/00006676-199808000-00010] [PMID: 9700949]
[131]
Abbass, S.A.A.; Asa, S.L.; Ezzat, S. Altered expression of fibroblast growth factor receptors in human pituitary adenomas. J. Clin. Endocrinol. Metab., 1997, 82(4), 1160-1166.
[http://dx.doi.org/10.1210/jcem.82.4.3896] [PMID: 9100589]
[132]
Chesi, M.; Nardini, E.; Lim, R.S.C.; Smith, K.D.; Kuehl, W.M.; Bergsagel, P.L. The t(4;14) translocation in myeloma dysregulates both FGFR3 and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts. Blood, 1998, 92(9), 3025-3034.
[http://dx.doi.org/10.1182/blood.V92.9.3025] [PMID: 9787135]
[133]
Chesi, M.; Nardini, E.; Brents, L.A.; Schröck, E.; Ried, T.; Kuehl, W.M.; Bergsagel, P.L. Frequent translocation t(4;14)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3. Nat. Genet., 1997, 16(3), 260-264.
[http://dx.doi.org/10.1038/ng0797-260] [PMID: 9207791]
[134]
Richelda, R.; Ronchetti, D.; Baldini, L.; Cro, L.; Viggiano, L.; Marzella, R.; Rocchi, M.; Otsuki, T.; Lombardi, L.; Maiolo, A.T.; Neri, A. A novel chromosomal translocation t(4; 14)(p16.3; q32) in multiple myeloma involves the fibroblast growth-factor receptor 3 gene. Blood, 1997, 90(10), 4062-4070.
[http://dx.doi.org/10.1182/blood.V90.10.4062] [PMID: 9354676]
[135]
Chesi, M.; Brents, L.A.; Ely, S.A.; Bais, C.; Robbiani, D.F.; Mesri, E.A.; Kuehl, W.M.; Bergsagel, P.L. Activated fibroblast growth factor receptor 3 is an oncogene that contributes to tumor progression in multiple myeloma. Blood, 2001, 97(3), 729-736.
[http://dx.doi.org/10.1182/blood.V97.3.729] [PMID: 11157491]
[136]
Jang, J.H.; Shin, K.H.; Park, J.G. Mutations in fibroblast growth factor receptor 2 and fibroblast growth factor receptor 3 genes associated with human gastric and colorectal cancers. Cancer Res., 2001, 61(9), 3541-3543.
[PMID: 11325814]
[137]
Cappellen, D.; De Oliveira, C.; Ricol, D.; de Medina, S.; Bourdin, J.; Sastre-Garau, X.; Chopin, D.; Thiery, J.P.; Radvanyi, F. Frequent activating mutations of FGFR3 in human bladder and cervix carcinomas. Nat. Genet., 1999, 23(1), 18-20.
[http://dx.doi.org/10.1038/12615] [PMID: 10471491]
[138]
van Rhijn, B.W.G.; van Tilborg, A.A.G.; Lurkin, I.; Bonaventure, J.; de Vries, A.; Thiery, J.P.; van der Kwast, T.H.; Zwarthoff, E.C.; Radvanyi, F. Novel fibroblast growth factor receptor 3 (FGFR3) mutations in bladder cancer previously identified in non-lethal skeletal disorders. Eur. J. Hum. Genet., 2002, 10(12), 819-824.
[http://dx.doi.org/10.1038/sj.ejhg.5200883] [PMID: 12461689]
[139]
Itoh, N.; Ornitz, D.M. Evolution of the Fgf and Fgfr gene families. Trends Genet., 2004, 20(11), 563-569.
[http://dx.doi.org/10.1016/j.tig.2004.08.007] [PMID: 15475116]
[140]
Ornitz, D.M. FGFs, heparan sulfate and FGFRs: complex interactions essential for development. BioEssays, 2000, 22(2), 108-112.
[http://dx.doi.org/10.1002/(SICI)1521-1878(200002)22:2<108:AID-BIES2>3.0.CO;2-M] [PMID: 10655030]
[141]
Johnson, D.E.; Williams, L.T. Structural and functional diversity in the FGF receptor multigene family. Adv. Cancer Res., 1992, 60, 1-41.
[http://dx.doi.org/10.1016/S0065-230X(08)60821-0] [PMID: 8417497]
[142]
Kan, M.; Wang, F.; Xu, J.; Crabb, J.W.; Hou, J.; McKeehan, W.L. An essential heparin-binding domain in the fibroblast growth factor receptor kinase. Science, 1993, 259(5103), 1918-1921.
[http://dx.doi.org/10.1126/science.8456318] [PMID: 8456318]
[143]
Kalinina, J.; Dutta, K.; Ilghari, D.; Beenken, A.; Goetz, R.; Eliseenkova, A.V.; Cowburn, D.; Mohammadi, M. The alternatively spliced acid box region plays a key role in FGF receptor autoinhibition. Structure, 2012, 20(1), 77-88.
[http://dx.doi.org/10.1016/j.str.2011.10.022] [PMID: 22244757]
[144]
Mohammadi, M.; Olsen, S.K.; Ibrahimi, O.A. Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev., 2005, 16(2), 107-137.
[http://dx.doi.org/10.1016/j.cytogfr.2005.01.008] [PMID: 15863029]
[145]
Brooks, A.N.; Kilgour, E.; Smith, P.D. Molecular pathways: fibroblast growth factor signaling: A new therapeutic opportunity in cancer. Clin. Cancer Res., 2012, 18(7), 1855-1862.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-0699] [PMID: 22388515]
[146]
Sleeman, M.; Fraser, J.; McDonald, M.; Yuan, S.; White, D.; Grandison, P.; Kumble, K.; Watson, J.D.; Murison, J.G. Identification of a new fibroblast growth factor receptor, FGFR5. Gene, 2001, 271(2), 171-182.
[http://dx.doi.org/10.1016/S0378-1119(01)00518-2] [PMID: 11418238]
[147]
Gospodarowicz, D.; Neufeld, G.; Schweigerer, L. Fibroblast growth factor. Mol. Cell. Endocrinol., 1986, 46(3), 187-204.
[http://dx.doi.org/10.1016/0303-7207(86)90001-8] [PMID: 2427371]
[148]
Ornitz, D.M.; Itoh, N. The Fibroblast Growth Factor signaling pathway. Wiley Interdiscip. Rev. Dev. Biol., 2015, 4(3), 215-266.
[http://dx.doi.org/10.1002/wdev.176] [PMID: 25772309]
[149]
Turner, N.; Grose, R. Fibroblast growth factor signalling: from development to cancer. Nat. Rev. Cancer, 2010, 10(2), 116-129.
[http://dx.doi.org/10.1038/nrc2780] [PMID: 20094046]
[150]
Ori, A.; Wilkinson, M.C.; Fernig, D.G. The heparanome and regulation of cell function: structures, functions and challenges. Front. Biosci., 2008, Volume(13), 4309-4338.
[http://dx.doi.org/10.2741/3007] [PMID: 18508513]
[151]
Harmer, N.J.; Ilag, L.L.; Mulloy, B.; Pellegrini, L.; Robinson, C.V.; Blundell, T.L. Towards a resolution of the stoichiometry of the fibro-blast growth factor (FGF)-FGF receptor-heparin complex. J. Mol. Biol., 2004, 339(4), 821-834.
[http://dx.doi.org/10.1016/j.jmb.2004.04.031] [PMID: 15165853]
[152]
Furdui, C.M.; Lew, E.D.; Schlessinger, J.; Anderson, K.S. Autophosphorylation of FGFR1 kinase is mediated by a sequential and pre-cisely ordered reaction. Mol. Cell, 2006, 21(5), 711-717.
[http://dx.doi.org/10.1016/j.molcel.2006.01.022] [PMID: 16507368]
[153]
Dudka, A.A.; Sweet, S.M.M.; Heath, J.K. Signal transducers and activators of transcription-3 binding to the fibroblast growth factor re-ceptor is activated by receptor amplification. Cancer Res., 2010, 70(8), 3391-3401.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3033] [PMID: 20388777]
[154]
Ong, S.H.; Guy, G.R.; Hadari, Y.R.; Laks, S.; Gotoh, N.; Schlessinger, J.; Lax, I. FRS2 proteins recruit intracellular signaling pathways by binding to diverse targets on fibroblast growth factor and nerve growth factor receptors. Mol. Cell. Biol., 2000, 20(3), 979-989.
[http://dx.doi.org/10.1128/MCB.20.3.979-989.2000]
[155]
Kouhara, H.; Hadari, Y.R.; Spivak-Kroizman, T.; Schilling, J.; Bar-Sagi, D.; Lax, I.; Schlessinger, J. A lipid-anchored Grb2-binding pro-tein that links FGF-receptor activation to the Ras/MAPK signaling pathway. Cell, 1997, 89(5), 693-702.
[http://dx.doi.org/10.1016/S0092-8674(00)80252-4] [PMID: 9182757]
[156]
Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell, 2000, 103(2), 211-225.
[http://dx.doi.org/10.1016/S0092-8674(00)00114-8] [PMID: 11057895]
[157]
Firnberg, N.; Neubüser, A. FGF signaling regulates expression of Tbx2, Erm, Pea3, and Pax3 in the early nasal region. Dev. Biol., 2002, 247(2), 237-250.
[http://dx.doi.org/10.1006/dbio.2002.0696] [PMID: 12086464]
[158]
Tsang, M.; Dawid, I.B. Promotion and attenuation of FGF signaling through the Ras-MAPK pathway. Sci. STKE, 2004, 2004(228), pe17.
[http://dx.doi.org/10.1126/stke.2282004pe17] [PMID: 15082862]
[159]
Lamothe, B.; Yamada, M.; Schaeper, U.; Birchmeier, W.; Lax, I.; Schlessinger, J. The docking protein Gab1 is an essential component of an indirect mechanism for fibroblast growth factor stimulation of the phosphatidylinositol 3-kinase/Akt antiapoptotic pathway. Mol. Cell. Biol., 2004, 24(13), 5657-5666.
[http://dx.doi.org/10.1128/MCB.24.13.5657-5666.2004] [PMID: 15199124]
[160]
Holgado-Madruga, M.; Moscatello, D.K.; Emlet, D.R.; Dieterich, R.; Wong, A.J. Grb2-associated binder-1 mediates phosphatidylinositol 3-kinase activation and the promotion of cell survival by nerve growth factor. Proc. Natl. Acad. Sci., 1997, 9423, 12419-12424.
[http://dx.doi.org/10.1073/pnas.94.23.12419]
[161]
Cantley, L.C. The phosphoinositide 3-kinase pathway. Science, 2002, 296(5573), 1655-1657.
[http://dx.doi.org/10.1126/science.296.5573.1655] [PMID: 12040186]
[162]
Manning, B.D.; Cantley, L.C. AKT/PKB signaling: navigating downstream. Cell, 2007, 129(7), 1261-1274.
[http://dx.doi.org/10.1016/j.cell.2007.06.009] [PMID: 17604717]
[163]
Potter, C.J.; Pedraza, L.G.; Xu, T. Akt regulates growth by directly phosphorylating Tsc2. Nat. Cell Biol., 2002, 4(9), 658-665.
[http://dx.doi.org/10.1038/ncb840] [PMID: 12172554]
[164]
Inoki, K.; Li, Y.; Zhu, T.; Wu, J.; Guan, K.L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol., 2002, 4(9), 648-657.
[http://dx.doi.org/10.1038/ncb839] [PMID: 12172553]
[165]
Peters, K.G.; Marie, J.; Wilson, E.; Ives, H.E.; Escobedo, J.; Rosario, M.D.; Mirda, D.; Williams, L.T. Point mutation of an FGF receptor abolishes phosphatidylinositol turnover and Ca2+ flux but not mitogenesis. Nature, 1992, 358(6388), 678-681.
[http://dx.doi.org/10.1038/358678a0] [PMID: 1379697]
[166]
Klint, P.; Claesson-Welsh, L. Signal transduction by fibroblast growth factor receptors. Front. Biosci., 1999, 4(1-3), d165.
[http://dx.doi.org/10.2741/Klint] [PMID: 9989949]
[167]
Yang, X.; Qiao, D.; Meyer, K.; Pier, T.; Keles, S.; Friedl, A. Angiogenesis induced by signal transducer and activator of transcription 5A (STAT5A) is dependent on autocrine activity of proliferin. J. Biol. Chem., 2012, 287(9), 6490-6502.
[http://dx.doi.org/10.1074/jbc.M111.254631] [PMID: 22199350]
[168]
Hart, K.C.; Robertson, S.C.; Kanemitsu, M.Y.; Meyer, A.N.; Tynan, J.A.; Donoghue, D.J. Transformation and Stat activation by deriva-tives of FGFR1, FGFR3, and FGFR4. Oncogene, 2000, 19(29), 3309-3320.
[http://dx.doi.org/10.1038/sj.onc.1203650] [PMID: 10918587]
[169]
Heath, C.; Cross, N.C.P. Critical role of STAT5 activation in transformation mediated by ZNF198-FGFR1. J. Biol. Chem., 2004, 279(8), 6666-6673.
[http://dx.doi.org/10.1074/jbc.M308743200] [PMID: 14660670]
[170]
Greenman, C.; Stephens, P.; Smith, R.; Dalgliesh, G.L.; Hunter, C.; Bignell, G.; Davies, H.; Teague, J.; Butler, A.; Stevens, C.; Edkins, S.; O’Meara, S.; Vastrik, I.; Schmidt, E.E.; Avis, T.; Barthorpe, S.; Bhamra, G.; Buck, G.; Choudhury, B.; Clements, J.; Cole, J.; Dicks, E.; Forbes, S.; Gray, K.; Halliday, K.; Harrison, R.; Hills, K.; Hinton, J.; Jenkinson, A.; Jones, D.; Menzies, A.; Mironenko, T.; Perry, J.; Raine, K.; Richardson, D.; Shepherd, R.; Small, A.; Tofts, C.; Varian, J.; Webb, T.; West, S.; Widaa, S.; Yates, A.; Cahill, D.P.; Louis, D.N.; Goldstraw, P.; Nicholson, A.G.; Brasseur, F.; Looijenga, L.; Weber, B.L.; Chiew, Y.E.; deFazio, A.; Greaves, M.F.; Green, A.R.; Campbell, P.; Birney, E.; Easton, D.F.; Chenevix-Trench, G.; Tan, M.H.; Khoo, S.K.; Teh, B.T.; Yuen, S.T.; Leung, S.Y.; Wooster, R.; Futreal, P.A.; Stratton, M.R. Patterns of somatic mutation in human cancer genomes. Nature, 2007, 446(7132), 153-158.
[http://dx.doi.org/10.1038/nature05610] [PMID: 17344846]
[171]
Dutt, A.; Salvesen, H.B.; Chen, T.H.; Ramos, A.H.; Onofrio, R.C.; Hatton, C.; Nicoletti, R.; Winckler, W.; Grewal, R.; Hanna, M.; Wyhs, N.; Ziaugra, L.; Richter, D.J.; Trovik, J.; Engelsen, I.B.; Stefansson, I.M.; Fennell, T.; Cibulskis, K.; Zody, M.C.; Akslen, L.A.; Gabriel, S.; Wong, K.K.; Sellers, W.R.; Meyerson, M.; Greulich, H. Drug-sensitive FGFR2 mutations in endometrial carcinoma. Proc. Natl. Acad. Sci. USA, 2008, 105(25), 8713-8717.
[http://dx.doi.org/10.1073/pnas.0803379105] [PMID: 18552176]
[172]
Vi, J.G.T.; Cheuk, A.T.; Tsang, P.S.; Chung, J.Y.; Song, Y.K.; Desai, K.; Yu, Y.; Chen, Q.R.; Shah, K.; Youngblood, V.; Fang, J.; Kim, S.Y.; Yeung, C.; Helman, L.J.; Mendoza, A.; Ngo, V.; Staudt, L.M.; Wei, J.S.; Khanna, C.; Catchpoole, D.; Qualman, S.J.; Hewitt, S.M.; Merlino, G.; Chanock, S.J.; Khan, J. Identification of FGFR4-activating mutations in human rhabdomyosarcomas that promote metastasis in xenotransplanted models. J. Clin. Invest., 2009, 119(11), 3395-3407.
[http://dx.doi.org/10.1172/JCI39703] [PMID: 19809159]
[173]
Courjal, F.; Cuny, M.; Simony-Lafontaine, J.; Louason, G.; Speiser, P.; Zeillinger, R.; Rodriguez, C.; Theillet, C. Mapping of DNA ampli-fications at 15 chromosomal localizations in 1875 breast tumors: definition of phenotypic groups. Cancer Res., 1997, 57(19), 4360-4367.
[PMID: 9331099]
[174]
Welm, B.E.; Freeman, K.W.; Chen, M.; Contreras, A.; Spencer, D.M.; Rosen, J.M. Inducible dimerization of FGFR1. J. Cell Biol., 2002, 157(4), 703-714.
[http://dx.doi.org/10.1083/jcb.200107119] [PMID: 12011115]
[175]
Weiss, J.; Sos, M.L.; Seidel, D.; Peifer, M.; Zander, T.; Heuckmann, J.M.; Ullrich, R.T.; Menon, R.; Maier, S.; Soltermann, A.; Moch, H.; Wagener, P.; Fischer, F.; Heynck, S.; Koker, M.; Schöttle, J.; Leenders, F.; Gabler, F.; Dabow, I.; Querings, S.; Heukamp, L.C.; Balke-Want, H.; Ansén, S.; Rauh, D.; Baessmann, I.; Altmüller, J.; Wainer, Z.; Conron, M.; Wright, G.; Russell, P.; Solomon, B.; Brambilla, E.; Brambilla, C.; Lorimier, P.; Sollberg, S.; Brustugun, O.T.; Engel-Riedel, W.; Ludwig, C.; Petersen, I.; Sänger, J.; Clement, J.; Groen, H.; Timens, W.; Sietsma, H.; Thunnissen, E.; Smit, E.; Heideman, D.; Cappuzzo, F.; Ligorio, C.; Damiani, S.; Hallek, M.; Beroukhim, R.; Pao, W.; Klebl, B.; Baumann, M.; Buettner, R.; Ernestus, K.; Stoelben, E.; Wolf, J.; Nürnberg, P.; Perner, S.; Thomas, R.K. Frequent and focal FGFR1 amplification associates with therapeutically tractable FGFR1 dependency in squamous cell lung cancer. Sci. Transl. Med., 2010, 2(62), 62ra93.
[http://dx.doi.org/10.1126/scitranslmed.3001451] [PMID: 21160078]
[176]
Kunii, K.; Davis, L.; Gorenstein, J.; Hatch, H.; Yashiro, M.; Di Bacco, A.; Elbi, C.; Lutterbach, B. FGFR2-amplified gastric cancer cell lines require FGFR2 and Erbb3 signaling for growth and survival. Cancer Res., 2008, 68(7), 2340-2348.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5229] [PMID: 18381441]
[177]
Freier, K.; Schwaenen, C.; Sticht, C.; Flechtenmacher, C.; Mühling, J.; Hofele, C.; Radlwimmer, B.; Lichter, P.; Joos, S. Recurrent FGFR1 amplification and high FGFR1 protein expression in oral squamous cell carcinoma (OSCC). Oral Oncol., 2007, 43(1), 60-66.
[http://dx.doi.org/10.1016/j.oraloncology.2006.01.005] [PMID: 16807070]
[178]
Simon, R.; Richter, J.; Wagner, U.; Fijan, A.; Bruderer, J.; Schmid, U.; Ackermann, D.; Maurer, R.; Alund, G.; Knönagel, H.; Rist, M.; Wilber, K.; Anabitarte, M.; Hering, F.; Hardmeier, T.; Schönenberger, A.; Flury, R.; Jäger, P.; Fehr, J.L.; Schraml, P.; Moch, H.; Mihatsch, M.J.; Gasser, T.; Sauter, G. High-throughput tissue microarray analysis of 3p25 (RAF1) and 8p12 (FGFR1) copy number alterations in urinary bladder cancer. Cancer Res., 2001, 61(11), 4514-4519.
[PMID: 11389083]
[179]
Gorringe, K.L.; Jacobs, S.; Thompson, E.R.; Sridhar, A.; Qiu, W.; Choong, D.Y.H.; Campbell, I.G. High-resolution single nucleotide polymorphism array analysis of epithelial ovarian cancer reveals numerous microdeletions and amplifications. Clin. Cancer Res., 2007, 13(16), 4731-4739.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-0502] [PMID: 17699850]
[180]
Jackson, C.C.; Medeiros, L.J.; Miranda, R.N. 8p11 myeloproliferative syndrome: A review. Hum. Pathol., 2010, 41(4), 461-476.
[http://dx.doi.org/10.1016/j.humpath.2009.11.003] [PMID: 20226962]
[181]
Qing, J.; Du, X.; Chen, Y.; Chan, P.; Li, H.; Wu, P.; Marsters, S.; Stawicki, S.; Tien, J.; Totpal, K.; Ross, S.; Stinson, S.; Dornan, D.; French, D.; Wang, Q.R.; Stephan, J.P.; Wu, Y.; Wiesmann, C.; Ashkenazi, A. Antibody-based targeting of FGFR3 in bladder carcinoma and t(4;14)-positive multiple myeloma in mice. J. Clin. Invest., 2009, 119(5), 1216-1229.
[http://dx.doi.org/10.1172/JCI38017] [PMID: 19381019]
[182]
Hanada, K.; Perry-Lalley, D.M.; Ohnmacht, G.A.; Bettinotti, M.P.; Yang, J.C. Identification of fibroblast growth factor-5 as an overex-pressed antigen in multiple human adenocarcinomas. Cancer Res., 2001, 61(14), 5511-5516.
[PMID: 11454700]
[183]
Uematsu, S.; Higashi, T.; Nouso, K.; Kariyama, K.; Nakamura, S.I.; Suzuki, M.; Nakatsukasa, H.; Kobayashi, Y.; Hanafusa, T.; Tsuji, T.; Shiratori, Y. Altered expression of vascular endothelial growth factor, fibroblast growth factor‐2 and endostatin in patients with hepato-cellular carcinoma. J. Gastroenterol. Hepatol., 2005, 20(4), 583-588.
[http://dx.doi.org/10.1111/j.1440-1746.2005.03726.x] [PMID: 15836707]
[184]
Hu, M.C.T.; Qiu, W.R.; Wang, Y.; Hill, D.; Ring, B.D.; Scully, S.; Bolon, B.; DeRose, M.; Luethy, R.; Simonet, W.S.; Arakawa, T.; Danilenko, D.M. FGF-18, a novel member of the fibroblast growth factor family, stimulates hepatic and intestinal proliferation. Mol. Cell. Biol., 1998, 18(10), 6063-6074.
[http://dx.doi.org/10.1128/MCB.18.10.6063] [PMID: 9742123]
[185]
Kin, M.; Sata, M.; Ueno, T.; Torimura, T.; Inuzuka, S.; Tsuji, R.; Sujaku, K.; Sakamoto, M.; Sugawara, H.; Tamaki, S.; Tanikawa, K. Basic fibroblast growth factor regulates proliferation and motility of human hepatoma cells by an autocrine mechanism. J. Hepatol., 1997, 27(4), 677-687.
[http://dx.doi.org/10.1016/S0168-8278(97)80085-2] [PMID: 9365044]
[186]
Gauglhofer, C.; Sagmeister, S.; Schrottmaier, W.; Fischer, C.; Rodgarkia-Dara, C.; Mohr, T.; Stättner, S.; Bichler, C.; Kandioler, D.; Wrba, F.; Schulte-Hermann, R.; Holzmann, K.; Grusch, M.; Marian, B.; Berger, W.; Grasl-Kraupp, B. Up-regulation of the fibroblast growth fac-tor 8 subfamily in human hepatocellular carcinoma for cell survival and neoangiogenesis. Hepatology, 2011, 53(3), 854-864.
[http://dx.doi.org/10.1002/hep.24099] [PMID: 21319186]
[187]
Nicholes, K.; Guillet, S.; Tomlinson, E.; Hillan, K.; Wright, B.; Frantz, G.D.; Pham, T.A.; Dillard-Telm, L.; Tsai, S.P.; Stephan, J.P.; Stin-son, J.; Stewart, T.; French, D.M. A mouse model of hepatocellular carcinoma: ectopic expression of fibroblast growth factor 19 in skeletal muscle of transgenic mice. Am. J. Pathol., 2002, 160(6), 2295-2307.
[http://dx.doi.org/10.1016/S0002-9440(10)61177-7] [PMID: 12057932]
[188]
Sawey, E.T.; Chanrion, M.; Cai, C.; Wu, G.; Zhang, J.; Zender, L.; Zhao, A.; Busuttil, R.W.; Yee, H.; Stein, L.; French, D.M.; Finn, R.S.; Lowe, S.W.; Powers, S. Identification of a therapeutic strategy targeting amplified FGF19 in liver cancer by Oncogenomic screening. Cancer Cell, 2011, 19(3), 347-358.
[http://dx.doi.org/10.1016/j.ccr.2011.01.040] [PMID: 21397858]
[189]
Marek, L.; Ware, K.E.; Fritzsche, A.; Hercule, P.; Helton, W.R.; Smith, J.E.; McDermott, L.A.; Coldren, C.D.; Nemenoff, R.A.; Merrick, D.T.; Helfrich, B.A.; Bunn, P.A., Jr; Heasley, L.E. Fibroblast growth factor (FGF) and FGF receptor-mediated autocrine signaling in non-small-cell lung cancer cells. Mol. Pharmacol., 2009, 75(1), 196-207.
[http://dx.doi.org/10.1124/mol.108.049544] [PMID: 18849352]
[190]
Wang, Y.; Becker, D. Antisense targeting of basic fibroblast growth factor and dibroblast growth factor receptor-1 in human melanomas blocks intratumoral angiogenesis and tumor growth. Nat. Med., 1997, 3(8), 887-893.
[http://dx.doi.org/10.1038/nm0897-887] [PMID: 9256280]
[191]
Ruotsalainen, T.; Joensuu, H.; Mattson, K.; Salven, P. High pretreatment serum concentration of basic fibroblast growth factor is a pre-dictor of poor prognosis in small cell lung cancer. Cancer Epidemiol. Biomarkers Prev., 2002, 11(11), 1492-1495.
[PMID: 12433733]
[192]
Pardo, O.E.; Wellbrock, C.; Khanzada, U.K.; Aubert, M.; Arozarena, I.; Davidson, S.; Bowen, F.; Parker, P.J.; Filonenko, V.V.; Gout, I.T.; Sebire, N.; Marais, R.; Downward, J.; Seckl, M.J. FGF-2 protects small cell lung cancer cells from apoptosis through a complex in-volving PKCɛ, B-Raf and S6K2. EMBO J., 2006, 25(13), 3078-3088.
[http://dx.doi.org/10.1038/sj.emboj.7601198] [PMID: 16810323]
[193]
Presta, M.; Dell’Era, P.; Mitola, S.; Moroni, E.; Ronca, R.; Rusnati, M. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev., 2005, 16(2), 159-178.
[http://dx.doi.org/10.1016/j.cytogfr.2005.01.004] [PMID: 15863032]
[194]
Birrer, M.J.; Johnson, M.E.; Hao, K.; Wong, K.K.; Park, D.C.; Bell, A.; Welch, W.R.; Berkowitz, R.S.; Mok, S.C. Whole genome oligonu-cleotide-based array comparative genomic hybridization analysis identified fibroblast growth factor 1 as a prognostic marker for ad-vanced-stage serous ovarian adenocarcinomas. J. Clin. Oncol., 2007, 25(16), 2281-2287.
[http://dx.doi.org/10.1200/JCO.2006.09.0795]
[195]
Zhang, X.; Ibrahimi, O.A.; Olsen, S.K.; Umemori, H.; Mohammadi, M.; Ornitz, D.M. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J. Biol. Chem., 2006, 281(23), 15694-15700.
[http://dx.doi.org/10.1074/jbc.M601252200] [PMID: 16597617]
[196]
Wesche, J.; Haglund, K.; Haugsten, E.M. Fibroblast growth factors and their receptors in cancer. Biochem. J., 2011, 437(2), 199-213.
[http://dx.doi.org/10.1042/BJ20101603] [PMID: 21711248]
[197]
Easton, D.F.; Pooley, K.A.; Dunning, A.M.; Pharoah, P.D.P.; Thompson, D.; Ballinger, D.G.; Struewing, J.P.; Morrison, J.; Field, H.; Luben, R.; Wareham, N.; Ahmed, S.; Healey, C.S.; Bowman, R.; Luccarini, C.; Conroy, D.; Shah, M.; Munday, H.; Jordan, C.; Perkins, B.; West, J.; Redman, K.; Driver, K.; Meyer, K.B.; Haiman, C.A.; Kolonel, L.K.; Henderson, B.E.; Le Marchand, L.; Brennan, P.; San-grajrang, S.; Gaborieau, V.; Odefrey, F.; Shen, C-Y.; Wu, P-E.; Wang, H-C.; Eccles, D.; Evans, D.G.; Peto, J.; Fletcher, O.; Johnson, N.; Seal, S.; Stratton, M.R.; Rahman, N.; Chenevix-Trench, G.; Bojesen, S.E.; Nordestgaard, B.G.; Axelsson, C.K.; Garcia-Closas, M.; Brin-ton, L.; Chanock, S.; Lissowska, J.; Peplonska, B.; Nevanlinna, H.; Fagerholm, R.; Eerola, H.; Kang, D.; Yoo, K-Y.; Noh, D-Y.; Ahn, S-H.; Hunter, D.J.; Hankinson, S.E.; Cox, D.G.; Hall, P.; Wedren, S.; Liu, J.; Low, Y-L.; Bogdanova, N.; Schürmann, P.; Dörk, T.; Tol-lenaar, R.A.E.M.; Jacobi, C.E.; Devilee, P.; Klijn, J.G.M.; Sigurdson, A.J.; Doody, M.M.; Alexander, B.H.; Zhang, J.; Cox, A.; Brock, I.W.; MacPherson, G.; Reed, M.W.R.; Couch, F.J.; Goode, E.L.; Olson, J.E.; Meijers-Heijboer, H.; van den Ouweland, A.; Uitterlinden, A.; Rivadeneira, F.; Milne, R.L.; Ribas, G.; Gonzalez-Neira, A.; Benitez, J.; Hopper, J.L.; McCredie, M.; Southey, M.; Giles, G.G.; Schroen, C.; Justenhoven, C.; Brauch, H.; Hamann, U.; Ko, Y-D.; Spurdle, A.B.; Beesley, J.; Chen, X.; Aghmesheh, M.; Amor, D.; An-drews, L.; Antill, Y.; Armes, J.; Armitage, S.; Arnold, L.; Balleine, R.; Begley, G.; Beilby, J.; Bennett, I.; Bennett, B.; Berry, G.; Black-burn, A.; Brennan, M.; Brown, M.; Buckley, M.; Burke, J.; Butow, P.; Byron, K.; Callen, D.; Campbell, I.; Chenevix-Trench, G.; Clarke, C.; Colley, A.; Cotton, D.; Cui, J.; Culling, B.; Cummings, M.; Dawson, S-J.; Dixon, J.; Dobrovic, A.; Dudding, T.; Edkins, T.; Ei-senbruch, M.; Farshid, G.; Fawcett, S.; Field, M.; Firgaira, F.; Fleming, J.; Forbes, J.; Friedlander, M.; Gaff, C.; Gardner, M.; Gattas, M.; George, P.; Giles, G.; Gill, G.; Goldblatt, J.; Greening, S.; Grist, S.; Haan, E.; Harris, M.; Hart, S.; Hayward, N.; Hopper, J.; Humphrey, E.; Jenkins, M.; Jones, A.; Kefford, R.; Kirk, J.; Kollias, J.; Kovalenko, S.; Lakhani, S.; Leary, J.; Lim, J.; Lindeman, G.; Lipton, L.; Lobb, L.; Maclurcan, M.; Mann, G.; Marsh, D.; McCredie, M.; McKay, M.; Anne McLachlan, S.; Meiser, B.; Milne, R.; Mitchell, G.; Newman, B.; O’Loughlin, I.; Osborne, R.; Peters, L.; Phillips, K.; Price, M.; Reeve, J.; Reeve, T.; Richards, R.; Rinehart, G.; Robinson, B.; Rudzki, B.; Salisbury, E.; Sambrook, J.; Saunders, C.; Scott, C.; Scott, E.; Scott, R.; Seshadri, R.; Shelling, A.; Southey, M.; Spurdle, A.; Suthers, G.; Taylor, D.; Tennant, C.; Thorne, H.; Townshend, S.; Tucker, K.; Tyler, J.; Venter, D.; Visvader, J.; Walpole, I.; Ward, R.; Waring, P.; Warner, B.; Warren, G.; Watson, E.; Williams, R.; Wilson, J.; Winship, I.; Young, M.A.; Bowtell, D.; Green, A.; deFazio, A.; Chenevix-Trench, G.; Gertig, D.; Webb, P.; Mannermaa, A.; Kosma, V-M.; Kataja, V.; Hartikainen, J.; Day, N.E.; Cox, D.R.; Ponder, B.A.J. Ge-nome-wide association study identifies novel breast cancer susceptibility loci. Nature, 2007, 447(7148), 1087-1093.
[http://dx.doi.org/10.1038/nature05887] [PMID: 17529967]
[198]
Garcia-Closas, M.; Hall, P.; Nevanlinna, H.; Pooley, K.; Morrison, J.; Richesson, D.A.; Bojesen, S.E.; Nordestgaard, B.G.; Axelsson, C.K.; Arias, J.I.; Milne, R.L.; Ribas, G.; González-Neira, A.; Benítez, J.; Zamora, P.; Brauch, H.; Justenhoven, C.; Hamann, U.; Ko, Y.D.; Bruening, T.; Haas, S.; Dörk, T.; Schürmann, P.; Hillemanns, P.; Bogdanova, N.; Bremer, M.; Karstens, J.H.; Fagerholm, R.; Aaltonen, K.; Aittomäki, K.; von Smitten, K.; Blomqvist, C.; Mannermaa, A.; Uusitupa, M.; Eskelinen, M.; Tengström, M.; Kosma, V.M.; Kataja, V.; Chenevix-Trench, G.; Spurdle, A.B.; Beesley, J.; Chen, X.; Devilee, P.; van Asperen, C.J.; Jacobi, C.E.; Tollenaar, R.A.E.M.; Huijts, P.E.A.; Klijn, J.G.M.; Chang-Claude, J.; Kropp, S.; Slanger, T.; Flesch-Janys, D.; Mutschelknauss, E.; Salazar, R.; Wang-Gohrke, S.; Couch, F.; Goode, E.L.; Olson, J.E.; Vachon, C.; Fredericksen, Z.S.; Giles, G.G.; Baglietto, L.; Severi, G.; Hopper, J.L.; English, D.R.; Southey, M.C.; Haiman, C.A.; Henderson, B.E.; Kolonel, L.N.; Le Marchand, L.; Stram, D.O.; Hunter, D.J.; Hankinson, S.E.; Cox, D.G.; Tamimi, R.; Kraft, P.; Sherman, M.E.; Chanock, S.J.; Lissowska, J.; Brinton, L.A.; Peplonska, B.; Klijn, J.G.M.; Hooning, M.J.; Meijers-Heijboer, H.; Collee, J.M.; van den Ouweland, A.; Uitterlinden, A.G.; Liu, J.; Lin, L.Y.; Yuqing, L.; Humphreys, K.; Czene, K.; Cox, A.; Balasubramanian, S.P.; Cross, S.S.; Reed, M.W.R.; Blows, F.; Driver, K.; Dunning, A.; Tyrer, J.; Ponder, B.A.J.; Sangrajrang, S.; Brennan, P.; McKay, J.; Odefrey, F.; Gabrieau, V.; Sigurdson, A.; Doody, M.; Struewing, J.P.; Alexander, B.; Easton, D.F.; Pharoah, P.D. Hetero-geneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics. PLoS Genet., 2008, 4(4), e1000054.
[http://dx.doi.org/10.1371/journal.pgen.1000054] [PMID: 18437204]
[199]
Spinola, M.; Leoni, V.; Tanuma, J.; Pettinicchio, A.; Frattini, M.; Signoroni, S.; Agresti, R.; Giovanazzi, R.; Pilotti, S.; Bertario, L.; Rav-agnani, F.; Dragani, T. FGFR4 Gly388Arg polymorphism and prognosis of breast and colorectal cancer. Oncol. Rep., 2005, 14(2), 415-419.
[http://dx.doi.org/10.3892/or.14.2.415] [PMID: 16012724]
[200]
Cha, J.Y.; Maddileti, S.; Mitin, N.; Harden, T.K.; Der, C.J. Aberrant receptor internalization and enhanced FRS2-dependent signaling contribute to the transforming activity of the fibroblast growth factor receptor 2 IIIb C3 isoform. J. Biol. Chem., 2009, 284(10), 6227-6240.
[http://dx.doi.org/10.1074/jbc.M803998200] [PMID: 19103595]
[201]
Cho, J.Y.; Guo, C.; Torello, M.; Lunstrum, G.P.; Iwata, T.; Deng, C.; Horton, W.A. Defective lysosomal targeting of activated fibroblast growth factor receptor 3 in achondroplasia. Proc. Natl. Acad. Sci. USA, 2004, 101(2), 609-614.
[http://dx.doi.org/10.1073/pnas.2237184100] [PMID: 14699054]
[202]
Mosesson, Y.; Mills, G.B.; Yarden, Y. Derailed endocytosis: An emerging feature of cancer. Nat. Rev. Cancer, 2008, 8(11), 835-850.
[http://dx.doi.org/10.1038/nrc2521] [PMID: 18948996]
[203]
Board, R.; Jayson, G. Platelet-derived growth factor receptor (PDGFR): A target for anticancer therapeutics. Drug Resist. Updat., 2005, 8(1-2), 75-83.
[http://dx.doi.org/10.1016/j.drup.2005.03.004] [PMID: 15939344]
[204]
Guérit, E.; Arts, F.; Dachy, G.; Boulouadnine, B.; Demoulin, J.B. PDGF receptor mutations in human diseases. Cell. Mol. Life Sci., 2021, 78(8), 3867-3881.
[http://dx.doi.org/10.1007/s00018-020-03753-y] [PMID: 33449152]
[205]
Rogers, M.A.; Fantauzzo, K.A. The emerging complexity of PDGFRs: Activation, internalization and signal attenuation. Biochem. Soc. Trans., 2020, 48(3), 1167-1176.
[http://dx.doi.org/10.1042/BST20200004] [PMID: 32369556]
[206]
Li, X.; Pontén, A.; Aase, K.; Karlsson, L.; Abramsson, A.; Uutela, M.; Bäckström, G.; Hellström, M.; Boström, H.; Li, H.; Soriano, P.; Betsholtz, C.; Heldin, C.H.; Alitalo, K.; Östman, A.; Eriksson, U. PDGF-C is a new protease-activated ligand for the PDGF α-receptor. Nat. Cell Biol., 2000, 2(5), 302-309.
[http://dx.doi.org/10.1038/35010579] [PMID: 10806482]
[207]
Bergsten, E.; Uutela, M.; Li, X.; Pietras, K.; Östman, A.; Heldin, C.H.; Alitalo, K.; Eriksson, U. PDGF-D is a specific, protease-activated ligand for the PDGF β-receptor. Nat. Cell Biol., 2001, 3(5), 512-516.
[http://dx.doi.org/10.1038/35074588] [PMID: 11331881]
[208]
Fredriksson, L.; Li, H.; Eriksson, U. The PDGF family: four gene products form five dimeric isoforms. Cytokine Growth Factor Rev., 2004, 15(4), 197-204.
[http://dx.doi.org/10.1016/j.cytogfr.2004.03.007] [PMID: 15207811]
[209]
Betsholtz, C.; Johnsson, A.; Heldin, C.H.; Westermark, B.; Lind, P.; Urdea, M.S.; Eddy, R.; Shows, T.B.; Philpott, K.; Mellor, A.L.; Knott, T.J.; Scott, J. cDNA sequence and chromosomal localization of human platelet-derived growth factor A-chain and its expression in tumour cell lines. Nature, 1986, 320(6064), 695-699.
[http://dx.doi.org/10.1038/320695a0] [PMID: 3754619]
[210]
Uutela, M.; Laurén, J.; Bergsten, E.; Li, X.; Horelli-Kuitunen, N.; Eriksson, U.; Alitalo, K. Chromosomal location, exon structure, and vascular expression patterns of the human PDGFC and PDGFD genes. Circulation, 2001, 103(18), 2242-2247.
[http://dx.doi.org/10.1161/01.CIR.103.18.2242] [PMID: 11342471]
[211]
Mao, H.; Ito, Y. 4.19 Growth Factors and Protein-Modified Surfaces and Interfaces ☆. Comprehensive Biomaterials, 2017, II, 321-359.
[http://dx.doi.org/10.1016/B978-0-12-803581-8.10191-2]
[212]
Kazlauskas, A. PDGFs and their receptors. Gene, 2017, 614, 1-7.
[http://dx.doi.org/10.1016/j.gene.2017.03.003] [PMID: 28267575]
[213]
Molina, J.R.; Adjei, A.A. The Ras/Raf/MAPK Pathway. J. Thorac. Oncol., 2006, 1(1), 7-9.
[http://dx.doi.org/10.1016/S1556-0864(15)31506-9] [PMID: 17409820]
[214]
Park, R.K.; Kyono, W.T.; Liu, Y.; Durden, D.L. CBL-GRB2 interaction in myeloid immunoreceptor tyrosine activation motif signaling. J. Immunol., 1998, 160(10), 5018-5027.
[http://dx.doi.org/10.4049/jimmunol.160.10.5018] [PMID: 9590251]
[215]
Hennig, A.; Markwart, R.; Esparza-Franco, M.A.; Ladds, G.; Rubio, I. Ras activation revisited: role of GEF and GAP systems. Biol. Chem., 2015, 396(8), 831-848.
[http://dx.doi.org/10.1515/hsz-2014-0257] [PMID: 25781681]
[216]
Ying, H.Z.; Chen, Q.; Zhang, W.Y.; Zhang, H.H.; Ma, Y.; Zhang, S.Z.; Fang, J.; Yu, C.H. PDGF signaling pathway in hepatic fibrosis pathogenesis and therapeutics. Mol. Med. Rep., 2017, 16(6), 7879-7889.
[http://dx.doi.org/10.3892/mmr.2017.7641] [PMID: 28983598]
[217]
Regad, T. Targeting RTK signaling pathways in cancer. Cancers (Basel), 2015, 7(3), 1758-1784.
[http://dx.doi.org/10.3390/cancers7030860] [PMID: 26404379]
[218]
Chong, H.; Guan, K.L. Regulation of Raf through phosphorylation and N terminus-C terminus interaction. J. Biol. Chem., 2003, 278(38), 36269-36276.
[http://dx.doi.org/10.1074/jbc.M212803200] [PMID: 12865432]
[219]
Perkinton, M.S.; Ip, J.; Wood, G.L.; Crossthwaite, A.J.; Williams, R.J. Phosphatidylinositol 3‐kinase is a central mediator of NMDA receptor signalling to MAP kinase (Erk1/2), Akt/PKB and CREB in striatal neurones. J. Neurochem., 2002, 80(2), 239-254.
[http://dx.doi.org/10.1046/j.0022-3042.2001.00699.x] [PMID: 11902114]
[220]
Rodrigues, M.; Griffith, L.G.; Wells, A. Growth factor regulation of proliferation and survival of multipotential stromal cells. Stem Cell Res. Ther., 2010, 1(4), 32.
[http://dx.doi.org/10.1186/scrt32] [PMID: 20977782]
[221]
Leslie, N.R.; Downes, C.P.; Schaffer, J.T. Phosphoinositide-Dependent Protein Kinases; Elsevier, 2021.
[http://dx.doi.org/10.1016/B978-0-12-819460-7.00251-6]
[222]
Manning, B.D.; Toker, A. AKT/PKB Signaling: Navigating the Network. Cell, 2017, 169(3), 381-405.
[http://dx.doi.org/10.1016/j.cell.2017.04.001] [PMID: 28431241]
[223]
Steck, P.A.; Pershouse, M.A.; Jasser, S.A.; Yung, W.K.A.; Lin, H.; Ligon, A.H.; Langford, L.A.; Baumgard, M.L.; Hattier, T.; Davis, T.; Frye, C.; Hu, R.; Swedlund, B.; Teng, D.H.R.; Tavtigian, S.V. Identification of a candidate tumour suppressor gene, MMAC1, at chromo-some 10q23.3 that is mutated in multiple advanced cancers. Nat. Genet., 1997, 15(4), 356-362.
[http://dx.doi.org/10.1038/ng0497-356] [PMID: 9090379]
[224]
Thatcher, J.D. The Ras-MAPK signal transduction pathway. Sci. Signal., 2010, 3(119), tr1-tr1.
[PMID: 20424265]
[225]
Lodish, H.; Berk, A.; Kaiser, C.A.; Kaiser, C.; Krieger, M.; Scott, M.P.; Bretscher, A.; Ploegh, H.; Matsudaira, P. Molecular cell biology; Macmillan, 2008.
[226]
Simon, A.R.; Takahashi, S.; Severgnini, M.; Fanburg, B.L.; Cochran, B.H. Role of the JAK-STAT pathway in PDGF-stimulated prolifera-tion of human airway smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol., 2002, 282(6), L1296-L1304.
[http://dx.doi.org/10.1152/ajplung.00315.2001] [PMID: 12003786]
[227]
Neeli, I.; Liu, Z.; Dronadula, N.; Ma, Z.A.; Rao, G.N. An essential role of the Jak-2/STAT-3/cytosolic phospholipase A(2) axis in plate-let-derived growth factor BB-induced vascular smooth muscle cell motility. J. Biol. Chem., 2004, 279(44), 46122-46128.
[http://dx.doi.org/10.1074/jbc.M406922200] [PMID: 15322111]
[228]
Jiang, J.X.; Mikami, K.; Venugopal, S.; Li, Y.; Török, N.J. Apoptotic body engulfment by hepatic stellate cells promotes their survival by the JAK/STAT and Akt/NF-κB-dependent pathways. J. Hepatol., 2009, 51(1), 139-148.
[http://dx.doi.org/10.1016/j.jhep.2009.03.024] [PMID: 19457567]
[229]
Andrae, J.; Gallini, R.; Betsholtz, C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev., 2008, 22(10), 1276-1312.
[http://dx.doi.org/10.1101/gad.1653708] [PMID: 18483217]
[230]
Lindahl, P.; Johansson, B.R.; Levéen, P.; Betsholtz, C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science, 1997, 277(5323), 242-245.
[http://dx.doi.org/10.1126/science.277.5323.242] [PMID: 9211853]
[231]
Soriano, P. Abnormal kidney development and hematological disorders in PDGF beta-receptor mutant mice. Genes Dev., 1994, 8(16), 1888-1896.
[http://dx.doi.org/10.1101/gad.8.16.1888] [PMID: 7958864]
[232]
Ip, C.K.M.; Ng, P.K.S.; Jeong, K.J.; Shao, S.H.; Ju, Z.; Leonard, P.G.; Hua, X.; Vellano, C.P.; Woessner, R.; Sahni, N.; Scott, K.L.; Mills, G.B. Neomorphic PDGFRA extracellular domain driver mutations are resistant to PDGFRA targeted therapies. Nat. Commun., 2018, 9(1), 4583.
[http://dx.doi.org/10.1038/s41467-018-06949-w] [PMID: 30389923]
[233]
Velghe, A.I.; Van Cauwenberghe, S.; Polyansky, A.A.; Chand, D.; Montano-Almendras, C.P.; Charni, S.; Hallberg, B.; Essaghir, A.; Demoulin, J-B. PDGFRA alterations in cancer: characterization of a gain-of-function V536E transmembrane mutant as well as loss-of-function and passenger mutations. Oncogene, 2014, 33(20), 2568-2576.
[http://dx.doi.org/10.1038/onc.2013.218] [PMID: 23752188]
[234]
Corless, C.L.; Schroeder, A.; Griffith, D.; Town, A.; McGreevey, L.; Harrell, P.; Shiraga, S.; Bainbridge, T.; Morich, J.; Heinrich, M.C. PDGFRA mutations in gastrointestinal stromal tumors: frequency, spectrum and in vitro sensitivity to imatinib. J. Clin. Oncol., 2005, 23(23), 5357-5364.
[http://dx.doi.org/10.1200/JCO.2005.14.068] [PMID: 15928335]
[235]
Lasota, J.; Stachura, J.; Miettinen, M. GISTs with PDGFRA exon 14 mutations represent subset of clinically favorable gastric tumors with epithelioid morphology. Lab. Invest., 2006, 86(1), 94-100.
[http://dx.doi.org/10.1038/labinvest.3700360] [PMID: 16258521]
[236]
Appiah-Kubi, K.; Lan, T.; Wang, Y.; Qian, H.; Wu, M.; Yao, X.; Wu, Y.; Chen, Y. Platelet-derived growth factor receptors (PDGFRs) fusion genes involvement in hematological malignancies. Crit. Rev. Oncol. Hematol., 2017, 109, 20-34.
[http://dx.doi.org/10.1016/j.critrevonc.2016.11.008] [PMID: 28010895]
[237]
Havelange, V.; Demoulin, J.B. Review of current classification, molecular alterations, and tyrosine kinase inhibitor therapies in myeloproliferative disorders with hypereosinophilia. J. Blood Med., 2013, 4, 111-121.
[PMID: 23976869]
[238]
Medves, S.; Demoulin, J.B. Tyrosine kinase gene fusions in cancer: translating mechanisms into targeted therapies. J. Cell. Mol. Med., 2012, 16(2), 237-248.
[http://dx.doi.org/10.1111/j.1582-4934.2011.01415.x] [PMID: 21854543]
[239]
Toffalini, F.; Demoulin, J.B. New insights into the mechanisms of hematopoietic cell transformation by activated receptor tyrosine kinas-es. Blood, 2010, 116(14), 2429-2437.
[http://dx.doi.org/10.1182/blood-2010-04-279752] [PMID: 20581310]
[240]
Schwab, C.; Ryan, S.L.; Chilton, L.; Elliott, A.; Murray, J.; Richardson, S.; Wragg, C.; Moppett, J.; Cummins, M.; Tunstall, O.; Parker, C.A.; Saha, V.; Goulden, N.; Vora, A.; Moorman, A.V.; Harrison, C.J. EBF1-PDGFRB fusion in pediatric B-cell precursor acute lympho-blastic leukemia (BCP-ALL): genetic profile and clinical implications. Blood, 2016, 127(18), 2214-2218.
[http://dx.doi.org/10.1182/blood-2015-09-670166] [PMID: 26872634]
[241]
Shibuya, M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: A crucial target for anti-and pro-angiogenic therapies. Genes Cancer, 2011, 2(12), 1097-1105.
[http://dx.doi.org/10.1177/1947601911423031] [PMID: 22866201]
[242]
Ferrara, N.; Kerbel, R.S. Angiogenesis as a therapeutic target. Nature, 2005, 438(7070), 967-974.
[http://dx.doi.org/10.1038/nature04483] [PMID: 16355214]
[243]
Carmeliet, P.; Jain, R.K. Molecular mechanisms and clinical applications of angiogenesis. Nature, 2011, 473(7347), 298-307.
[http://dx.doi.org/10.1038/nature10144] [PMID: 21593862]
[244]
Takahashi, H.; Shibuya, M. The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin. Sci. (Lond.), 2005, 109(3), 227-241.
[http://dx.doi.org/10.1042/CS20040370] [PMID: 16104843]
[245]
Sun, P.D.; Davies, D.R. The cystine-knot growth-factor superfamily. Annu. Rev. Biophys. Biomol. Struct., 1995, 24(1), 269-292.
[http://dx.doi.org/10.1146/annurev.bb.24.060195.001413] [PMID: 7663117]
[246]
Muller, Y.A.; Li, B.; Christinger, H.W.; Wells, J.A.; Cunningham, B.C.; de Vos, A.M. Vascular endothelial growth factor: Crystal struc-ture and functional mapping of the kinase domain receptor binding site. Proc. Natl. Acad. Sci. USA, 1997, 94(14), 7192-7197.
[http://dx.doi.org/10.1073/pnas.94.14.7192] [PMID: 9207067]
[247]
Muller, Y.A.; Christinger, H.W.; Keyt, B.A.; de Vos, A.M. The crystal structure of vascular endothelial growth factor (VEGF) refined to 1.93 Å resolution: multiple copy flexibility and receptor binding. Structure, 1997, 5(10), 1325-1338.
[http://dx.doi.org/10.1016/S0969-2126(97)00284-0] [PMID: 9351807]
[248]
Shibuya, M.; Yamaguchi, S.; Yamane, A.; Ikeda, T.; Tojo, A.; Matsushime, H.; Sato, M. Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family. Oncogene, 1990, 5(4), 519-524.
[PMID: 2158038]
[249]
Terman, B.I.; Jani-Sait, S.; Carrion, M.E.; Shows, T.B. The KDR gene maps to human chromosome 4q31.2→q32, a locus which is dis-tinct from locations for other type III growth factor receptor tyrosine kinases. Cytogenet. Genome Res., 1992, 60(3-4), 214-215.
[http://dx.doi.org/10.1159/000133341] [PMID: 1324138]
[250]
Karkkainen, M.J.; Mäkinen, T.; Alitalo, K. Lymphatic endothelium: A new frontier of metastasis research. Nat. Cell Biol., 2002, 4(1), E2-E5.
[http://dx.doi.org/10.1038/ncb0102-e2] [PMID: 11780131]
[251]
de Vries, C.; Escobedo, J.A.; Ueno, H.; Houck, K.; Ferrara, N.; Williams, L.T. The fms-like tyrosine kinase, a receptor for vascular en-dothelial growth factor. Science, 1992, 255(5047), 989-991.
[http://dx.doi.org/10.1126/science.1312256] [PMID: 1312256]
[252]
Park, J.E.; Chen, H.H.; Winer, J.; Houck, K.A.; Ferrara, N. Placenta growth factor. Potentiation of vascular endothelial growth factor bio-activity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J. Biol. Chem., 1994, 269(41), 25646-25654.
[http://dx.doi.org/10.1016/S0021-9258(18)47298-5] [PMID: 7929268]
[253]
Olofsson, B.; Korpelainen, E.; Pepper, M.S.; Mandriota, S.J.; Aase, K.; Kumar, V.; Gunji, Y.; Jeltsch, M.M.; Shibuya, M.; Alitalo, K.; Eriksson, U. Vascular endothelial growth factor B (VEGF-B) binds to VEGF receptor-1 and regulates plasminogen activator activity in endothelial cells. Proc. Natl. Acad. Sci. USA, 1998, 95(20), 11709-11714.
[http://dx.doi.org/10.1073/pnas.95.20.11709] [PMID: 9751730]
[254]
Davis-Smyth, T.; Chen, H.; Park, J.; Presta, L.G.; Ferrara, N. The second immunoglobulin-like domain of the VEGF tyrosine kinase receptor Flt-1 determines ligand binding and may initiate a signal transduction cascade. EMBO J., 1996, 15(18), 4919-4927.
[http://dx.doi.org/10.1002/j.1460-2075.1996.tb00872.x] [PMID: 8890165]
[255]
Terman, B.I.; Dougher-Vermazen, M.; Carrion, M.E.; Dimitrov, D.; Armellino, D.C.; Gospodarowicz, D.; Böhlen, P. Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem. Biophys. Res. Commun., 1992, 187(3), 1579-1586.
[http://dx.doi.org/10.1016/0006-291X(92)90483-2] [PMID: 1417831]
[256]
Shalaby, F.; Rossant, J.; Yamaguchi, T.P.; Gertsenstein, M.; Wu, X.F.; Breitman, M.L.; Schuh, A.C. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature, 1995, 376(6535), 62-66.
[http://dx.doi.org/10.1038/376062a0] [PMID: 7596435]
[257]
Guo, D.; Jia, Q.; Song, H.Y.; Warren, R.S.; Donner, D.B. Vascular endothelial cell growth factor promotes tyrosine phosphorylation of mediators of signal transduction that contain SH2 domains. Association with endothelial cell proliferation. J. Biol. Chem., 1995, 270(12), 6729-6733.
[http://dx.doi.org/10.1074/jbc.270.12.6729] [PMID: 7896817]
[258]
Takahashi, T.; Ueno, H.; Shibuya, M. VEGF activates protein kinase C-dependent, but Ras-independent Raf-MEK-MAP kinase pathway for DNA synthesis in primary endothelial cells. Oncogene, 1999, 18(13), 2221-2230.
[http://dx.doi.org/10.1038/sj.onc.1202527] [PMID: 10327068]
[259]
Soker, S.; Fidder, H.; Neufeld, G.; Klagsbrun, M. Characterization of novel vascular endothelial growth factor (VEGF) receptors on tu-mor cells that bind VEGF165 via its exon 7-encoded domain. J. Biol. Chem., 1996, 271(10), 5761-5767.
[http://dx.doi.org/10.1074/jbc.271.10.5761] [PMID: 8621443]
[260]
Ferrara, N.; Gerber, H.P.; LeCouter, J. The biology of VEGF and its receptors. Nat. Med., 2003, 9(6), 669-676.
[http://dx.doi.org/10.1038/nm0603-669] [PMID: 12778165]
[261]
Soker, S.; Takashima, S.; Miao, H.Q.; Neufeld, G.; Klagsbrun, M. Neuropilin-1 is expressed by endothelial and tumor cells as an iso-form-specific receptor for vascular endothelial growth factor. Cell, 1998, 92(6), 735-745.
[http://dx.doi.org/10.1016/S0092-8674(00)81402-6] [PMID: 9529250]
[262]
Neufeld, G.; Cohen, T.; Shraga, N.; Lange, T.; Kessler, O.; Herzog, Y. The neuropilins: multifunctional semaphorin and VEGF receptors that modulate axon guidance and angiogenesis. Trends Cardiovasc. Med., 2002, 12(1), 13-19.
[http://dx.doi.org/10.1016/S1050-1738(01)00140-2] [PMID: 11796239]
[263]
Kawasaki, T.; Kitsukawa, T.; Bekku, Y.; Matsuda, Y.; Sanbo, M.; Yagi, T.; Fujisawa, H. A requirement for neuropilin-1 in embryonic vessel formation. Development, 1999, 126(21), 4895-4902.
[http://dx.doi.org/10.1242/dev.126.21.4895] [PMID: 10518505]
[264]
Lee, P.; Goishi, K.; Davidson, A.J.; Mannix, R.; Zon, L.; Klagsbrun, M. Neuropilin-1 is required for vascular development and is a me-diator of VEGF-dependent angiogenesis in zebrafish. Proc. Natl. Acad. Sci. USA, 2002, 99(16), 10470-10475.
[http://dx.doi.org/10.1073/pnas.162366299] [PMID: 12142468]
[265]
Abhinand, C.S.; Raju, R.; Soumya, S.J.; Arya, P.S.; Sudhakaran, P.R. VEGF-A/VEGFR2 signaling network in endothelial cells relevant to angiogenesis. J. Cell Commun. Signal., 2016, 10(4), 347-354.
[http://dx.doi.org/10.1007/s12079-016-0352-8] [PMID: 27619687]
[266]
Ferrara, N.; Davis-Smyth, T. The biology of vascular endothelial growth factor. Endocr. Rev., 1997, 18(1), 4-25.
[http://dx.doi.org/10.1210/edrv.18.1.0287] [PMID: 9034784]
[267]
Senger, D.R.; Galli, S.J.; Dvorak, A.M.; Perruzzi, C.A.; Harvey, V.S.; Dvorak, H.F. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science, 1983, 219(4587), 983-985.
[http://dx.doi.org/10.1126/science.6823562] [PMID: 6823562]
[268]
Dvorak, H.F.; Brown, L.F.; Detmar, M.; Dvorak, A.M. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am. J. Pathol., 1995, 146(5), 1029-1039.
[PMID: 7538264]
[269]
Carmeliet, P. VEGF as a key mediator of angiogenesis in cancer. Oncology, 2005, 69(Suppl. 3), 4-10.
[http://dx.doi.org/10.1159/000088478] [PMID: 16301830]
[270]
Houck, K.A.; Ferrara, N.; Winer, J.; Cachianes, G.; Li, B.; Leung, D.W. The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol. Endocrinol., 1991, 5(12), 1806-1814.
[http://dx.doi.org/10.1210/mend-5-12-1806] [PMID: 1791831]
[271]
Ferrara, N. Vascular endothelial growth factor: basic science and clinical progress. Endocr. Rev., 2004, 25(4), 581-611.
[http://dx.doi.org/10.1210/er.2003-0027] [PMID: 15294883]
[272]
Houck, K.A.; Leung, D.W.; Rowland, A.M.; Winer, J.; Ferrara, N. Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J. Biol. Chem., 1992, 267(36), 26031-26037.
[http://dx.doi.org/10.1016/S0021-9258(18)35712-0] [PMID: 1464614]
[273]
Simons, M.; Eichmann, A. Molecular controls of arterial morphogenesis. Circ. Res., 2015, 116(10), 1712-1724.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.302953] [PMID: 25953926]
[274]
Breslin, J.W.; Pappas, P.J.; Cerveira, J.J.; Hobson, R.W., II; Durán, W.N. VEGF increases endothelial permeability by separate signaling pathways involving ERK-1/2 and nitric oxide. Am. J. Physiol. Heart Circ. Physiol., 2003, 284(1), H92-H100.
[http://dx.doi.org/10.1152/ajpheart.00330.2002] [PMID: 12388327]
[275]
Takahashi, T.; Yamaguchi, S.; Chida, K.; Shibuya, M. A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-γ and DNA synthesis in vascular endothelial cells. EMBO J., 2001, 20(11), 2768-2778.
[http://dx.doi.org/10.1093/emboj/20.11.2768] [PMID: 11387210]
[276]
Freedman, J.E.; Sauter, R.; Battinelli, E.M.; Ault, K.; Knowles, C.; Huang, P.L.; Loscalzo, J. Deficient platelet-derived nitric oxide and enhanced hemostasis in mice lacking the NOSIII gene. Circ. Res., 1999, 84(12), 1416-1421.
[http://dx.doi.org/10.1161/01.RES.84.12.1416] [PMID: 10381894]
[277]
Lefer, D.J.; Jones, S.P.; Girod, W.G.; Baines, A.; Grisham, M.B.; Cockrell, A.S.; Huang, P.L.; Scalia, R. Leukocyte-endothelial cell inter-actions in nitric oxide synthase-deficient mice. Am. J. Physiol., 1999, 276(6), H1943-H1950.
[PMID: 10362674]
[278]
Huang, P.L.; Huang, Z.; Mashimo, H.; Bloch, K.D.; Moskowitz, M.A.; Bevan, J.A.; Fishman, M.C. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature, 1995, 377(6546), 239-242.
[http://dx.doi.org/10.1038/377239a0] [PMID: 7545787]
[279]
Feliers, D.; Chen, X.; Akis, N.; Choudhury, G.G.; Madaio, M.; Kasinath, B.S. VEGF regulation of endothelial nitric oxide synthase in glomerular endothelial cells. Kidney Int., 2005, 68(4), 1648-1659.
[http://dx.doi.org/10.1111/j.1523-1755.2005.00575.x] [PMID: 16164642]
[280]
Tuomisto, T.T.; Lumivuori, H.; Kansanen, E.; Häkkinen, S.K.; Turunen, M.P.; van Thienen, J.V.; Horrevoets, A.J.; Levonen, A.L.; Ylä-Herttuala, S. Simvastatin has an anti-inflammatory effect on macrophages via upregulation of an atheroprotective transcription factor, Kruppel-like factor 2. Cardiovasc. Res., 2008, 78(1), 175-184.
[http://dx.doi.org/10.1093/cvr/cvn007] [PMID: 18192240]
[281]
Hamik, A.; Lin, Z.; Kumar, A.; Balcells, M.; Sinha, S.; Katz, J.; Feinberg, M.W.; Gerszten, R.E.; Edelman, E.R.; Jain, M.K. Kruppel-like factor 4 regulates endothelial inflammation. J. Biol. Chem., 2007, 282(18), 13769-13779.
[http://dx.doi.org/10.1074/jbc.M700078200] [PMID: 17339326]
[282]
Zhou, G.; Hamik, A.; Nayak, L.; Tian, H.; Shi, H.; Lu, Y.; Sharma, N.; Liao, X.; Hale, A.; Boerboom, L.; Feaver, R.E.; Gao, H.; Desai, A.; Schmaier, A.; Gerson, S.L.; Wang, Y.; Atkins, G.B.; Blackman, B.R.; Simon, D.I.; Jain, M.K. Endothelial Kruppel-like factor 4 pro-tects against atherothrombosis in mice. J. Clin. Invest., 2012, 122(12), 4727-4731.
[http://dx.doi.org/10.1172/JCI66056] [PMID: 23160196]
[283]
Guba, M.; von Breitenbuch, P.; Steinbauer, M.; Koehl, G.; Flegel, S.; Hornung, M.; Bruns, C.J.; Zuelke, C.; Farkas, S.; Anthuber, M.; Jauch, K.W.; Geissler, E.K. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endo-thelial growth factor. Nat. Med., 2002, 8(2), 128-135.
[http://dx.doi.org/10.1038/nm0202-128] [PMID: 11821896]
[284]
Krock, B.L.; Skuli, N.; Simon, M.C. Hypoxia-induced angiogenesis: Good and evil. Genes Cancer, 2011, 2(12), 1117-1133.
[http://dx.doi.org/10.1177/1947601911423654] [PMID: 22866203]
[285]
Jung, F.; Palmer, L.A.; Zhou, N.; Johns, R.A. Hypoxic regulation of inducible nitric oxide synthase via hypoxia inducible factor-1 in cardiac myocytes. Circ. Res., 2000, 86(3), 319-325.
[http://dx.doi.org/10.1161/01.RES.86.3.319] [PMID: 10679484]
[286]
Wang, G.L.; Jiang, B.H.; Rue, E.A.; Semenza, G.L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci., 1995, 92(12), 5510-5514.
[http://dx.doi.org/10.1073/pnas.92.12.5510] [PMID: 7539918]
[287]
Ke, Q.; Costa, M. Hypoxia-Inducible Factor-1 (HIF-1). Mol. Pharmacol., 2006, 70(5), 1469-1480.
[http://dx.doi.org/10.1124/mol.106.027029] [PMID: 16887934]
[288]
Liu, Y.V.; Semenza, G.L. RACK1 vs. HSP90: Competition for HIF-1α Degradation vs. Stabilization. Cell Cycle, 2007, 6(6), 656-659.
[http://dx.doi.org/10.4161/cc.6.6.3981] [PMID: 17361105]
[289]
Johnson, M.; Koukoulis, G.; Kochhar, K.; Kubo, C.; Nakamura, T.; Iyer, A. Selective tumorigenesis in non-parenchymal liver epithelial cell lines by hepatocyte growth factor transfection. Cancer Lett., 1995, 96(1), 37-48.
[http://dx.doi.org/10.1016/0304-3835(95)03915-J] [PMID: 7553606]
[290]
Sabbah, M.; Najem, A.; Krayem, M.; Awada, A.; Journe, F.; Ghanem, G.E. RTK inhibitors in melanoma: from bench to bedside. Cancers, 2021, 13(7), 1685.
[http://dx.doi.org/10.3390/cancers13071685] [PMID: 33918490]
[291]
Parikh, P.K.; Ghate, M.D. Recent advances in the discovery of small molecule c-Met Kinase inhibitors. Eur. J. Med. Chem., 2018, 143, 1103-1138.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.044] [PMID: 29157685]
[292]
Yin, B.; Fang, D. M.; Zhou, X. L.; Gao, F. Natural products as important tyrosine kinase inhibitors. European journal of medicinal chemistry, 182, 111664.Regad, T. Targeting RTK signaling pathways in cancer. Cancers, 2019, 7(3), 1758.1784.
[http://dx.doi.org/10.1016/j.ejmech.2019.111664]
[293]
Regad, T. Targeting RTK signalling pathways in cancer. Cancers, 2015, 7(3), 1758-1784.
[http://dx.doi.org/10.3390/cancers7030860] [PMID: 26404379]
[294]
Fu, J.; Su, X.; Li, Z.; Deng, L.; Liu, X.; Feng, X.; Peng, J. HGF/c-MET pathway in cancer: from molecular characterization to clinical evidence. Oncogene, 2021, 40(28), 4625-4651.
[http://dx.doi.org/10.1038/s41388-021-01863-w] [PMID: 34145400]
[295]
Maulik, G.; Shrikhande, A.; Kijima, T.; Ma, P.C.; Morrison, P.T.; Salgia, R. Role of the hepatocyte growth factor receptor, c-Met, in on-cogenesis and potential for therapeutic inhibition. Cytokine Growth Factor Rev., 2002, 13(1), 41-59.
[http://dx.doi.org/10.1016/S1359-6101(01)00029-6] [PMID: 11750879]
[296]
Cohen, M.H.; Williams, G.A.; Sridhara, R.; Chen, G.; McGuinn, W.D., Jr; Morse, D.; Abraham, S.; Rahman, A.; Liang, C.; Lostritto, R.; Baird, A.; Pazdur, R. United States Food and Drug Administration drug approval summary: gefitinib (ZD1839; Iressa) tablets. Clin. Cancer Res., 2004, 10(4), 1212-1218.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0564] [PMID: 14977817]
[297]
Barker, A.J.; Gibson, K.H.; Grundy, W.; Godfrey, A.A.; Barlow, J.J.; Healy, M.P.; Woodburn, J.R.; Ashton, S.E.; Curry, B.J.; Scarlett, L.; Henthorn, L.; Richards, L. Studies leading to the identification of ZD1839 (iressa™): An orally active, selective epidermal growth factor receptor tyrosine kinase inhibitor targeted to the treatment of cancer. Bioorg. Med. Chem. Lett., 2001, 11(14), 1911-1914.
[http://dx.doi.org/10.1016/S0960-894X(01)00344-4] [PMID: 11459659]
[298]
Ciardiello, F.; Tortora, G. A novel approach in the treatment of cancer: targeting the epidermal growth factor receptor. Clin. Cancer Res., 2001, 7(10), 2958-2970.
[299]
Fukuoka, M.; Yano, S.; Giaccone, G.; Tamura, T.; Nakagawa, K.; Douillard, J.Y.; Nishiwaki, Y.; Vansteenkiste, J.; Kudoh, S.; Rischin, D.; Eek, R.; Horai, T.; Noda, K.; Takata, I.; Smit, E.; Averbuch, S.; Macleod, A.; Feyereislova, A.; Dong, R.P.; Baselga, J. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial). [corrected]. J. Clin. Oncol., 2003, 21(12), 2237-2246.
[http://dx.doi.org/10.1200/JCO.2003.10.038] [PMID: 12748244]
[300]
Pedersen, M.W.; Pedersen, N.; Ottesen, L.H.; Poulsen, H.S. Differential response to gefitinib of cells expressing normal EGFR and the mutant EGFRvIII. Br. J. Cancer, 2005, 93(8), 915-923.
[http://dx.doi.org/10.1038/sj.bjc.6602793] [PMID: 16189524]
[301]
Williams, K.J.; Telfer, B.A.; Stratford, I.J.; Wedge, S.R. ZD1839 (‘Iressa’), a specific oral epidermal growth factor receptor-tyrosine ki-nase inhibitor, potentiates radiotherapy in a human colorectal cancer xenograft model. Br. J. Cancer, 2002, 86(7), 1157-1161.
[http://dx.doi.org/10.1038/sj.bjc.6600182] [PMID: 11953865]
[302]
Ciardiello, F.; Caputo, R.; Bianco, R.; Damiano, V.; Pomatico, G.; De Placido, S.; Bianco, A.R.; Tortora, G. Antitumor effect and potentia-tion of cytotoxic drugs activity in human cancer cells by ZD-1839 (Iressa), an epidermal growth factor receptor-selective tyrosine kinase inhibitor. Clin. Cancer Res., 2000, 6(5), 2053-2063.
[PMID: 10815932]
[303]
Schiller, J.; Fukuoka, M.; Natale, R.; Lynch, T.; Averbuch, S.; Kay, A. Results from Two Phase II Trials (IDEAL 1 and IDEAL 2) of ZD1839 in Patients with Locally Advanced or Matastatic Non-Small Cell Lung Cancer. Thoracic Oncology. Chest, 2002, 122(4), 168S-168S.
[304]
Kris, M.G.; Natale, R.B.; Herbst, R.S.; Lynch, T.J., Jr; Prager, D.; Belani, C.P.; Schiller, J.H.; Kelly, K.; Spiridonidis, H.; Sandler, A.; Al-bain, K.S.; Cella, D.; Wolf, M.K.; Averbuch, S.D.; Ochs, J.J.; Kay, A.C. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: A randomized trial. JAMA, 2003, 290(16), 2149-2158.
[http://dx.doi.org/10.1001/jama.290.16.2149] [PMID: 14570950]
[305]
Cella, D.; Herbst, R.S.; Lynch, T.J.; Prager, D.; Belani, C.P.; Schiller, J.H.; Heyes, A.; Ochs, J.S.; Wolf, M.K.; Kay, A.C.; Kris, M.G.; Na-tale, R.B. Clinically meaningful improvement in symptoms and quality of life for patients with non-small-cell lung cancer receiving ge-fitinib in a randomized controlled trial. J. Clin. Oncol., 2005, 23(13), 2946-2954.
[http://dx.doi.org/10.1200/JCO.2005.05.153] [PMID: 15699477]
[306]
Nishiwaki, Y.; Yano, S.; Tamura, T.; Nakagawa, K.; Kudoh, S.; Horai, T.; Noda, K.; Takata, I.; Watanabe, K.; Saka, H.; Takeda, K.; Imamura, F.; Matsui, K.; Katakami, N.; Yokoyama, A.; Sawa, Y.; Takada, M.; Kiura, K.; Sugiura, T.; Fukuoka, M.; Uchida, H. [Subset analysis of data in the Japanese patients with NSCLC from IDEAL 1 study on gefitinib]. Gan To Kagaku Ryoho, 2004, 31(4), 567-573.
[PMID: 15114701]
[307]
Thatcher, N.; Chang, A.; Parikh, P.; Rodrigues Pereira, J.; Ciuleanu, T.; von Pawel, J.; Thongprasert, S.; Tan, E.H.; Pemberton, K.; Arch-er, V.; Carroll, K. Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: results from a randomised, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer). Lancet, 2005, 366(9496), 1527-1537.
[http://dx.doi.org/10.1016/S0140-6736(05)67625-8] [PMID: 16257339]
[308]
Chang, A.; Parikh, P.; Thongprasert, S.; Tan, E.H.; Perng, R.P.; Ganzon, D.; Yang, C.H.; Tsao, C.J.; Watkins, C.; Botwood, N.; Thatcher, N. Gefitinib (IRESSA) in patients of Asian origin with refractory advanced non-small cell lung cancer: Subset analysis from the ISEL study. J. Thorac. Oncol., 2006, 1(8), 847-855.
[http://dx.doi.org/10.1097/01243894-200610000-00014] [PMID: 17409969]
[309]
Hirsch, F.R.; Varella-Garcia, M.; Bunn, P.A., Jr; Franklin, W.A.; Dziadziuszko, R.; Thatcher, N.; Chang, A.; Parikh, P.; Pereira, J.R.; Ciu-leanu, T.; von Pawel, J.; Watkins, C.; Flannery, A.; Ellison, G.; Donald, E.; Knight, L.; Parums, D.; Botwood, N.; Holloway, B. Molecular predictors of outcome with gefitinib in a phase III placebo-controlled study in advanced non-small-cell lung cancer. J. Clin. Oncol., 2006, 24(31), 5034-5042.
[http://dx.doi.org/10.1200/JCO.2006.06.3958] [PMID: 17075123]
[310]
Hirsch, F.R.; Dziadziuszko, R.; Thatcher, N.; Mann, H.; Watkins, C.; Parums, D.V.; Speake, G.; Holloway, B.; Bunn, P.A., Jr; Franklin, W.A. Epidermal growth factor receptor immunohistochemistry. Cancer, 2008, 112(5), 1114-1121.
[http://dx.doi.org/10.1002/cncr.23282] [PMID: 18219661]
[311]
Stamos, J.; Sliwkowski, M.X.; Eigenbrot, C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J. Biol. Chem., 2002, 277(48), 46265-46272.
[http://dx.doi.org/10.1074/jbc.M207135200] [PMID: 12196540]
[312]
Roskoski, R., Jr Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes. Pharmacol. Res., 2016, 103, 26-48.
[http://dx.doi.org/10.1016/j.phrs.2015.10.021] [PMID: 26529477]
[313]
Park, J.H.; Liu, Y.; Lemmon, M.A.; Radhakrishnan, R. Erlotinib binds both inactive and active conformations of the EGFR tyrosine kinase domain. Biochem. J., 2012, 448(3), 417-423.
[http://dx.doi.org/10.1042/BJ20121513] [PMID: 23101586]
[314]
Jänne, P.A.; Wang, X.; Socinski, M.A.; Crawford, J.; Stinchcombe, T.E.; Gu, L.; Capelletti, M.; Edelman, M.J.; Villalona-Calero, M.A.; Kratzke, R.; Vokes, E.E.; Miller, V.A. Randomized phase II trial of erlotinib alone or with carboplatin and paclitaxel in patients who were never or light former smokers with advanced lung adenocarcinoma: CALGB 30406 trial. J. Clin. Oncol., 2012, 30(17), 2063-2069.
[http://dx.doi.org/10.1200/JCO.2011.40.1315] [PMID: 22547605]
[315]
Herbst, R.S.; Ansari, R.; Bustin, F.; Flynn, P.; Hart, L.; Otterson, G.A.; Vlahovic, G.; Soh, C.H.; O’Connor, P.; Hainsworth, J. Efficacy of bevacizumab plus erlotinib Versus erlotinib alone in advanced non-small-cell lung cancer after failure of standard first-line chemotherapy (BeTa): A double-blind, placebo-controlled, phase 3 trial. Lancet, 2011, 377(9780), 1846-1854.
[http://dx.doi.org/10.1016/S0140-6736(11)60545-X] [PMID: 21621716]
[316]
Herbst, R.; Stern, H.; Amler, L.; Otterson, G.; Lin, M.; O’Connor, P.; Hainsworth, J. Biomarker Evaluation in the Phase III, Placebo (P)-Controlled, Randomized BeTa Trial of Bevacizumab (B) and Erlotinib (E) for Patients (Pts) with Advanced Non-Small Cell Lung Cancer (NSCLC) after Failure of Standard 1st-Line Chemotherapy: Correlation with Treatment Outcomes. J. Thorac. Oncol., 2009, 4, 530.
[317]
Stinchcombe, T.E.; Jänne, P.A.; Wang, X.; Bertino, E.M.; Weiss, J.; Bazhenova, L.; Gu, L.; Lau, C.; Paweletz, C.; Jaslowski, A.; Gerstner, G.J.; Baggstrom, M.Q.; Graziano, S.; Bearden, J., III; Vokes, E.E. Effect of erlotinib plus bevacizumab vs erlotinib alone on progression-free survival in patients with advanced EGFR-mutant non–small cell lung cancer: A phase 2 randomized clinical trial. JAMA Oncol., 2019, 5(10), 1448-1455.
[http://dx.doi.org/10.1001/jamaoncol.2019.1847] [PMID: 31393548]
[318]
Blencke, S.; Zech, B.; Engkvist, O.; Greff, Z.; Őrfi, L.; Horváth, Z.; Kéri, G.; Ullrich, A.; Daub, H. Characterization of a conserved struc-tural determinant controlling protein kinase sensitivity to selective inhibitors. Chem. Biol., 2004, 11(5), 691-701.
[http://dx.doi.org/10.1016/j.chembiol.2004.02.029] [PMID: 15157880]
[319]
Pao, W.; Miller, V.A.; Politi, K.A.; Riely, G.J.; Somwar, R.; Zakowski, M.F.; Kris, M.G.; Varmus, H. Acquired resistance of lung adeno-carcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med., 2005, 2(3), e73.
[http://dx.doi.org/10.1371/journal.pmed.0020073] [PMID: 15737014]
[320]
Moyer, J.D.; Barbacci, E.G.; Iwata, K.K.; Arnold, L.; Boman, B.; Cunningham, A.; DiOrio, C.; Doty, J.; Morin, M.J.; Moyer, M.P.; Neveu, M.; Pollack, V.A.; Pustilnik, L.R.; Reynolds, M.M.; Sloan, D.; Theleman, A.; Miller, P. Induction of apoptosis and cell cycle ar-rest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase. Cancer Res., 1997, 57(21), 4838-4848.
[PMID: 9354447]
[321]
Li, T.; Ling, Y.H.; Goldman, I.D.; Perez-Soler, R. Schedule-dependent cytotoxic synergism of pemetrexed and erlotinib in human non-small cell lung cancer cells. Clin. Cancer Res., 2007, 13(11), 3413-3422.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2923] [PMID: 17545550]
[322]
Ali, S.; Banerjee, S.; Ahmad, A.; El-Rayes, B.F.; Philip, P.A.; Sarkar, F.H. Apoptosis-inducing effect of erlotinib is potentiated by 3,3′-diindolylmethane in vitro and in vivo using an orthotopic model of pancreatic cancer. Mol. Cancer Ther., 2008, 7(6), 1708-1719.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0354] [PMID: 18566242]
[323]
Buck, E.; Eyzaguirre, A.; Brown, E.; Petti, F.; McCormack, S.; Haley, J.D.; Iwata, K.K.; Gibson, N.W.; Griffin, G. Rapamycin synergizes with the epidermal growth factor receptor inhibitor erlotinib in non–small-cell lung, pancreatic, colon, and breast tumors. Mol. Cancer Ther., 2006, 5(11), 2676-2684.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0166] [PMID: 17121914]
[324]
Higgins, B.; Kolinsky, K.; Smith, M.; Beck, G.; Rashed, M.; Adames, V.; Linn, M.; Wheeldon, E.; Gand, L.; Birnboeck, H.; Hoffmann, G. Antitumor activity of erlotinib (OSI-774, Tarceva) alone or in combination in human non-small cell lung cancer tumor xenograft models. Anticancer Drugs, 2004, 15(5), 503-512.
[http://dx.doi.org/10.1097/01.cad.0000127664.66472.60] [PMID: 15166626]
[325]
National Center for Biotechnology Information. Lapatinib. 2023. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Lapatinib
[326]
Xuhong, J.C.; Qi, X.W.; Zhang, Y.; Jiang, J. Mechanism, safety and efficacy of three tyrosine kinase inhibitors lapatinib, neratinib and pyrotinib in HER2-positive breast cancer. Am. J. Cancer Res., 2019, 9(10), 2103-2119.
[PMID: 31720077]
[327]
Gril, B.; Palmieri, D.; Bronder, J.L.; Herring, J.M.; Vega-Valle, E.; Feigenbaum, L.; Liewehr, D.J.; Steinberg, S.M.; Merino, M.J.; Rubin, S.D.; Steeg, P.S. Effect of lapatinib on the outgrowth of metastatic breast cancer cells to the brain. J. Natl. Cancer Inst., 2008, 100(15), 1092-1103.
[http://dx.doi.org/10.1093/jnci/djn216] [PMID: 18664652]
[328]
Konecny, G.E.; Pegram, M.D.; Venkatesan, N.; Finn, R.; Yang, G.; Rahmeh, M.; Untch, M.; Rusnak, D.W.; Spehar, G.; Mullin, R.J.; Keith, B.R.; Gilmer, T.M.; Berger, M.; Podratz, K.C.; Slamon, D.J. Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells. Cancer Res., 2006, 66(3), 1630-1639.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1182] [PMID: 16452222]
[329]
Zhang, D.; Pal, A.; Bornmann, W.G.; Yamasaki, F.; Esteva, F.J.; Hortobagyi, G.N.; Bartholomeusz, C.; Ueno, N.T. Activity of lapatinib is independent of EGFR expression level in HER2-overexpressing breast cancer cells. Mol. Cancer Ther., 2008, 7(7), 1846-1850.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0168] [PMID: 18644997]
[330]
Rusnak, D.W.; Lackey, K.; Affleck, K.; Wood, E.R.; Alligood, K.J.; Rhodes, N.; Keith, B.R.; Murray, D.M.; Knight, W.B.; Mullin, R.J.; Gilmer, T.M. The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Mol. Cancer Ther., 2001, 1(2), 85-94.
[PMID: 12467226]
[331]
Blackwell, K.L.; Burstein, H.J.; Storniolo, A.M.; Rugo, H.; Sledge, G.; Koehler, M.; Ellis, C.; Casey, M.; Vukelja, S.; Bischoff, J.; Baselga, J.; O’Shaughnessy, J. Randomized study of Lapatinib alone or in combination with trastuzumab in women with ErbB2-positive, trastuzumab-refractory metastatic breast cancer. J. Clin. Oncol., 2010, 28(7), 1124-1130.
[http://dx.doi.org/10.1200/JCO.2008.21.4437] [PMID: 20124187]
[332]
Burstein, H.J.; Storniolo, A.M.; Franco, S.; Forster, J.; Stein, S.; Rubin, S.; Salazar, V.M.; Blackwell, K.L. A phase II study of lapatinib monotherapy in chemotherapy-refractory HER2-positive and HER2-negative advanced or metastatic breast cancer. Ann. Oncol., 2008, 19(6), 1068-1074.
[http://dx.doi.org/10.1093/annonc/mdm601] [PMID: 18283035]
[333]
Chien, A.J.; Munster, P.N.; Melisko, M.E.; Rugo, H.S.; Park, J.W.; Goga, A.; Auerback, G.; Khanafshar, E.; Ordovas, K.; Koch, K.M.; Moasser, M.M. Phase I dose-escalation study of 5-day intermittent oral lapatinib therapy in patients with human epidermal growth factor receptor 2-overexpressing breast cancer. J. Clin. Oncol., 2014, 32(14), 1472-1479.
[http://dx.doi.org/10.1200/JCO.2013.52.1161] [PMID: 24711549]
[334]
Gomez, H.L.; Doval, D.C.; Chavez, M.A.; Ang, P.C.S.; Aziz, Z.; Nag, S.; Ng, C.; Franco, S.X.; Chow, L.W.C.; Arbushites, M.C.; Casey, M.A.; Berger, M.S.; Stein, S.H.; Sledge, G.W. Efficacy and safety of lapatinib as first-line therapy for ErbB2-amplified locally advanced or metastatic breast cancer. J. Clin. Oncol., 2008, 26(18), 2999-3005.
[http://dx.doi.org/10.1200/JCO.2007.14.0590] [PMID: 18458039]
[335]
Johnston, S.; Trudeau, M.; Kaufman, B.; Boussen, H.; Blackwell, K.; LoRusso, P.; Lombardi, D.P.; Ben Ahmed, S.; Citrin, D.L.; DeSil-vio, M.L.; Harris, J.; Westlund, R.E.; Salazar, V.; Zaks, T.Z.; Spector, N.L. Phase II study of predictive biomarker profiles for response targeting human epidermal growth factor receptor 2 (HER-2) in advanced inflammatory breast cancer with lapatinib monotherapy. J. Clin. Oncol., 2008, 26(7), 1066-1072.
[http://dx.doi.org/10.1200/JCO.2007.13.9949] [PMID: 18212337]
[336]
Toi, M.; Iwata, H.; Fujiwara, Y.; Ito, Y.; Nakamura, S.; Tokuda, Y.; Taguchi, T.; Rai, Y.; Aogi, K.; Arai, T.; Watanabe, J.; Wakamatsu, T.; Katsura, K.; Ellis, C.E.; Gagnon, R.C.; Allen, K.E.; Sasaki, Y.; Takashima, S. Lapatinib monotherapy in patients with relapsed, advanced, or metastatic breast cancer: efficacy, safety, and biomarker results from Japanese patients phase II studies. Br. J. Cancer, 2009, 101(10), 1676-1682.
[http://dx.doi.org/10.1038/sj.bjc.6605343] [PMID: 19844234]
[337]
Blackwell, K.L.; Pegram, M.D.; Tan-Chiu, E.; Schwartzberg, L.S.; Arbushites, M.C.; Maltzman, J.D.; Forster, J.K.; Rubin, S.D.; Stein, S.H.; Burstein, H.J. Single-agent lapatinib for HER2-overexpressing advanced or metastatic breast cancer that progressed on first- or sec-ond-line trastuzumab-containing regimens. Ann. Oncol., 2009, 20(6), 1026-1031.
[http://dx.doi.org/10.1093/annonc/mdn759] [PMID: 19179558]
[338]
Geyer, C.E.; Forster, J.; Lindquist, D.; Chan, S.; Romieu, C.G.; Pienkowski, T.; Jagiello-Gruszfeld, A.; Crown, J.; Chan, A.; Kaufman, B.; Skarlos, D.; Campone, M.; Davidson, N.; Berger, M.; Oliva, C.; Rubin, S.D.; Stein, S.; Cameron, D. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N. Engl. J. Med., 2006, 355(26), 2733-2743.
[http://dx.doi.org/10.1056/NEJMoa064320] [PMID: 17192538]
[339]
Kaufman, B.; Stein, S.; Casey, M.A.; Newstat, B.O. Lapatinib in combination with capecitabine in the management of ErbB2-positive (HER2-positive) advanced breast cancer. Biologics, 2008, 2(1), 61-65.
[PMID: 19707428]
[340]
Pivot, X.; Manikhas, A.; Żurawski, B.; Chmielowska, E.; Karaszewska, B.; Allerton, R.; Chan, S.; Fabi, A.; Bidoli, P.; Gori, S.; Ciruelos, E.; Dank, M.; Hornyak, L.; Margolin, S.; Nusch, A.; Parikh, R.; Nagi, F.; DeSilvio, M.; Santillana, S.; Swaby, R.F.; Semiglazov, V. CEREBEL (EGF111438): A Phase III, Randomized, Open-Label Study of Lapatinib Plus Capecitabine Versus Trastuzumab Plus Capecit-abine in Patients With Human Epidermal Growth Factor Receptor 2–Positive Metastatic Breast Cancer. J. Clin. Oncol., 2015, 33(14), 1564-1573.
[http://dx.doi.org/10.1200/JCO.2014.57.1794] [PMID: 25605838]
[341]
Guan, Z.; Xu, B.; DeSilvio, M.L.; Shen, Z.; Arpornwirat, W.; Tong, Z.; Lorvidhaya, V.; Jiang, Z.; Yang, J.; Makhson, A.; Leung, W.L.; Russo, M.W.; Newstat, B.; Wang, L.; Chen, G.; Oliva, C.; Gomez, H. Randomized trial of lapatinib Versus placebo added to paclitaxel in the treatment of human epidermal growth factor receptor 2-overexpressing metastatic breast cancer. J. Clin. Oncol., 2013, 31(16), 1947-1953.
[http://dx.doi.org/10.1200/JCO.2011.40.5241] [PMID: 23509322]
[342]
Goss, P.E.; Smith, I.E.; O’Shaughnessy, J.; Ejlertsen, B.; Kaufmann, M.; Boyle, F.; Buzdar, A.U.; Fumoleau, P.; Gradishar, W.; Martin, M.; Moy, B.; Piccart-Gebhart, M.; Pritchard, K.I.; Lindquist, D.; Chavarri-Guerra, Y.; Aktan, G.; Rappold, E.; Williams, L.S.; Finkelstein, D.M. Adjuvant lapatinib for women with early-stage HER2-positive breast cancer: A randomised, controlled, phase 3 trial. Lancet Oncol., 2013, 14(1), 88-96.
[http://dx.doi.org/10.1016/S1470-2045(12)70508-9] [PMID: 23234763]
[343]
Dungo, R.T.; Keating, G.M. Afatinib: first global approval. Drugs, 2013, 73(13), 1503-1515.
[http://dx.doi.org/10.1007/s40265-013-0111-6] [PMID: 23982599]
[344]
Li, D.; Ambrogio, L.; Shimamura, T.; Kubo, S.; Takahashi, M.; Chirieac, L.R.; Padera, R.F.; Shapiro, G.I.; Baum, A.; Himmelsbach, F.; Rettig, W.J.; Meyerson, M.; Solca, F.; Greulich, H.; Wong, K-K. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in pre-clinical lung cancer models. Oncogene, 2008, 27(34), 4702-4711.
[http://dx.doi.org/10.1038/onc.2008.109] [PMID: 18408761]
[345]
Langer, C.J. Epidermal growth factor receptor inhibition in mutation-positive non-small-cell lung cancer: is afatinib better or simply new-er? J. Clin. Oncol., 2013, 31(27), 3303-3306.
[http://dx.doi.org/10.1200/JCO.2013.49.8782] [PMID: 23980079]
[346]
Sequist, L.V.; Yang, J.C.H.; Yamamoto, N.; O’Byrne, K.; Hirsh, V.; Mok, T.; Geater, S.L.; Orlov, S.; Tsai, C.M.; Boyer, M.; Su, W.C.; Bennouna, J.; Kato, T.; Gorbunova, V.; Lee, K.H.; Shah, R.; Massey, D.; Zazulina, V.; Shahidi, M.; Schuler, M. Phase III study of afat-inib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J. Clin. Oncol., 2013, 31(27), 3327-3334.
[http://dx.doi.org/10.1200/JCO.2012.44.2806] [PMID: 23816960]
[347]
Wu, Y.L.; Zhou, C.; Hu, C.P.; Feng, J.; Lu, S.; Huang, Y.; Li, W.; Hou, M.; Shi, J.H.; Lee, K.Y.; Xu, C.R.; Massey, D.; Kim, M.; Shi, Y.; Geater, S.L. Afatinib Versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-Lung 6): An open-label, randomised phase 3 trial. Lancet Oncol., 2014, 15(2), 213-222.
[http://dx.doi.org/10.1016/S1470-2045(13)70604-1] [PMID: 24439929]
[348]
Yang, J.C.H.; Wu, Y.L.; Schuler, M.; Sebastian, M.; Popat, S.; Yamamoto, N.; Zhou, C.; Hu, C.P.; O’Byrne, K.; Feng, J.; Lu, S.; Huang, Y.; Geater, S.L.; Lee, K.Y.; Tsai, C.M.; Gorbunova, V.; Hirsh, V.; Bennouna, J.; Orlov, S.; Mok, T.; Boyer, M.; Su, W.C.; Lee, K.H.; Kato, T.; Massey, D.; Shahidi, M.; Zazulina, V.; Sequist, L.V. Afatinib Versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-Lung 3 and LUX-Lung 6): Analysis of overall survival data from two randomised, phase 3 trials. Lancet Oncol., 2015, 16(2), 141-151.
[http://dx.doi.org/10.1016/S1470-2045(14)71173-8] [PMID: 25589191]
[349]
U.S. Food and Drug Administration. Available from: https://www.fda.gov
[350]
U.S. Food and Drug Administration. FDA grants accelerated approval to tucatinib with trastuzumab for colorectal cancer. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-tucatinib-trastuzumabcolorectal
[351]
Kulukian, A.; Lee, P.; Taylor, J.; Rosler, R.; de Vries, P.; Watson, D.; Forero-Torres, A.; Peterson, S. Preclinical Activity of HER2-Selective Tyrosine Kinase Inhibitor Tucatinib as a Single Agent or in Combination with Trastuzumab or Docetaxel in Solid Tumor Mod-els. Mol. Cancer Ther., 2020, 19(4), 976-987.
[http://dx.doi.org/10.1158/1535-7163.MCT-19-0873] [PMID: 32241871]
[352]
Sandler, A.B. Nondermatologic adverse events associated with anti-EGFR therapy. Oncology, 2006, 20(5), 35-40.
[PMID: 16736981]
[353]
Lee, P.; Anderson, D.; Bouhana, K.; Garrus, J.; Napier, C.; Avrustkaya, A.; White, A.; Pheneger, T.; Winkler, J. In vivo activity of ARRY-380, a potent, small Molecule inhibitor of ErbB2 in combination with trastuzumab, docetaxel or bevacizumab. Cancer Res., 2009, 69(24)(Suppl.), 5104.
[http://dx.doi.org/10.1158/0008-5472.SABCS-09-5104]
[354]
BioPharma. ARRY-380, a Selective HER2 Inhibitor: From Drug Design to Clinical Evaluation. Cureus J. Med.Sci., 2012.
[355]
FDA approves tucatinib for patients with HER2-positive metastatic breast cancer. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-tucatinib-patients-her2-positive-metastatic-breast-cancer
[356]
Roskoski, R. Jr Properties of FDA-approved small molecule protein kinase inhibitors. Pharmacol. Res., 2019, 144, 19-50.
[http://dx.doi.org/10.1016/j.phrs.2019.03.006] [PMID: 30877063]
[357]
Gajiwala, K.S.; Feng, J.; Ferre, R.; Ryan, K.; Brodsky, O.; Weinrich, S.; Kath, J.C.; Stewart, A. Insights into the aberrant activity of mutant EGFR kinase domain and drug recognition. Structure, 2013, 21(2), 209-219.
[http://dx.doi.org/10.1016/j.str.2012.11.014] [PMID: 23273428]
[358]
Engelman, J.A.; Zejnullahu, K.; Gale, C.M.; Lifshits, E.; Gonzales, A.J.; Shimamura, T.; Zhao, F.; Vincent, P.W.; Naumov, G.N.; Brad-ner, J.E.; Althaus, I.W.; Gandhi, L.; Shapiro, G.I.; Nelson, J.M.; Heymach, J.V.; Meyerson, M.; Wong, K.K.; Jänne, P.A. PF00299804, an irreversible pan-ERBB inhibitor, is effective in lung cancer models with EGFR and ERBB2 mutations that are resistant to gefitinib. Cancer Res., 2007, 67(24), 11924-11932.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1885] [PMID: 18089823]
[359]
Kalous, O.; Conklin, D.; Desai, A.J.; O’Brien, N.A.; Ginther, C.; Anderson, L.; Cohen, D.J.; Britten, C.D.; Taylor, I.; Christensen, J.G.; Slamon, D.J.; Finn, R.S. Dacomitinib (PF-00299804), an irreversible Pan-HER inhibitor, inhibits proliferation of HER2-amplified breast cancer cell lines resistant to trastuzumab and lapatinib. Mol. Cancer Ther., 2012, 11(9), 1978-1987.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0730] [PMID: 22761403]
[360]
Wu, Y.L.; Cheng, Y.; Zhou, X.; Lee, K.H.; Nakagawa, K.; Niho, S.; Tsuji, F.; Linke, R.; Rosell, R.; Corral, J.; Migliorino, M.R.; Pluzanski, A.; Sbar, E.I.; Wang, T.; White, J.L.; Nadanaciva, S.; Sandin, R.; Mok, T.S. Dacomitinib Versus gefitinib as first-line treatment for patients with EGFR-mutation-positive non-small-cell lung cancer (ARCHER 1050): A randomised, open-label, phase 3 trial. Lancet Oncol., 2017, 18(11), 1454-1466.
[http://dx.doi.org/10.1016/S1470-2045(17)30608-3] [PMID: 28958502]
[361]
Seshacharyulu, P.; Ponnusamy, M.P.; Haridas, D.; Jain, M.; Ganti, A.K.; Batra, S.K. Targeting the EGFR signaling pathway in cancer therapy. Expert Opin. Ther. Targets, 2012, 16(1), 15-31.
[http://dx.doi.org/10.1517/14728222.2011.648617] [PMID: 22239438]
[362]
Ayati, A.; Moghimi, S.; Salarinejad, S.; Safavi, M.; Pouramiri, B.; Foroumadi, A. A review on progression of epidermal growth factor receptor (EGFR) inhibitors as an efficient approach in cancer targeted therapy. Bioorg. Chem., 2020, 99, 103811.
[http://dx.doi.org/10.1016/j.bioorg.2020.103811] [PMID: 32278207]
[363]
Canertinib. Available from: https://go.drugbank.com/drugs/DB05424
[364]
Smaill, J.B.; Rewcastle, G.W.; Loo, J.A.; Greis, K.D.; Chan, O.H.; Reyner, E.L.; Lipka, E.; Showalter, H.D.H.; Vincent, P.W.; Elliott, W.L.; Denny, W.A. Tyrosine kinase inhibitors. 17. Irreversible inhibitors of the epidermal growth factor receptor: 4-(phenylamino)] quinazoline- and 4-(phenylamino)pyrido[3,2-d]pyrimidine-6-acrylamides bearing additional solubilizing functions. J. Med. Chem., 2000, 43(7), 1380-1397.
[http://dx.doi.org/10.1021/jm990482t] [PMID: 10753475]
[365]
Nelson, J.M.; Fry, D.W. Akt, MAPK (Erk1/2), and p38 act in concert to promote apoptosis in response to ErbB receptor family inhibi-tion. J. Biol. Chem., 2001, 276(18), 14842-14847.
[http://dx.doi.org/10.1074/jbc.M008786200] [PMID: 11278435]
[366]
Slichenmyer, W.; Elliott, W.L.; Fry, D.W. CI-1033, a pan-erbB tyrosine kinase inhibitor. Semin. Oncol., 2001, 28(5), 80-85.
[http://dx.doi.org/10.1016/S0093-7754(01)90285-4] [PMID: 11706399]
[367]
Citri, A.; Alroy, I.; Lavi, S.; Rubin, C.; Xu, W.; Grammatikakis, N.; Patterson, C.; Neckers, L.; Fry, D.W.; Yarden, Y. Drug-induced ubiq-uitylation and degradation of ErbB receptor tyrosine kinases: implications for cancer therapy. EMBO J., 2002, 21(10), 2407-2417.
[http://dx.doi.org/10.1093/emboj/21.10.2407] [PMID: 12006493]
[368]
Hughes, D.P.M.; Thomas, D.G.; Giordano, T.J.; McDonagh, K.T.; Baker, L.H. Essential erbB family phosphorylation in osteosarcoma as a target for CI‐1033 inhibition. Pediatr. Blood Cancer, 2006, 46(5), 614-623.
[http://dx.doi.org/10.1002/pbc.20454] [PMID: 16007579]
[369]
Ako, E.; Yamashita, Y.; Ohira, M.; Yamazaki, M.; Hori, T.; Kubo, N.; Sawada, T.; Hirakawa, K. The pan-erbB tyrosine kinase inhibitor CI-1033 inhibits human esophageal cancer cells in vitro and in vivo. Oncol. Rep., 2007, 17(4), 887-893.
[http://dx.doi.org/10.3892/or.17.4.887] [PMID: 17342332]
[370]
A Phase II Study of CI-1033 in Treating Patients with Metastatic (Stage IV) Breast Cancer. NCT00051051, 2003.
[371]
PH 1 evaluation of oral CI-1033 in combination with paclitaxel/carboplatin as 1st line chemotherapy In NSCLC patients. NCT00174356, 2006.
[372]
Phase, A. A Phase 2, Randomized, Open-Label Study Of Single Agent CI-1033 In Patients With Advanced Non-Small Cell Lung Cancer. NCT00050830, 2006.
[373]
Sachdev, J.C.; Jahanzeb, M. Blockade of the HER family of receptors in the treatment of HER2-positive metastatic breast cancer. Clin. Breast Cancer, 2012, 12(1), 19-29.
[http://dx.doi.org/10.1016/j.clbc.2011.07.001] [PMID: 21903480]
[374]
Xie, H.; Lin, L.; Tong, L.; Jiang, Y.; Zheng, M.; Chen, Z.; Jiang, X.; Zhang, X.; Ren, X.; Qu, W.; Yang, Y.; Wan, H.; Chen, Y.; Zuo, J.; Jiang, H.; Geng, M.; Ding, J. AST1306, a novel irreversible inhibitor of the epidermal growth factor receptor 1 and 2, exhibits antitumor activity both in vitro and in vivo. PLoS One, 2011, 6(7), e21487.
[http://dx.doi.org/10.1371/journal.pone.0021487] [PMID: 21789172]
[375]
National Center for Biotechnology Information. Varlitinib. 2023. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Varlitinib
[376]
Hsieh, C.Y.; Ooi, L.; Ong, R.W.; Lindmark, B.; McHale, M.; Huynh, H.T. Varlitinib to demonstrate anti-tumour efficacy in patient-derived hepatocellular carcinoma xenograft models. J. Clin. Oncol., 2016, 34(15)(Suppl.), e15598.
[http://dx.doi.org/10.1200/JCO.2016.34.15_suppl.e15598]
[377]
Miknis, G.; Wallace, E.; Lyssikatos, J.; Lee, P.; Zhao, Q.; Hans, J.; Topalov, G.; Buckmelter, A.; Tarlton, G.; Ren, L.; Tullis, J. ARRY-334543, A potent, orally active small molecule inhibitor of EGFR and ErbB-2. Cancer Res., 2005, 65(9)
[378]
Javle, M.M.; Oh, D.Y.; Ikeda, M.; Yong, W.P.; McIntyre, N.; Lindmark, B.; McHale, M. Results from TreeTopp: A randomized phase II study of the efficacy and safety of varlitinib plus capecitabine Versus placebo in second-line (2L) advanced or metastatic biliary tract cancer (BTC). J. Clin. Oncol., 2020, 38(15)(Suppl.), 4597.
[http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.4597]
[379]
Tanaka, Y.; Hirata, M.; Shinonome, S.; Torii, M.; Nezasa, K.; Tanaka, H. Distribution analysis of epertinib in brain metastasis of HER2-positive breast cancer by imaging mass spectrometry and prospect for antitumor activity. Sci. Rep., 2018, 8(1), 343.
[http://dx.doi.org/10.1038/s41598-017-18702-2] [PMID: 29321587]
[380]
Tanaka, H.; Hirata, M.; Shinonome, S.; Wada, T.; Iguchi, M.; Dohi, K.; Inoue, M.; Ishioka, Y.; Hojo, K.; Yamada, T.; Sugimoto, T.; Masuno, K.; Nezasa, K.; Sato, N.; Matsuo, K.; Yonezawa, S.; Frenkel, E.P.; Shichijo, M. Preclinical antitumor activity of S ‐222611, an oral reversible tyrosine kinase inhibitor of epidermal growth factor receptor and human epidermal growth factor receptor 2. Cancer Sci., 2014, 105(8), 1040-1048.
[http://dx.doi.org/10.1111/cas.12449] [PMID: 24837299]
[381]
Macpherson, I.R.; Spiliopoulou, P.; Rafii, S.; Saggese, M.; Baird, R.D.; Garcia-Corbacho, J.; Italiano, A.; Bonneterre, J.; Campone, M.; Cresti, N.; Posner, J.; Takeda, Y.; Arimura, A.; Spicer, J. A phase I/II study of epertinib plus trastuzumab with or without chemotherapy in patients with HER2-positive metastatic breast cancer. Breast Cancer Res., 2020, 22(1), 1.
[http://dx.doi.org/10.1186/s13058-019-1178-0] [PMID: 31892325]
[382]
Nam, H.J.; Kim, H.P.; Yoon, Y.K.; Hur, H.S.; Song, S.H.; Kim, M.S.; Lee, G.S.; Han, S.W. Im, S.A.; Kim, T.Y.; Oh, D.Y.; Bang, Y.J. Antitumor activity of HM781-36B, an irreversible Pan-HER inhibitor, alone or in combination with cytotoxic chemotherapeutic agents in gastric cancer. Cancer Lett., 2011, 302(2), 155-165.
[http://dx.doi.org/10.1016/j.canlet.2011.01.010] [PMID: 21306821]
[383]
Lategahn, J.; Tumbrink, H.L.; Schultz-Fademrecht, C.; Heimsoeth, A.; Werr, L.; Niggenaber, J.; Keul, M.; Parmaksiz, F.; Baumann, M.; Menninger, S.; Zent, E.; Landel, I.; Weisner, J.; Jeyakumar, K.; Heyden, L.; Russ, N.; Müller, F.; Lorenz, C.; Brägelmann, J.; Spille, I.; Grabe, T.; Müller, M.P.; Heuckmann, J.M.; Klebl, B.M.; Nussbaumer, P.; Sos, M.L.; Rauh, D. Insight into Targeting Exon20 Insertion Mutations of the Epidermal Growth Factor Receptor with Wild Type-Sparing Inhibitors. J. Med. Chem., 2022, 65(9), 6643-6655.
[http://dx.doi.org/10.1021/acs.jmedchem.1c02080] [PMID: 35486541]
[384]
Cha, M.Y.; Lee, K.O.; Kim, M.; Song, J.Y.; Lee, K.H.; Park, J.; Chae, Y.J.; Kim, Y.H.; Suh, K.H.; Lee, G.S.; Park, S.B.; Kim, M.S. Anti-tumor activity of HM781‐36B, a highly effective pan‐HER inhibitor in erlotinib‐resistant NSCLC and other EGFR‐dependent cancer models. Int. J. Cancer, 2012, 130(10), 2445-2454.
[http://dx.doi.org/10.1002/ijc.26276] [PMID: 21732342]
[385]
Study of the absorption, metabolism, and excretion following a single dose of [14C]-poziotinib in healthy male subjects. NCT04436562, 2022.
[386]
Jänne, P.A.; Yang, J.C.H.; Kim, D.W.; Planchard, D.; Ohe, Y.; Ramalingam, S.S.; Ahn, M.J.; Kim, S.W.; Su, W.C.; Horn, L.; Haggstrom, D.; Felip, E.; Kim, J.H.; Frewer, P.; Cantarini, M.; Brown, K.H.; Dickinson, P.A.; Ghiorghiu, S.; Ranson, M. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N. Engl. J. Med., 2015, 372(18), 1689-1699.
[http://dx.doi.org/10.1056/NEJMoa1411817] [PMID: 25923549]
[387]
Cross, D.A.E.; Ashton, S.E.; Ghiorghiu, S.; Eberlein, C.; Nebhan, C.A.; Spitzler, P.J.; Orme, J.P.; Finlay, M.R.V.; Ward, R.A.; Mellor, M.J.; Hughes, G.; Rahi, A.; Jacobs, V.N.; Brewer, M.R.; Ichihara, E.; Sun, J.; Jin, H.; Ballard, P.; Al-Kadhimi, K.; Rowlinson, R.; Klinow-ska, T.; Richmond, G.H.P.; Cantarini, M.; Kim, D.W.; Ranson, M.R.; Pao, W. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov., 2014, 4(9), 1046-1061.
[http://dx.doi.org/10.1158/2159-8290.CD-14-0337] [PMID: 24893891]
[388]
Finlay, M.R.V.; Anderton, M.; Ashton, S.; Ballard, P.; Bethel, P.A.; Box, M.R.; Bradbury, R.H.; Brown, S.J.; Butterworth, S.; Campbell, A.; Chorley, C.; Colclough, N.; Cross, D.A.E.; Currie, G.S.; Grist, M.; Hassall, L.; Hill, G.B.; James, D.; James, M.; Kemmitt, P.; Klinow-ska, T.; Lamont, G.; Lamont, S.G.; Martin, N.; McFarland, H.L.; Mellor, M.J.; Orme, J.P.; Perkins, D.; Perkins, P.; Richmond, G.; Smith, P.; Ward, R.A.; Waring, M.J.; Whittaker, D.; Wells, S.; Wrigley, G.L. Discovery of a potent and selective EGFR inhibitor (AZD9291) of both sensitizing and T790M resistance mutations that spares the wild type form of the receptor. J. Med. Chem., 2014, 57(20), 8249-8267.
[http://dx.doi.org/10.1021/jm500973a] [PMID: 25271963]
[389]
Yan, X.E.; Ayaz, P.; Zhu, S.J.; Zhao, P.; Liang, L.; Zhang, C.H.; Wu, Y.C.; Li, J.L.; Choi, H.G.; Huang, X.; Shan, Y.; Shaw, D.E.; Yun, C.H. Structural Basis of AZD9291 Selectivity for EGFR T790M. J. Med. Chem., 2020, 63(15), 8502-8511.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00891] [PMID: 32672461]
[390]
Yosaatmadja, Y.; Silva, S.; Dickson, J.M.; Patterson, A.V.; Smaill, J.B.; Flanagan, J.U.; McKeage, M.J.; Squire, C.J. Binding mode of the breakthrough inhibitor AZD9291 to epidermal growth factor receptor revealed. J. Struct. Biol., 2015, 192(3), 539-544.
[http://dx.doi.org/10.1016/j.jsb.2015.10.018] [PMID: 26522274]
[391]
Thress, K.S.; Paweletz, C.P.; Felip, E.; Cho, B.C.; Stetson, D.; Dougherty, B.; Lai, Z.; Markovets, A.; Vivancos, A.; Kuang, Y.; Ercan, D.; Matthews, S.E.; Cantarini, M.; Barrett, J.C.; Jänne, P.A.; Oxnard, G.R. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non–small cell lung cancer harboring EGFR T790M. Nat. Med., 2015, 21(6), 560-562.
[http://dx.doi.org/10.1038/nm.3854] [PMID: 25939061]
[392]
Wong, C.H.; Ma, B.B.; Hui, C.W.; Tao, Q.; Chan, A.T. Preclinical evaluation of afatinib (BIBW2992) in esophageal squamous cell carci-noma (ESCC). Am. J. Cancer Res., 2015, 5(12), 3588-3599.
[PMID: 26885448]
[393]
Soria, J.C.; Ohe, Y.; Vansteenkiste, J.; Reungwetwattana, T.; Chewaskulyong, B.; Lee, K.H.; Dechaphunkul, A.; Imamura, F.; Nogami, N.; Kurata, T.; Okamoto, I.; Zhou, C.; Cho, B.C.; Cheng, Y.; Cho, E.K.; Voon, P.J.; Planchard, D.; Su, W.C.; Gray, J.E.; Lee, S.M.; Hodge, R.; Marotti, M.; Rukazenkov, Y.; Ramalingam, S.S. Osimertinib in Untreated EGFR -Mutated Advanced Non–Small-Cell Lung Cancer. N. Engl. J. Med., 2018, 378(2), 113-125.
[http://dx.doi.org/10.1056/NEJMoa1713137] [PMID: 29151359]
[394]
Rosell, R.; Carcereny, E.; Gervais, R.; Vergnenegre, A.; Massuti, B.; Felip, E.; Palmero, R.; Garcia-Gomez, R.; Pallares, C.; Sanchez, J.M.; Porta, R.; Cobo, M.; Garrido, P.; Longo, F.; Moran, T.; Insa, A.; De Marinis, F.; Corre, R.; Bover, I.; Illiano, A.; Dansin, E.; de Castro, J.; Milella, M.; Reguart, N.; Altavilla, G.; Jimenez, U.; Provencio, M.; Moreno, M.A.; Terrasa, J.; Muñoz-Langa, J.; Valdivia, J.; Isla, D.; Domine, M.; Molinier, O.; Mazieres, J.; Baize, N.; Garcia-Campelo, R.; Robinet, G.; Rodriguez-Abreu, D.; Lopez-Vivanco, G.; Gebbia, V.; Ferrera-Delgado, L.; Bombaron, P.; Bernabe, R.; Bearz, A.; Artal, A.; Cortesi, E.; Rolfo, C.; Sanchez-Ronco, M.; Drozdowskyj, A.; Queralt, C.; de Aguirre, I.; Ramirez, J.L.; Sanchez, J.J.; Molina, M.A.; Taron, M.; Paz-Ares, L. Erlotinib Versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): A multicentre, open-label, randomised phase 3 trial. Lancet Oncol., 2012, 13(3), 239-246.
[http://dx.doi.org/10.1016/S1470-2045(11)70393-X] [PMID: 22285168]
[395]
Park, K.; Tan, E.H.; O’Byrne, K.; Zhang, L.; Boyer, M.; Mok, T.; Hirsh, V.; Yang, J.C.H.; Lee, K.H.; Lu, S.; Shi, Y.; Kim, S.W.; Laskin, J.; Kim, D.W.; Arvis, C.D.; Kölbeck, K.; Laurie, S.A.; Tsai, C.M.; Shahidi, M.; Kim, M.; Massey, D.; Zazulina, V.; Paz-Ares, L. Afatinib Versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): A phase 2B, open-label, randomised controlled trial. Lancet Oncol., 2016, 17(5), 577-589.
[http://dx.doi.org/10.1016/S1470-2045(16)30033-X] [PMID: 27083334]
[396]
Mok, T.S.; Wu, Y.L.; Thongprasert, S.; Yang, C.H.; Chu, D.T.; Saijo, N.; Sunpaweravong, P.; Han, B.; Margono, B.; Ichinose, Y.; Nishi-waki, Y.; Ohe, Y.; Yang, J.J.; Chewaskulyong, B.; Jiang, H.; Duffield, E.L.; Watkins, C.L.; Armour, A.A.; Fukuoka, M. Gefitinib or car-boplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med., 2009, 361(10), 947-957.
[http://dx.doi.org/10.1056/NEJMoa0810699] [PMID: 19692680]
[397]
Gonzalvez, F.; Vincent, S.; Baker, T.E.; Gould, A.E.; Li, S.; Wardwell, S.D.; Nadworny, S.; Ning, Y.; Zhang, S.; Huang, W.S.; Hu, Y.; Li, F.; Greenfield, M.T.; Zech, S.G.; Das, B.; Narasimhan, N.I.; Clackson, T.; Dalgarno, D.; Shakespeare, W.C.; Fitzgerald, M.; Chouitar, J.; Griffin, R.J.; Liu, S.; Wong, K.; Zhu, X.; Rivera, V.M. Mobocertinib (TAK-788): A Targeted Inhibitor of EGFR Exon 20 Insertion Mu-tants in Non–Small Cell Lung Cancer. Cancer Discov., 2021, 11(7), 1672-1687.
[http://dx.doi.org/10.1158/2159-8290.CD-20-1683] [PMID: 33632773]
[398]
Han, H.; Li, S.; Chen, T.; Fitzgerald, M.; Liu, S.; Peng, C.; Tang, K.H.; Cao, S.; Chouitar, J.; Wu, J.; Peng, D.; Deng, J.; Gao, Z.; Baker, T.E.; Li, F.; Zhang, H.; Pan, Y.; Ding, H.; Hu, H.; Pyon, V.; Thakurdin, C.; Papadopoulos, E.; Tang, S.; Gonzalvez, F.; Chen, H.; Rivera, V.M.; Brake, R.; Vincent, S.; Wong, K.K. Targeting HER2 Exon 20 Insertion–Mutant Lung Adenocarcinoma with a Novel Tyrosine Ki-nase Inhibitor Mobocertinib. Cancer Res., 2021, 81(20), 5311-5324.
[http://dx.doi.org/10.1158/0008-5472.CAN-21-1526] [PMID: 34380634]
[399]
U.S. Food & Drug. FDA grants accelerated approval to mobocertinib for metastatic non-small cell lung cancer with EGFR exon 20 insertion mutations. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-acceleratedapproval-mobocertinib-metastatic-non-small-cell-lung-canceregfr-exon-20
[400]
U.S. Food & Drug. FDA approves neratinib for metastatic HER2-positive breast cancer. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-neratinibmetastatic-her2-positive-breast-cancer
[401]
Highlights of prescribing information. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/208051s000lbl.pdf
[402]
National Center for Biotechnology Information. Neratinib. 2023. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Neratinib
[403]
Sogabe, S.; Kawakita, Y.; Igaki, S.; Iwata, H.; Miki, H.; Cary, D.R.; Takagi, T.; Takagi, S.; Ohta, Y.; Ishikawa, T. Structure-Based Ap-proach for the Discovery of Pyrrolo[3,2- d]pyrimidine-Based EGFR T790M/L858R Mutant Inhibitors. ACS Med. Chem. Lett., 2013, 4(2), 201-205.
[http://dx.doi.org/10.1021/ml300327z] [PMID: 24900643]
[404]
Rabindran, S.K.; Discafani, C.M.; Rosfjord, E.C.; Baxter, M.; Floyd, M.B.; Golas, J.; Hallett, W.A.; Johnson, B.D.; Nilakantan, R.; Over-beek, E.; Reich, M.F.; Shen, R.; Shi, X.; Tsou, H.R.; Wang, Y.F.; Wissner, A. Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase. Cancer Res., 2004, 64(11), 3958-3965.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-2868] [PMID: 15173008]
[405]
To, C.; Jang, J.; Chen, T.; Park, E.; Mushajiang, M.; De Clercq, D.J.H.; Xu, M.; Wang, S.; Cameron, M.D.; Heppner, D.E.; Shin, B.H.; Gero, T.W.; Yang, A.; Dahlberg, S.E.; Wong, K.K.; Eck, M.J.; Gray, N.S.; Jänne, P.A. Single and Dual Targeting of Mutant EGFR with an Allosteric Inhibitor. Cancer Discov., 2019, 9(7), 926-943.
[http://dx.doi.org/10.1158/2159-8290.CD-18-0903] [PMID: 31092401]
[406]
National Center for Biotechnology Information. Pelitinib. 2023. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Pelitinib
[407]
Robichaux, J.P.; Elamin, Y.Y.; Tan, Z.; Carter, B.W.; Zhang, S.; Liu, S.; Li, S.; Chen, T.; Poteete, A.; Estrada-Bernal, A.; Le, A.T.; Truini, A.; Nilsson, M.B.; Sun, H.; Roarty, E.; Goldberg, S.B.; Brahmer, J.R.; Altan, M.; Lu, C.; Papadimitrakopoulou, V.; Politi, K.; Doebele, R.C.; Wong, K.K.; Heymach, J.V. Mechanisms and clinical activity of an EGFR and HER2 exon 20–selective kinase inhibitor in non–small cell lung cancer. Nat. Med., 2018, 24(5), 638-646.
[http://dx.doi.org/10.1038/s41591-018-0007-9] [PMID: 29686424]
[408]
Torrance, C.J.; Jackson, P.E.; Montgomery, E.; Kinzler, K.W.; Vogelstein, B.; Wissner, A.; Nunes, M.; Frost, P.; Discafani, C.M. Combi-natorial chemoprevention of intestinal neoplasia. Nat. Med., 2000, 6(9), 1024-1028.
[http://dx.doi.org/10.1038/79534] [PMID: 10973323]
[409]
Nunes, M.; Shi, C.; Greenberger, L.M. Phosphorylation of extracellular signal-regulated kinase 1 and 2, protein kinase B, and signal transducer and activator of transcription 3 are differently inhibited by an epidermal growth factor receptor inhibitor, EKB-569, in tumor cells and normal human keratinocytes. Mol. Cancer Ther., 2004, 3(1), 21-27.
[http://dx.doi.org/10.1158/1535-7163.21.3.1] [PMID: 14749472]
[410]
Tyner, J.W.; Kim, E.Y.; Ide, K.; Pelletier, M.R.; Roswit, W.T.; Morton, J.D.; Battaile, J.T.; Patel, A.C.; Patterson, G.A.; Castro, M.; Spoor, M.S.; You, Y.; Brody, S.L.; Holtzman, M.J. Blocking airway mucous cell metaplasia by inhibiting EGFR antiapoptosis and IL-13 trans-differentiation signals. J. Clin. Invest., 2006, 116(2), 309-321.
[http://dx.doi.org/10.1172/JCI25167] [PMID: 16453019]
[411]
Erlichman, C.; Hidalgo, M.; Boni, J.P.; Martins, P.; Quinn, S.E.; Zacharchuk, C.; Amorusi, P.; Adjei, A.A.; Rowinsky, E.K. Phase I study of EKB-569, an irreversible inhibitor of the epidermal growth factor receptor, in patients with advanced solid tumors. J. Clin. Oncol., 2006, 24(15), 2252-2260.
[http://dx.doi.org/10.1200/JCO.2005.01.8960] [PMID: 16710023]
[412]
Blair, H.A. Pyrotinib: First Global Approval. Drugs, 2018, 78(16), 1751-1755.
[http://dx.doi.org/10.1007/s40265-018-0997-0] [PMID: 30341682]
[413]
Xu, B.; Yan, M.; Ma, F.; Hu, X.; Feng, J.; Ouyang, Q.; Tong, Z.; Li, H.; Zhang, Q.; Sun, T.; Wang, X.; Yin, Y.; Cheng, Y.; Li, W.; Gu, Y.; Chen, Q.; Liu, J.; Cheng, J.; Geng, C.; Qin, S.; Wang, S.; Lu, J.; Shen, K.; Liu, Q.; Wang, X.; Wang, H.; Luo, T.; Yang, J.; Wu, Y.; Yu, Z.; Zhu, X.; Chen, C.; Zou, J. Pyrotinib plus capecitabine Versus lapatinib plus capecitabine for the treatment of HER2-positive metastatic breast cancer (PHOEBE): A multicentre, open-label, randomised, controlled, phase 3 trial. Lancet Oncol., 2021, 22(3), 351-360.
[http://dx.doi.org/10.1016/S1470-2045(20)30702-6] [PMID: 33581774]
[414]
Chen, Q.; Ouyang, D.; Anwar, M.; Xie, N.; Wang, S.; Fan, P.; Qian, L.; Chen, G.; Zhou, E.; Guo, L.; Gu, X.; Ding, B.; Yang, X.; Liu, L.; Deng, C.; Xiao, Z.; Li, J.; Wang, Y.; Zeng, S.; Hu, J.; Zhou, W.; Qiu, B.; Wang, Z.; Weng, J.; Liu, M.; Li, Y.; Tang, T.; Wang, J.; Zhang, H.; Dai, B.; Tang, W.; Wu, T.; Xiao, M.; Li, X.; Liu, H.; Li, L.; Yi, W.; Ouyang, Q. Effectiveness and Safety of Pyrotinib, and Association of Biomarker With Progression-Free Survival in Patients With HER2-Positive Metastatic Breast Cancer: A Real-World, Multicentre Anal-ysis. Front. Oncol., 2020, 10, 811.
[http://dx.doi.org/10.3389/fonc.2020.00811] [PMID: 32528890]
[415]
Li, X.; Yang, C.; Wan, H.; Zhang, G.; Feng, J.; Zhang, L.; Chen, X.; Zhong, D.; Lou, L.; Tao, W.; Zhang, L. Discovery and development of pyrotinib: A novel irreversible EGFR/HER2 dual tyrosine kinase inhibitor with favorable safety profiles for the treatment of breast cancer. Eur. J. Pharm. Sci., 2017, 110, 51-61.
[http://dx.doi.org/10.1016/j.ejps.2017.01.021] [PMID: 28115222]
[416]
Walter, A.O.; Sjin, R.T.T.; Haringsma, H.J.; Ohashi, K.; Sun, J.; Lee, K.; Dubrovskiy, A.; Labenski, M.; Zhu, Z.; Wang, Z.; Sheets, M.; St Martin, T.; Karp, R.; van Kalken, D.; Chaturvedi, P.; Niu, D.; Nacht, M.; Petter, R.C.; Westlin, W.; Lin, K.; Jaw-Tsai, S.; Raponi, M.; Van Dyke, T.; Etter, J.; Weaver, Z.; Pao, W.; Singh, J.; Simmons, A.D.; Harding, T.C.; Allen, A. Discovery of a mutant-selective covalent in-hibitor of EGFR that overcomes T790M-mediated resistance in NSCLC. Cancer Discov., 2013, 3(12), 1404-1415.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0314] [PMID: 24065731]
[417]
Sequist, L.V.; Soria, J.C.; Goldman, J.W.; Wakelee, H.A.; Gadgeel, S.M.; Varga, A.; Papadimitrakopoulou, V.; Solomon, B.J.; Oxnard, G.R.; Dziadziuszko, R.; Aisner, D.L.; Doebele, R.C.; Galasso, C.; Garon, E.B.; Heist, R.S.; Logan, J.; Neal, J.W.; Mendenhall, M.A.; Nichols, S.; Piotrowska, Z.; Wozniak, A.J.; Raponi, M.; Karlovich, C.A.; Jaw-Tsai, S.; Isaacson, J.; Despain, D.; Matheny, S.L.; Rolfe, L.; Allen, A.R.; Camidge, D.R. Rociletinib in EGFR-mutated non-small-cell lung cancer. N. Engl. J. Med., 2015, 372(18), 1700-1709.
[http://dx.doi.org/10.1056/NEJMoa1413654] [PMID: 25923550]
[418]
Yan, X.E.; Zhu, S.J.; Liang, L.; Zhao, P.; Choi, H.G.; Yun, C.H. Structural basis of mutant-selectivity and drug-resistance related to CO-1686. Oncotarget, 2017, 8(32), 53508-53517.
[http://dx.doi.org/10.18632/oncotarget.18588] [PMID: 28881827]
[419]
Yang, J.C.H.; Reckamp, K.L.; Kim, Y.C.; Novello, S.; Smit, E.F.; Lee, J.S.; Su, W.C.; Akerley, W.L.; Blakely, C.M.; Groen, H.J.M.; Ba-zhenova, L.; Carcereny Costa, E.; Chiari, R.; Hsia, T.C.; Golsorkhi, T.; Despain, D.; Shih, D.; Popat, S.; Wakelee, H. Efficacy and Safety of Rociletinib Versus Chemotherapy in Patients With EGFR-Mutated NSCLC: The Results of TIGER-3, a Phase 3 Randomized Study. JTO Clinical and Research Reports, 2021, 2(2), 100114.
[http://dx.doi.org/10.1016/j.jtocrr.2020.100114] [PMID: 34589984]
[420]
Jia, Y.; Yun, C.H.; Park, E.; Ercan, D.; Manuia, M.; Juarez, J.; Xu, C.; Rhee, K.; Chen, T.; Zhang, H.; Palakurthi, S.; Jang, J.; Lelais, G.; DiDonato, M.; Bursulaya, B.; Michellys, P.Y.; Epple, R.; Marsilje, T.H.; McNeill, M.; Lu, W.; Harris, J.; Bender, S.; Wong, K.K.; Jänne, P.A.; Eck, M.J. Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors. Nature, 2016, 534(7605), 129-132.
[http://dx.doi.org/10.1038/nature17960] [PMID: 27251290]
[421]
Wang, S.; Tsui, S.T.; Liu, C.; Song, Y.; Liu, D. EGFR C797S mutation mediates resistance to third-generation inhibitors in T790M-positive non-small cell lung cancer. J. Hematol. Oncol., 2016, 9(1), 59.
[http://dx.doi.org/10.1186/s13045-016-0290-1] [PMID: 27448564]
[422]
Maity, S.; Pai, K.S.R.; Nayak, Y. Advances in targeting EGFR allosteric site as anti-NSCLC therapy to overcome the drug resistance. Pharmacol. Rep., 2020, 72(4), 799-813.
[http://dx.doi.org/10.1007/s43440-020-00131-0] [PMID: 32666476]
[423]
Annachiara, T. Investigating the selectivity of allosteric inhibitors for mutant t790m egfr over wild type using molecular dynamics and binding free energy calculations. ACS Omega, 2018, 3(12), 16556-16562.
[http://dx.doi.org/10.1021/acsomega.8b03256]
[424]
Traxler, P.; Allegrini, P.R.; Brandt, R.; Brueggen, J.; Cozens, R.; Fabbro, D.; Grosios, K.; Lane, H.A.; McSheehy, P.; Mestan, J.; Meyer, T.; Tang, C.; Wartmann, M.; Wood, J.; Caravatti, G. AEE788: A dual family epidermal growth factor receptor/ErbB2 and vascular endo-thelial growth factor receptor tyrosine kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res., 2004, 64(14), 4931-4941.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3681] [PMID: 15256466]
[425]
Park, Y.W.; Younes, M.N.; Jasser, S.A.; Yigitbasi, O.G.; Zhou, G.; Bucana, C.D.; Bekele, B.N.; Myers, J.N. AEE788, a dual tyrosine kinase receptor inhibitor, induces endothelial cell apoptosis in human cutaneous squamous cell carcinoma xenografts in nude mice. Clin. Cancer Res., 2005, 11(5), 1963-1973.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-1665] [PMID: 15756022]
[426]
Yokoi, K.; Thaker, P.H.; Yazici, S.; Rebhun, R.R.; Nam, D.H.; He, J.; Kim, S.J.; Abbruzzese, J.L.; Hamilton, S.R.; Fidler, I.J. Dual inhibi-tion of epidermal growth factor receptor and vascular endothelial growth factor receptor phosphorylation by AEE788 reduces growth and metastasis of human colon carcinoma in an orthotopic nude mouse model. Cancer Res., 2005, 65(9), 3716-3725.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-3700] [PMID: 15867367]
[427]
Meco, D.; Servidei, T.; Zannonit, G.F.; Martinelli, E.; Prisco, M.G.; Waure, C.; Riccardi, R. Dual Inhibitor AEE78 Reduces Tumor Growth in Preclinical Models of Medulloblastoma. Transl. Oncol., 2010, 3(5), 326-335.
[http://dx.doi.org/10.1593/tlo.10163] [PMID: 20885895]
[428]
Yu, C.; Friday, B.B.; Lai, J.P.; McCollum, A.; Atadja, P.; Roberts, L.R.; Adjei, A.A. Abrogation of MAPK and Akt signaling by AEE788 synergistically potentiates histone deacetylase inhibitor-induced apoptosis through reactive oxygen species generation. Clin. Cancer Res., 2007, 13(4), 1140-1148.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1751] [PMID: 17317822]
[429]
Reardon, D.A.; Conrad, C.A.; Cloughesy, T.; Prados, M.D.; Friedman, H.S.; Aldape, K.D.; Mischel, P.; Xia, J.; DiLea, C.; Huang, J.; Mietlowski, W.; Dugan, M.; Chen, W.; Yung, W.K.A. Phase I study of AEE788, a novel multitarget inhibitor of ErbB- and VEGF-receptor-family tyrosine kinases, in recurrent glioblastoma patients. Cancer Chemother. Pharmacol., 2012, 69(6), 1507-1518.
[http://dx.doi.org/10.1007/s00280-012-1854-6] [PMID: 22392572]
[430]
Wong, T.W.; Lee, F.Y.; Yu, C.; Luo, F.R.; Oppenheimer, S.; Zhang, H.; Smykla, R.A.; Mastalerz, H.; Fink, B.E.; Hunt, J.T.; Gavai, A.V.; Vite, G.D. Preclinical antitumor activity of BMS-599626, a pan-HER kinase inhibitor that inhibits HER1/HER2 homodimer and hetero-dimer signaling. Clin. Cancer Res., 2006, 12(20), 6186-6193.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0642] [PMID: 17062696]
[431]
Ashar, Y.V.; Zhou, J.; Gupta, P.; Teng, Q.X.; Lei, Z.N.; Reznik, S.E.; Lusvarghi, S.; Wurpel, J.; Ambudkar, S.V.; Chen, Z.S. BMS-599626, a Highly Selective Pan-HER Kinase Inhibitor, Antagonizes ABCG2-Mediated Drug Resistance. Cancers (Basel), 2020, 12(9), 2502.
[http://dx.doi.org/10.3390/cancers12092502] [PMID: 32899268]
[432]
Torres, M.A.; Raju, U.; Molkentine, D.; Riesterer, O.; Milas, L.; Ang, K.K. AC480, formerly BMS-599626, a pan Her inhibitor, enhances radiosensitivity and radioresponse of head and neck squamous cell carcinoma cells in vitro and in vivo. Invest. New Drugs, 2011, 29(4), 554-561.
[http://dx.doi.org/10.1007/s10637-010-9389-3] [PMID: 20119866]
[433]
Pharmacokinetics (PK) Study of AC480 for Recurrent Glioma. Pharmacokinetics (PK) Study of AC480 for Recurrent Glioma. NCT00979173, 2014.
[434]
BMS-599626 in Treating Patients With Metastatic Solid Tumors. NCT00093730, 2012.
[435]
BMS-599626 in Patients with Advanced Solid Malignancies. NCT00095537, 2010.
[436]
Refractory, M.A.D. MAD Refractory: Solid Tumor QD w/o Break. NCT00207012, 2010.
[437]
Safety Study for Intravenous (IV) AC480. Safety Study for Intravenous (IV) AC480 (AC480IV) to Treat Advanced Solid Tumors. NCT01245543, 2015.
[438]
Haluska, P.; Carboni, J.M.; TenEyck, C.; Attar, R.M.; Hou, X.; Yu, C.; Sagar, M.; Wong, T.W.; Gottardis, M.M.; Erlichman, C. HER re-ceptor signaling confers resistance to the insulin-like growth factor-I receptor inhibitor, BMS-536924. Mol. Cancer Ther., 2008, 7(9), 2589-2598.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0493] [PMID: 18765823]
[439]
National Center for Biotechnology Information. Tak-285. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Tak-285
[440]
Ishikawa, T.; Seto, M.; Banno, H.; Kawakita, Y.; Oorui, M.; Taniguchi, T.; Ohta, Y.; Tamura, T.; Nakayama, A.; Miki, H.; Kamiguchi, H.; Tanaka, T.; Habuka, N.; Sogabe, S.; Yano, J.; Aertgeerts, K.; Kamiyama, K. Design and synthesis of novel human epidermal growth fac-tor receptor 2 (HER2)/epidermal growth factor receptor (EGFR) dual inhibitors bearing a pyrrolo[3,2-d]pyrimidine scaffold. J. Med. Chem., 2011, 54(23), 8030-8050.
[http://dx.doi.org/10.1021/jm2008634] [PMID: 22003817]
[441]
Aertgeerts, K.; Skene, R.; Yano, J.; Sang, B.C.; Zou, H.; Snell, G.; Jennings, A.; Iwamoto, K.; Habuka, N.; Hirokawa, A.; Ishikawa, T.; Tanaka, T.; Miki, H.; Ohta, Y.; Sogabe, S. Structural analysis of the mechanism of inhibition and allosteric activation of the kinase do-main of HER2 protein. J. Biol. Chem., 2011, 286(21), 18756-18765.
[http://dx.doi.org/10.1074/jbc.M110.206193] [PMID: 21454582]
[442]
Erdő, F.; Gordon, J.; Wu, J.T.; Sziráki, I. Verification of brain penetration of the unbound fraction of a novel HER2/EGFR dual kinase inhibitor (TAK-285) by microdialysis in rats. Brain Res. Bull., 2012, 87(4-5), 413-419.
[http://dx.doi.org/10.1016/j.brainresbull.2012.01.002] [PMID: 22245027]
[443]
Doi, T.; Takiuchi, H.; Ohtsu, A.; Fuse, N.; Goto, M.; Yoshida, M.; Dote, N.; Kuze, Y.; Jinno, F.; Fujimoto, M.; Takubo, T.; Nakayama, N.; Tsutsumi, R. Phase I first-in-human study of TAK-285, a novel investigational dual HER2/EGFR inhibitor, in cancer patients. Br. J. Cancer, 2012, 106(4), 666-672.
[http://dx.doi.org/10.1038/bjc.2011.590] [PMID: 22240796]
[444]
Hickinson, D.M.; Klinowska, T.; Speake, G.; Vincent, J.; Trigwell, C.; Anderton, J.; Beck, S.; Marshall, G.; Davenport, S.; Callis, R.; Mills, E.; Grosios, K.; Smith, P.; Barlaam, B.; Wilkinson, R.W.; Ogilvie, D. AZD8931, an equipotent, reversible inhibitor of signaling by epidermal growth factor receptor, ERBB2 (HER2), and ERBB3: A unique agent for simultaneous ERBB receptor blockade in cancer. Clin. Cancer Res., 2010, 16(4), 1159-1169.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2353] [PMID: 20145185]
[445]
Phase I/II AZD8931/Paclitaxel in Treatment of Advanced Solid Tumours (Phase I) and Advanced Breast Cancer (Phase II) (THYME). NCT00900627, 2016.
[446]
Qiu, P.; Wang, S.; Liu, M.; Ma, H.; Zeng, X.; Zhang, M.; Xu, L.; Cui, Y.; Xu, H.; Tang, Y.; He, Y.; Zhang, L. Norcantharidin Inhibits cell growth by suppressing the expression and phosphorylation of both EGFR and c-Met in human colon cancer cells. BMC Cancer, 2017, 17(1), 55.
[http://dx.doi.org/10.1186/s12885-016-3039-x] [PMID: 28086832]
[447]
Fan, Y.Z.; Zhao, Z.M.; Fu, J.Y.; Chen, C.Q.; Sun, W. Norcantharidin inhibits growth of human gallbladder carcinoma xenografted tumors in nude mice by inducing apoptosis and blocking the cell cycle in vivo. Hepatobiliary Pancreat. Dis. Int., 2010, 9(4), 414-422.
[PMID: 20688607]
[448]
Phase I Clinical Study for Evaluation of Pharmacokinetic, Safety, Tolerance of Norcantharidin Lipid Microsphere for Injection in Patients With Solid Tumor. NCT04673396, 2020.
[449]
Sudbeck, E.A.; Liu, X-P.; Narla, R.K.; Mahajan, S.; Ghosh, S.; Mao, C.; Uckun, F.M. Structure-based design of specific inhibitors of Janus kinase 3 as apoptosis-inducing antileukemic agents. Clin. Cancer Res., 1999, 5(6), 1569-1582.
[PMID: 10389946]
[450]
Meng, Y.; Gao, C.; Clawson, D.K.; Atwell, S.; Russell, M.; Vieth, M.; Roux, B. Predicting the Conformational Variability of Abl Tyrosine Kinase using Molecular Dynamics Simulations and Markov State Models. J. Chem. Theory Comput., 2018, 14(5), 2721-2732.
[http://dx.doi.org/10.1021/acs.jctc.7b01170] [PMID: 29474075]
[451]
Changelian, P.S.; Moshinsky, D.; Kuhn, C.F.; Flanagan, M.E.; Munchhof, M.J.; Harris, T.M.; Whipple, D.A.; Doty, J.L.; Sun, J.; Kent, C.R.; Magnuson, K.S.; Perregaux, D.G.; Sawyer, P.S.; Kudlacz, E.M. The specificity of JAK3 kinase inhibitors. Blood, 2008, 111(4), 2155-2157.
[http://dx.doi.org/10.1182/blood-2007-09-115030] [PMID: 18094329]
[452]
Narla, R.K.; Liu, X.P.; Klis, D.; Uckun, F.M. Inhibition of human glioblastoma cell adhesion and invasion by 4-(4′-hydroxylphenyl)-amino-6,7-dimethoxyquinazoline (WHI-P131) and 4-(3′-bromo-4′-hydroxylphenyl)-amino-6,7-dimethoxyquinazoline (WHI-P154). Clin. Cancer Res., 1998, 4(10), 2463-2471.
[PMID: 9796979]
[453]
Narla, R.K.; Liu, X.P.; Myers, D.E.; Uckun, F.M. 4-(3′-Bromo-4'hydroxylphenyl)-amino-6,7-dimethoxyquinazoline: A novel quinazo-line derivative with potent cytotoxic activity against human glioblastoma cells. Clin. Cancer Res., 1998, 4(6), 1405-1414.
[PMID: 9626456]
[454]
Kim, E.S. Olmutinib: First global approval. Drugs, 2016, 76(11), 1153-1157.
[http://dx.doi.org/10.1007/s40265-016-0606-z] [PMID: 27357069]
[455]
Roskoski, R. Jr Small molecule inhibitors targeting the EGFR/ErbB family of protein-tyrosine kinases in human cancers. Pharmacol. Res., 2019, 139(I), 395-411.
[http://dx.doi.org/10.1016/j.phrs.2018.11.014] [PMID: 30500458]
[456]
Zhang, Q.; Zhang, L.; Yu, J.; Li, H.; He, S.; Tang, W.; Zuo, J.; Lu, W. Discovery of new BTK inhibitors with B cell suppression activity bearing a 4,6-substituted thieno[3,2-d]pyrimidine scaffold. RSC Advances, 2017, 7(42), 26060-26069.
[http://dx.doi.org/10.1039/C7RA04261B]
[457]
Wang, S.; Cang, S.; Liu, D. Third-generation inhibitors targeting EGFR T790M mutation in advanced non-small cell lung cancer. J. Hematol. Oncol., 2016, 9(1), 34.
[http://dx.doi.org/10.1186/s13045-016-0268-z] [PMID: 27071706]
[458]
TKI therapy olmutinib approved in South Korea for lung cancer treatment. 2016. Available from: http://test.pharmabiz.com/news/tki-therapy-olmutinib-approved-in-south-korea-for-lungcancer-treatment-95244
[459]
Murtuza, A.; Bulbul, A.; Shen, J.P.; Keshavarzian, P.; Woodward, B.D.; Lopez-Diaz, F.J.; Lippman, S.M.; Husain, H. Novel Third-Generation EGFR Tyrosine Kinase Inhibitors and Strategies to Overcome Therapeutic Resistance in Lung Cancer. Cancer Res., 2019, 79(4), 689-698.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-1281] [PMID: 30718357]
[460]
Wang, J.; Xing, X.; Li, Q.; Zhang, G.; Wang, T.; Pan, H.; Li, D. Targeting the FGFR signaling pathway in cholangiocarcinoma: promise or delusion? Ther. Adv. Med. Oncol., 2020, 12.
[http://dx.doi.org/10.1177/1758835920940948] [PMID: 32754231]
[461]
FDA. 2020. Available from: http://www.fda.gov/
[462]
Liu, P.C.C.; Koblish, H.; Wu, L.; Bowman, K.; Diamond, S.; DiMatteo, D.; Zhang, Y.; Hansbury, M.; Rupar, M.; Wen, X.; Collier, P.; Feldman, P.; Klabe, R.; Burke, K.A.; Soloviev, M.; Gardiner, C.; He, X.; Volgina, A.; Covington, M.; Ruggeri, B.; Wynn, R.; Burn, T.C.; Scherle, P.; Yeleswaram, S.; Yao, W.; Huber, R.; Hollis, G. INCB054828 (pemigatinib), a potent and selective inhibitor of fibroblast growth factor receptors 1, 2, and 3, displays activity against genetically defined tumor models. PLoS One, 2020, 15(4), e0231877.
[http://dx.doi.org/10.1371/journal.pone.0231877] [PMID: 32315352]
[463]
Kuboki, Y.; Furukawa, M.; Takahashi, Y.; Mizuno, N.; Hara, H.; Ueno, M.; Ioka, T.; Takahashi, S.; Shimizu, T.; Lihou, C.F.; Tian, C.; Ji, T.; Fujiwara, Y. Preliminary results from fight-102: A phase 1 study of pemigatinib in Japanese patients with advanced malignancies. Ann. Oncol., 2019, 30, vi125.
[http://dx.doi.org/10.1093/annonc/mdz343.034]
[464]
Necchi, A.; Pouessel, D.; Leibowitz-Amit, R.; Flechon, A.; Gupta, S.; Barthelemy, P.; Maio, M.; Zhu, X.; Asatiani, E.; Serbest, G.; Zhen, H. Interim results of fight-201, a phase II, open-label, multicenter study of INCB054828 in patients (pts) with metastatic or surgically unresectable urothelial carcinoma (UC) harboring fibroblast growth factor (FGF)/FGF receptor (FGFR) genetic alterations (GA). Ann. Oncol., 2018, 29, 319-320.
[465]
Lin, Q.; Chen, X.; Qu, L.; Guo, M.; Wei, H.; Dai, S.; Jiang, L.; Chen, Y. Characterization of the cholangiocarcinoma drug pemigatinib against FGFR gatekeeper mutants. Commun. Chem., 2022, 5(1), 100.
[http://dx.doi.org/10.1038/s42004-022-00718-z] [PMID: 36698015]
[466]
Abou-Alfa, G.K.; Sahai, V.; Hollebecque, A.; Vaccaro, G.; Melisi, D.; Al-Rajabi, R.; Paulson, A.S.; Borad, M.J.; Gallinson, D.; Murphy, A.G.; Oh, D.Y.; Dotan, E.; Catenacci, D.V.; Van Cutsem, E.; Ji, T.; Lihou, C.F.; Zhen, H.; Féliz, L.; Vogel, A. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: A multicentre, open-label, phase 2 study. Lancet Oncol., 2020, 21(5), 671-684.
[http://dx.doi.org/10.1016/S1470-2045(20)30109-1] [PMID: 32203698]
[467]
Bekaii-Saab, T.S.; Valle, J.W.; Van Cutsem, E.; Rimassa, L.; Furuse, J.; Ioka, T.; Melisi, D.; Macarulla, T.; Bridgewater, J.; Wasan, H.; Borad, M.J.; Abou-Alfa, G.K.; Jiang, P.; Lihou, C.F.; Zhen, H.; Asatiani, E.; Féliz, L.; Vogel, A. FIGHT-302: first-line pemigatinib vs gemcitabine plus cisplatin for advanced cholangiocarcinoma with FGFR2 rearrangements. Future Oncol., 2020, 16(30), 2385-2399.
[http://dx.doi.org/10.2217/fon-2020-0429] [PMID: 32677452]
[468]
Hoy, S.M. Pemigatinib: First Approval. Drugs, 2020, 80(9), 923-929.
[http://dx.doi.org/10.1007/s40265-020-01330-y] [PMID: 32472305]
[469]
Roskoski, R., Jr The role of fibroblast growth factor receptor (FGFR) protein-tyrosine kinase inhibitors in the treatment of cancers in-cluding those of the urinary bladder. Pharmacol. Res., 2020, 151, 104567.
[http://dx.doi.org/10.1016/j.phrs.2019.104567] [PMID: 31770593]
[470]
Linnerbauer, M.; Lößlein, L.; Vandrey, O.; Tsaktanis, T.; Beer, A.; Naumann, U.J.; Panier, F.; Beyer, T.; Nirschl, L.; Kuramatsu, J.B.; Winkler, J.; Quintana, F.J.; Rothhammer, V. Intranasal delivery of a small-molecule ErbB inhibitor promotes recovery from acute and late-stage CNS inflammation. JCI Insight, 2022, 7(7), e154824.
[http://dx.doi.org/10.1172/jci.insight.154824] [PMID: 35393953]
[471]
Astex announces new drug discovery collaboration with University of Newcastle upon Tyne and Cancer Research Technology Limited. 2006. Available from: http://www.astex-therapeutics.com44.
[472]
Therapeutics, A. Available from: http://www.astex-therapeutics.com
[473]
Perera, T.P.S.; Jovcheva, E.; Mevellec, L. vialard, J.; De Lange, D.; Verhulst, T.; Paulussen, C.; Van De Ven, K.; King, P.; Freyne, E.; Rees, D.C.; Squires, M.; Saxty, G.; Page, M.; Murray, C.W.; Gilissen, R.; Ward, G.; Thompson, N.T.; Newell, D.R.; Cheng, N.; Xie, L.; Yang, J.; Platero, S.J.; Karkera, J.D.; Moy, C.; Angibaud, P.; Laquerre, S.; Lorenzi, M.V. Discovery and Pharmacological Characterization of JNJ-42756493 (Erdafitinib), a Functionally Selective Small-Molecule FGFR Family Inhibitor. Mol. Cancer Ther., 2017, 16(6), 1010-1020.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0589] [PMID: 28341788]
[474]
Tabernero, J.; Bahleda, R.; Dienstmann, R.; Infante, J.R.; Mita, A.; Italiano, A.; Calvo, E.; Moreno, V.; Adamo, B.; Gazzah, A.; Zhong, B.; Platero, S.J.; Smit, J.W.; Stuyckens, K.; Chatterjee-Kishore, M.; Rodon, J.; Peddareddigari, V.; Luo, F.R.; Soria, J.C.; Phase, I.; Phase, I. Dose-Escalation Study of JNJ-42756493, an Oral Pan-Fibroblast Growth Factor Receptor Inhibitor, in Patients With Advanced Solid Tumors. J. Clin. Oncol., 2015, 33(30), 3401-3408.
[http://dx.doi.org/10.1200/JCO.2014.60.7341] [PMID: 26324363]
[475]
[476]
Patani, H.; Bunney, T.D.; Thiyagarajan, N.; Norman, R.A.; Ogg, D.; Breed, J.; Ashford, P.; Potterton, A.; Edwards, M.; Williams, S.V.; Thomson, G.S.; Pang, C.S.M.; Knowles, M.A.; Breeze, A.L.; Orengo, C.; Phillips, C.; Katan, M. Landscape of activating cancer mutations in FGFR kinases and their differential responses to inhibitors in clinical use. Oncotarget, 2016, 7(17), 24252-24268.
[http://dx.doi.org/10.18632/oncotarget.8132] [PMID: 26992226]
[477]
Roskoski, R. Jr Properties of FDA-approved small molecule protein kinase inhibitors: A 2021 update. Pharmacol. Res., 2021, 165, 105463.
[http://dx.doi.org/10.1016/j.phrs.2021.105463] [PMID: 33513356]
[478]
Verstraete, M.; Debucquoy, A.; Gonnissen, A.; Dok, R.; Isebaert, S.; Devos, E.; McBride, W.; Haustermans, K. in vitro and in vivo eval-uation of the radiosensitizing effect of a selective FGFR inhibitor (JNJ-42756493) for rectal cancer. BMC Cancer, 2015, 15(1), 946.
[http://dx.doi.org/10.1186/s12885-015-2000-8] [PMID: 26675289]
[479]
Perera, T.; Jovcheva, E. vialard, J.; Verhulst, T.; Esser, N.; Wroblowski, B.; Gilissen, R.; Freyne, E.; King, P.; Platero, S.; Querolle, O.; Mevellec, L.; Murray, C.; Fazal, L.; Saxty, G.; Ward, G.; Squires, M.; Thompson, N.; Newell, D.; Angibaud, P. Abstract 1738: JNJ-42756493 is an inhibitor of FGFR-1, 2, 3 and 4 with nanomolar affinity for targeted therapy. Cancer Res., 2014, 74(19)(Suppl.), 1738-1738.
[http://dx.doi.org/10.1158/1538-7445.AM2014-1738]
[480]
Botrus, G.; Raman, P.; Oliver, T.; Bekaii-Saab, T. Infigratinib (BGJ398): An investigational agent for the treatment of FGFR-altered intra-hepatic cholangiocarcinoma. Expert Opin. Investig. Drugs, 2021, 30(4), 309-316.
[http://dx.doi.org/10.1080/13543784.2021.1864320] [PMID: 33307867]
[481]
Guagnano, V.; Kauffmann, A.; Wöhrle, S.; Stamm, C.; Ito, M.; Barys, L.; Pornon, A.; Yao, Y.; Li, F.; Zhang, Y.; Chen, Z.; Wilson, C.J.; Bordas, V.; Le Douget, M.; Gaither, L.A.; Borawski, J.; Monahan, J.E.; Venkatesan, K.; Brümmendorf, T.; Thomas, D.M.; Garcia-Echeverria, C.; Hofmann, F.; Sellers, W.R.; Graus-Porta, D. FGFR genetic alterations predict for sensitivity to NVP-BGJ398, a selective pan-FGFR inhibitor. Cancer Discov., 2012, 2(12), 1118-1133.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0210] [PMID: 23002168]
[482]
Mohammadi, M.; Froum, S.; Hamby, J.M.; Schroeder, M.C.; Panek, R.L.; Lu, G.H.; Eliseenkova, A.V.; Green, D.; Schlessinger, J.; Hub-bard, S.R. Crystal structure of an angiogenesis inhibitor bound to the FGF receptor tyrosine kinase domain. EMBO J., 1998, 17(20), 5896-5904.
[http://dx.doi.org/10.1093/emboj/17.20.5896] [PMID: 9774334]
[483]
Huynh, H.; Lee, L.Y.; Goh, K.Y.; Ong, R.; Hao, H.X.; Huang, A.; Wang, Y.; Graus Porta, D.; Chow, P.; Chung, A. Infigratinib mediates vascular normalization, impairs metastasis, and improves chemotherapy in hepatocellular carcinoma. Hepatology, 2019, 69(3), 943-958.
[http://dx.doi.org/10.1002/hep.30481] [PMID: 30575985]
[484]
Guagnano, V.; Furet, P.; Spanka, C.; Bordas, V.; Le Douget, M.; Stamm, C.; Brueggen, J.; Jensen, M.R.; Schnell, C.; Schmid, H.; Wart-mann, M. Discovery of 3-(2, 6-dichloro-3, 5-dimethoxy-phenyl)-1-{6-[4-(4-ethyl-piperazin-1-yl)-phenylamino]-pyrimidin-4-yl}-1-methyl-urea (NVP-BGJ398), a potent and selective inhibitor of the fibroblast growth factor receptor family of receptor tyrosine kinase. J. Med. Chem., 2011, 54(20), 7066-7083.
[http://dx.doi.org/10.1021/jm2006222] [PMID: 21936542]
[485]
Nakanishi, Y.; Akiyama, N.; Tsukaguchi, T.; Fujii, T.; Sakata, K.; Sase, H.; Isobe, T.; Morikami, K.; Shindoh, H.; Mio, T.; Ebiike, H.; Taka, N.; Aoki, Y.; Ishii, N. The fibroblast growth factor receptor genetic status as a potential predictor of the sensitivity to CH5183284/Debio 1347, a novel selective FGFR inhibitor. Mol. Cancer Ther., 2014, 13(11), 2547-2558.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0248] [PMID: 25169980]
[486]
Voss, M.H.; Hierro, C.; Heist, R.S.; Cleary, J.M.; Meric-Bernstam, F.; Tabernero, J.; Janku, F.; Gandhi, L.; Iafrate, A.J.; Borger, D.R.; Ishii, N.; Hu, Y.; Kirpicheva, Y.; Nicolas-Metral, V.; Pokorska-Bocci, A. VaslinChessex, A.; Zanna, C.; Flaherty, K.T.; Baselga, J. A Phase I, Open-Label, Multicenter, Dose-escalation Study of the Oral Selective FGFR Inhibitor Debio 1347 in Patients with Advanced Sol-id TumorsHarboring FGFR Gene Alterations. Clin. Cancer Res., 2019, 25(9), 2699-2707.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-1959] [PMID: 30745300]
[487]
Grünewald, S.; Politz, O.; Bender, S.; Héroult, M.; Lustig, K.; Thuss, U.; Kneip, C.; Kopitz, C.; Zopf, D.; Collin, M.P.; Boemer, U.; Ince, S.; Ellinghaus, P.; Mumberg, D.; Hess-Stumpp, H.; Ziegelbauer, K. Rogaratinib: A potent and selective pan‐FGFR inhibitor with broad antitumor activity in FGFR‐overexpressing preclinical cancer models. Int. J. Cancer, 2019, 145(5), 1346-1357.
[http://dx.doi.org/10.1002/ijc.32224] [PMID: 30807645]
[488]
Schuler, M.; Cho, B.C.; Sayehli, C.M.; Navarro, A.; Soo, R.A.; Richly, H.; Cassier, P.A.; Tai, D.; Penel, N.; Nogova, L.; Park, S.H.; Schostak, M.; Gajate, P.; Cathomas, R.; Rajagopalan, P.; Grevel, J.; Bender, S.; Boix, O.; Nogai, H.; Ocker, M.; Ellinghaus, P.; Joerger, M. Rogaratinib in patients with advanced cancers selected by FGFR mRNA expression: A phase 1 dose-escalation and dose-expansion study. Lancet Oncol., 2019, 20(10), 1454-1466.
[http://dx.doi.org/10.1016/S1470-2045(19)30412-7] [PMID: 31405822]
[489]
Kempf, E.; Penel, N.; Tournigand, C.; Gajate, P.; Tan, D.S.W.; Cassier, P.; Nogova, L.; Cathomas, R.; Schostak, M.; Janitzky, A.; Wermke, M.; Sayehli, C.; Navarro, A.; Park, S.H.; Piciu, A-M.; Bender, S.; Nogai, H.; Ellinghaus, P.; Joerger, M.; Schuler, M.H. Phase I experience with rogaratinib in patients (pts) with urothelial carcinoma (UC) selected based on FGFR mRNA overexpression. J. Clin. Oncol., 2020, 38(6)(Suppl.), 527-527.
[http://dx.doi.org/10.1200/JCO.2020.38.6_suppl.527]
[490]
Sternberg, C.N.; Petrylak, D.P.; Bellmunt, J.; Nishiyama, H.; Necchi, A.; Gurney, H.; Lee, J.L.; van der Heijden, M.S.; Rosenbaum, E.; Penel, N.; Pang, S.T.; Li, J.R.; García del Muro, X.; Joly, F.; Pápai, Z.; Bao, W.; Ellinghaus, P.; Lu, C.; Sierecki, M.; Coppieters, S.; Nakajima, K.; Ishida, T.C.; Quinn, D.I. FORT-1: Phase II/III Study of Rogaratinib Versus Chemotherapy in Patients With Locally Ad-vanced or Metastatic Urothelial Carcinoma Selected Based on FGFR1/3 mRNA Expression. J. Clin. Oncol., 2023, 41(3), 629-639.
[http://dx.doi.org/10.1200/JCO.21.02303] [PMID: 36240478]
[491]
Rosenberg, J.E.; Gajate, P.; Morales-Barrera, R.; Lee, J.L.; Necchi, A.; Penel, N.; Zagonel, V.; Sierecki, M.R.; Piciu, A.M.; Ellinghaus, P.; Sweis, R.F. Safety and preliminary efficacy of rogaratinib in combination with atezolizumab in a phase Ib/II study (FORT-2) of first-line treatment in cisplatin-ineligible patients (pts) with locally advanced or metastatic urothelial cancer (UC) and FGFR mRNA overexpres-sion. J. Clin. Oncol., 2020, 38(15)(Suppl.), 5014-5014.
[http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.5014]
[492]
Kim, S-M.; Kim, H.; Yun, M.R.; Kang, H.N.; Pyo, K-H.; Park, H.J.; Lee, J.M.; Choi, H.M.; Ellinghaus, P.; Ocker, M.; Paik, S.; Kim, H.R.; Cho, B.C. Activation of the Met kinase confers acquired drug resistance in FGFR-targeted lung cancer therapy. Oncogenesis, 2016, 5(7), e241-e241.
[http://dx.doi.org/10.1038/oncsis.2016.48] [PMID: 27429073]
[493]
Ochiiwa, H.; Fujita, H.; Itoh, K.; Sootome, H.; Hashimoto, A.; Fujioka, Y.; Nakatsuru, Y.; Oda, N.; Yonekura, K.; Hirai, H.; Utsugi, T. Abstract A270: TAS-120, a highly potent and selective irreversible FGFR inhibitor, is effective in tumors harboring various FGFR gene abnormalities. Mol. Cancer Ther., 2013, 12(11)(Suppl.), A270-A270.
[http://dx.doi.org/10.1158/1535-7163.TARG-13-A270]
[494]
Meric-Bernstam, F.; Goyal, L.; Tran, B.; Matos, I.; Arkenau, H.T.; He, H.; Huang, J.; Bahleda, R. Abstract CT238: TAS-120 in patients with advanced solid tumors bearing FGF/FGFR aberrations: A Phase I study. Cancer Res., 2019, 79(13)(Suppl.), CT238-CT238.
[http://dx.doi.org/10.1158/1538-7445.AM2019-CT238]
[495]
Kalyukina, M.; Yosaatmadja, Y.; Middleditch, M.J.; Patterson, A.V.; Smaill, J.B.; Squire, C.J. TAS‐120 Cancer Target Binding: Defining Reactivity and Revealing the First Fibroblast Growth Factor Receptor 1 (FGFR1) Irreversible Structure. ChemMedChem, 2019, 14(4), 494-500.
[http://dx.doi.org/10.1002/cmdc.201800719] [PMID: 30600916]
[496]
Sootome, H.; Fujita, H.; Ito, K.; Ochiiwa, H.; Fujioka, Y.; Ito, K.; Miura, A.; Sagara, T.; Ito, S.; Ohsawa, H.; Otsuki, S.; Funabashi, K.; Yashiro, M.; Matsuo, K.; Yonekura, K.; Hirai, H. Futibatinib Is a Novel Irreversible FGFR 1–4 Inhibitor That Shows Selective Antitumor Activity against FGFR-Deregulated Tumors. Cancer Res., 2020, 80(22), 4986-4997.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-2568] [PMID: 32973082]
[497]
Goyal, L.; Shi, L.; Liu, L.Y.; Fece de la Cruz, F.; Lennerz, J.K.; Raghavan, S.; Leschiner, I.; Elagina, L.; Siravegna, G.; Ng, R.W.S.; Vu, P.; Patra, K.C.; Saha, S.K.; Uppot, R.N.; Arellano, R.; Reyes, S.; Sagara, T.; Otsuki, S.; Nadres, B.; Shahzade, H.A.; Dey-Guha, I.; Fetter, I.J.; Baiev, I.; Van Seventer, E.E.; Murphy, J.E.; Ferrone, C.R.; Tanabe, K.K.; Deshpande, V.; Harding, J.J.; Yaeger, R.; Kelley, R.K.; Bardelli, A.; Iafrate, A.J.; Hahn, W.C.; Benes, C.H.; Ting, D.T.; Hirai, H.; Getz, G.; Juric, D.; Zhu, A.X.; Corcoran, R.B.; Bardeesy, N. TAS-120 Overcomes Resistance to ATP-Competitive FGFR Inhibitors in Patients with FGFR2 Fusion–Positive Intrahepatic Cholangio-carcinoma. Cancer Discov., 2019, 9(8), 1064-1079.
[http://dx.doi.org/10.1158/2159-8290.CD-19-0182] [PMID: 31109923]
[498]
Dimitroff, C.J.; Klohs, W.; Sharma, A.; Pera, P.; Driscoll, D.; Veith, J.; Steinkampf, R.; Schroeder, M.; Klutchko, S.; Sumlin, A.; Hender-son, B.; Dougherty, T.J.; Bernacki, R.J. Anti-angiogenic activity of selected receptor tyrosine kinase inhibitors, PD166285 and PD173074: implications for combination treatment with photodynamic therapy. Invest. New Drugs, 1999, 17(2), 121-135.
[http://dx.doi.org/10.1023/A:1006367032156] [PMID: 10638483]
[499]
Trudel, S.; Ely, S.; Farooqi, Y.; Affer, M.; Robbiani, D.F.; Chesi, M.; Bergsagel, P.L. Inhibition of fibroblast growth factor receptor 3 induces differentiation and apoptosis in t(4;14) myeloma. Blood, 2004, 103(9), 3521-3528.
[http://dx.doi.org/10.1182/blood-2003-10-3650] [PMID: 14715624]
[500]
Pardo, O.E.; Latigo, J.; Jeffery, R.E.; Nye, E.; Poulsom, R.; Spencer-Dene, B.; Lemoine, N.R.; Stamp, G.W.; Aboagye, E.O.; Seckl, M.J. The fibroblast growth factor receptor inhibitor PD173074 blocks small cell lung cancer growth in vitro and in vivo. Cancer Res., 2009, 69(22), 8645-8651.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1576] [PMID: 19903855]
[501]
Skaper, S.D.; Kee, W.J.; Facci, L.; Macdonald, G.; Doherty, P.; Walsh, F.S. The FGFR1 inhibitor PD 173074 selectively and potently antagonizes FGF-2 neurotrophic and neurotropic effects. J. Neurochem., 2000, 75(4), 1520-1527.
[http://dx.doi.org/10.1046/j.1471-4159.2000.0751520.x] [PMID: 10987832]
[502]
Bansal, R.; Magge, S.; Winkler, S. Specific inhibitor of FGF receptor signaling: FGF-2-mediated effects on proliferation, differentiation, and MAPK activation are inhibited by PD173074 in oligodendrocyte-lineage cells. J. Neurosci. Res., 2003, 74(4), 486-493.
[http://dx.doi.org/10.1002/jnr.10773] [PMID: 14598292]
[503]
Zhao, G.; Li, W.; Chen, D.; Henry, J.R.; Li, H.Y.; Chen, Z.; Zia-Ebrahimi, M.; Bloem, L.; Zhai, Y.; Huss, K.; Peng, S.; McCann, D.J. A novel, selective inhibitor of fibroblast growth factor receptors that shows a potent broad spectrum of antitumor activity in several tumor xenograft models. Mol. Cancer Ther., 2011, 10(11), 2200-2210.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0306] [PMID: 21900693]
[504]
Michael, M.; Bang, Y.J.; Park, Y.S.; Kang, Y.K.; Kim, T.M.; Hamid, O.; Thornton, D.; Tate, S.C.; Raddad, E.; Tie, J. A Phase 1 Study of LY2874455, an Oral Selective pan-FGFR Inhibitor, in Patients with Advanced Cancer. Target. Oncol., 2017, 12(4), 463-474.
[http://dx.doi.org/10.1007/s11523-017-0502-9] [PMID: 28589492]
[505]
Hall, T.G.; Yu, Y.; Eathiraj, S.; Wang, Y.; Savage, R.E.; Lapierre, J.M.; Schwartz, B.; Abbadessa, G. Preclinical Activity of ARQ 087, a Novel Inhibitor Targeting FGFR Dysregulation. PLoS One, 2016, 11(9), e0162594.
[http://dx.doi.org/10.1371/journal.pone.0162594] [PMID: 27627808]
[506]
Chaudhry, A.; Sternberg, C.N.; De Santis, M.; Bellmunt, J.; Necchi, A.; Powles, T.; Cantero, F.; Marszewska, M.; Grzyb, M.; McSheehy, P.; Braun, S.; Siefker-Radtke, A.O. FIDES-02, a phase Ib/II study of derazantinib (DZB) as monotherapy and combination therapy with atezolizumab (A) in patients with surgically unresectable or metastaticurothelial cancer (UC) and FGFR genetic aberrations. J. Clin. Oncol., 2020, 38(6)(Suppl.), TPS590. [-TPS.].
[http://dx.doi.org/10.1200/JCO.2020.38.6_suppl.TPS590]
[507]
Zhu, Y.; Knolhoff, B.L.; Meyer, M.A.; Nywening, T.M.; West, B.L.; Luo, J.; Wang-Gillam, A.; Goedegebuure, S.P.; Linehan, D.C.; De-Nardo, D.G. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immuno-therapy in pancreatic cancer models. Cancer Res., 2014, 74(18), 5057-5069.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-3723] [PMID: 25082815]
[508]
Quigley, D.; Alumkal, J.J.; Wyatt, A.W.; Kothari, V.; Foye, A.; Lloyd, P.; Aggarwal, R.; Kim, W.; Lu, E.; Schwartzman, J.; Beja, K.; An-nala, M.; Das, R.; Diolaiti, M.; Pritchard, C.; Thomas, G.; Tomlins, S.; Knudsen, K.; Lord, C.J.; Ryan, C.; Youngren, J.; Beer, T.M.; Ash-worth, A.; Small, E.J.; Feng, F.Y. Analysis of Circulating Cell-Free DNA identifies multiclonal heterogeneity of BRCA2 reversion muta-tions associated with resistance to parp inhibitors. Cancer Discov., 2017, 7(9), 999-1005.
[http://dx.doi.org/10.1158/2159-8290.CD-17-0146] [PMID: 28450426]
[509]
Gavine, P.R.; Mooney, L.; Kilgour, E.; Thomas, A.P.; Al-Kadhimi, K.; Beck, S.; Coleman, T.; Baker, D.; Mellor, M.J.; Brooks, N.A.N.; Klinowska, T. Abstract 3568: Characterization of AZD4547: An orally bioavailable, potent and selective inhibitor of FGFR tyrosine ki-nases 1, 2 and 3. Cancer Res., 2011, 71(8)(Suppl.), 3568-3568.
[http://dx.doi.org/10.1158/1538-7445.AM2011-3568]
[510]
Coombes, R.C.; Badman, P.D.; Lozano-Kuehne, J.P.; Liu, X.; Macpherson, I.R.; Zubairi, I.; Baird, R.D.; Rosenfeld, N.; Garcia-Corbacho, J.; Cresti, N.; Plummer, R.; Armstrong, A.; Allerton, R.; Landers, D.; Nicholas, H.; McLellan, L.; Lim, A.; Mouliere, F.; Pardo, O.E.; Fer-guson, V.; Seckl, M.J. Results of the phase IIa RADICAL trial of the FGFR inhibitor AZD4547 in endocrine resistant breast cancer. Nat. Commun., 2022, 13(1), 3246.
[http://dx.doi.org/10.1038/s41467-022-30666-0] [PMID: 35688802]
[511]
André, F.; Bachelot, T.; Campone, M.; Dalenc, F.; Perez-Garcia, J.M.; Hurvitz, S.A.; Turner, N.; Rugo, H.; Smith, J.W.; Deudon, S.; Shi, M.; Zhang, Y.; Kay, A.; Graus Porta, D.; Yovine, A.; Baselga, J. Targeting FGFR with dovitinib (TKI258): preclinical and clinical data in breast cancer. Clin. Cancer Res., 2013, 19(13), 3693-3702.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0190] [PMID: 23658459]
[512]
Angevin, E.; Lopez-Martin, J.A.; Lin, C.C.; Gschwend, J.E.; Harzstark, A.; Castellano, D.; Soria, J.C.; Sen, P.; Chang, J.; Shi, M.; Kay, A.; Escudier, B. Phase I study of dovitinib (TKI258), an oral FGFR, VEGFR, and PDGFR inhibitor, in advanced or metastatic renal cell car-cinoma. Clin. Cancer Res., 2013, 19(5), 1257-1268.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-2885] [PMID: 23339124]
[513]
Escudier, B.; Grünwald, V.; Ravaud, A.; Ou, Y.C.; Castellano, D.; Lin, C.C.; Gschwend, J.E.; Harzstark, A.; Beall, S.; Pirotta, N.; Squires, M.; Shi, M.; Angevin, E. Phase II results of Dovitinib (TKI258) in patients with metastatic renal cell cancer. Clin. Cancer Res., 2014, 20(11), 3012-3022.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-3006] [PMID: 24691021]
[514]
Klein, T.; Vajpai, N.; Phillips, J.J.; Davies, G.; Holdgate, G.A.; Phillips, C.; Tucker, J.A.; Norman, R.A.; Scott, A.D.; Higazi, D.R.; Lowe, D.; Thompson, G.S.; Breeze, A.L. Structural and dynamic insights into the energetics of activation loop rearrangement in FGFR1 kinase. Nat. Commun., 2015, 6(1), 7877.
[http://dx.doi.org/10.1038/ncomms8877] [PMID: 26203596]
[515]
Trudel, S.; Li, Z.H.; Wei, E.; Wiesmann, M.; Chang, H.; Chen, C.; Reece, D.; Heise, C.; Stewart, A.K. CHIR-258, a novel, multitargeted tyrosine kinase inhibitor for the potential treatment of t(4;14) multiple myeloma. Blood, 2005, 105(7), 2941-2948.
[http://dx.doi.org/10.1182/blood-2004-10-3913] [PMID: 15598814]
[516]
Huynh, H.; Chow, P.K.H.; Tai, W.M.; Choo, S.P.; Chung, A.Y.F.; Ong, H.S.; Soo, K.C.; Ong, R.; Linnartz, R.; Shi, M.M. Dovitinib demonstrates antitumor and antimetastatic activities in xenograft models of hepatocellular carcinoma. J. Hepatol., 2012, 56(3), 595-601.
[http://dx.doi.org/10.1016/j.jhep.2011.09.017] [PMID: 22027573]
[517]
Lee, S.H.; Lopes de Menezes, D.; Vora, J.; Harris, A.; Ye, H.; Nordahl, L.; Garrett, E.; Samara, E.; Aukerman, S.L.; Gelb, A.B.; Heise, C. in vivo target modulation and biological activity of CHIR-258, a multitargeted growth factor receptor kinase inhibitor, in colon cancer models. Clin. Cancer Res., 2005, 11(10), 3633-3641.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-2129] [PMID: 15897558]
[518]
Dempke, W.C.; Zippel, R. Brivanib, a novel dual VEGF-R2/bFGF-R inhibitor. Anticancer Res., 2010, 30(11), 4477-4483.
[PMID: 21115896]
[519]
Bhide, R.S.; Cai, Z.W.; Zhang, Y.Z.; Qian, L.; Wei, D.; Barbosa, S.; Lombardo, L.J.; Borzilleri, R.M.; Zheng, X.; Wu, L.I.; Barrish, J.C.; Kim, S.H.; Leavitt, K.; Mathur, A.; Leith, L.; Chao, S.; Wautlet, B.; Mortillo, S.; Jeyaseelan, R., Sr; Kukral, D.; Hunt, J.T.; Kamath, A.; Fura, A.; Vyas, V.; Marathe, P.; D’Arienzo, C.; Derbin, G.; Fargnoli, J. Discovery and Preclinical Studies of (R)-1-(4-(4-Fluoro-2-methyl-1 H -indol-5-yloxy)-5- methylpyrrolo[2,1- f][1,2,4]triazin-6-yloxy)propan- 2-ol (BMS-540215), an in vivo Active Potent VEGFR-2 Inhibitor. J. Med. Chem., 2006, 49(7), 2143-2146.
[http://dx.doi.org/10.1021/jm051106d] [PMID: 16570908]
[520]
Nakamura, I.; Zakharia, K.; Banini, B.A.; Mikhail, D.S.; Kim, T.H.; Yang, J.D.; Moser, C.D.; Shaleh, H.M.; Thornburgh, S.R.; Walters, I.; Roberts, L.R. Correction: Brivanib Attenuates Hepatic Fibrosis in vivo and Stellate Cell Activation in vitro by Inhibition of FGF, VEGF and PDGF Signaling. PLoS One, 2015, 10(11), e0142355.
[http://dx.doi.org/10.1371/journal.pone.0142355] [PMID: 26528545]
[521]
Huynh, H.; Ngo, V.C.; Fargnoli, J.; Ayers, M.; Soo, K.C.; Koong, H.N.; Thng, C.H.; Ong, H.S.; Chung, A.; Chow, P.; Pollock, P.; Byron, S.; Tran, E. Brivanib alaninate, a dual inhibitor of vascular endothelial growth factor receptor and fibroblast growth factor receptor tyro-sine kinases, induces growth inhibition in mouse models of human hepatocellular carcinoma. Clin. Cancer Res., 2008, 14(19), 6146-6153.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0509] [PMID: 18829493]
[522]
Laird, A.D.; Vajkoczy, P.; Shawver, L.K.; Thurnher, A.; Liang, C.; Mohammadi, M.; Schlessinger, J.; Ullrich, A.; Hubbard, S.R.; Blake, R.A.; Fong, T.A.; Strawn, L.M.; Sun, L.; Tang, C.; Hawtin, R.; Tang, F.; Shenoy, N.; Hirth, K.P.; McMahon, G. Cherrington, SU6668 is a potent antiangiogenic and antitumor agent that induces regression of established tumors. Cancer Res., 2000, 60(15), 4152-4160.
[PMID: 10945623]
[523]
Marzola, P.; Degrassi, A.; Calderan, L.; Farace, P.; Crescimanno, C.; Nicolato, E.; Giusti, A.; Pesenti, E.; Terron, A.; Sbarbati, A.; Abrams, T.; Murray, L.; Osculati, F. in vivo assessment of antiangiogenic activity of SU6668 in an experimental colon carcinoma model. Clin. Cancer Res., 2004, 10(2), 739-750.
[http://dx.doi.org/10.1158/1078-0432.CCR-0828-03] [PMID: 14760097]
[524]
Kim, H.C.; Chung, J.W.; Choi, S.H.; Im, S.A.; Yamasaki, Y.; Jun, S.; Jae, H.J.; Park, J.H. Augmentation of chemotherapeutic infusion effect by TSU-68, an oral targeted antiangiogenic agent, in a rabbit VX2 liver tumor model. Cardiovasc. Intervent. Radiol., 2012, 35(1), 168-175.
[http://dx.doi.org/10.1007/s00270-010-0081-y] [PMID: 21184227]
[525]
Kudo, M.; Cheng, A.L.; Park, J.W.; Park, J.H.; Liang, P.C.; Hidaka, H.; Izumi, N.; Heo, J.; Lee, Y.J.; Sheen, I.S.; Chiu, C.F.; Arioka, H.; Morita, S.; Arai, Y. Orantinib Versus placebo combined with transcatheter arterial chemoembolisation in patients with unresectable hepa-tocellular carcinoma (ORIENTAL): A randomised, double-blind, placebo-controlled, multicentre, phase 3 study. Lancet Gastroenterol. Hepatol., 2018, 3(1), 37-46.
[http://dx.doi.org/10.1016/S2468-1253(17)30290-X] [PMID: 28988687]
[526]
Fletcher, G.C.; Brokx, R.D.; Denny, T.A.; Hembrough, T.A.; Plum, S.M.; Fogler, W.E.; Sidor, C.F.; Bray, M.R. ENMD-2076 is an orally active kinase inhibitor with antiangiogenic and antiproliferative mechanisms of action. Mol. Cancer Ther., 2011, 10(1), 126-137.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0574] [PMID: 21177375]
[527]
Wang, X.; Sinn, A.L.; Pollok, K.; Sandusky, G.; Zhang, S.; Chen, L.; Liang, J.; Crean, C.D.; Suvannasankha, A.; Abonour, R.; Sidor, C.; Bray, M.R.; Farag, S.S. Preclinical activity of a novel multiple tyrosine kinase and aurora kinase inhibitor, ENMD‐2076, against multiple myeloma. Br. J. Haematol., 2010, 150(3), 313-325.
[http://dx.doi.org/10.1111/j.1365-2141.2010.08248.x] [PMID: 20560971]
[528]
Diamond, J.R.; Eckhardt, S.G.; Pitts, T.M.; van Bokhoven, A.; Aisner, D.; Gustafson, D.L.; Capasso, A.; Sams, S.; Kabos, P.; Zolman, K.; Colvin, T.; Elias, A.D.; Storniolo, A.M.; Schneider, B.P.; Gao, D.; Tentler, J.J.; Borges, V.F.; Miller, K.D. A phase II clinical trial of the Aurora and angiogenic kinase inhibitor ENMD-2076 for previously treated, advanced, or metastatic triple-negative breast cancer. Breast Cancer Res., 2018, 20(1), 82.
[http://dx.doi.org/10.1186/s13058-018-1014-y] [PMID: 30071865]
[529]
Heldin, C.H. Targeting the PDGF signaling pathway in tumor treatment. Cell Commun. Signal., 2013, 11(1), 97.
[http://dx.doi.org/10.1186/1478-811X-11-97] [PMID: 24359404]
[530]
Smith, B.D.; Kaufman, M.D.; Lu, W.P.; Gupta, A.; Leary, C.B.; Wise, S.C.; Rutkoski, T.J.; Ahn, Y.M.; Al-Ani, G.; Bulfer, S.L.; Caldwell, T.M.; Chun, L.; Ensinger, C.L.; Hood, M.M.; McKinley, A.; Patt, W.C.; Ruiz-Soto, R.; Su, Y.; Telikepalli, H.; Town, A.; Turner, B.A.; Vogeti, L.; Vogeti, S.; Yates, K.; Janku, F.; Abdul Razak, A.R.; Rosen, O.; Heinrich, M.C.; Flynn, D.L. Ripretinib (DCC-2618) is a switch control kinase inhibitor of a broad spectrum of oncogenic and drug-resistant KIT and PDGFRA variants. Cancer Cell, 2019, 35(5), 738-751.e9.
[http://dx.doi.org/10.1016/j.ccell.2019.04.006] [PMID: 31085175]
[531]
Zalcberg, J.R. Ripretinib for the treatment of advanced gastrointestinal stromal tumor. Therap. Adv. Gastroenterol., 2021, 14.
[http://dx.doi.org/10.1177/17562848211008177] [PMID: 33948116]
[532]
FDA approves ripretinib for advanced gastrointestinal stromal tumor. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-ripretinib-advanced-gastrointestinal-stromal-tumor
[533]
Kang, Y.K.; George, S.; Jones, R.L.; Rutkowski, P.; Shen, L.; Mir, O.; Patel, S.; Zhou, Y.; von Mehren, M.; Hohenberger, P.; Villalobos, V.; Brahmi, M.; Tap, W.D.; Trent, J.; Pantaleo, M.A.; Schöffski, P.; He, K.; Hew, P.; Newberry, K.; Roche, M.; Heinrich, M.C.; Bauer, S. AvapritinibVersusregorafenib in locally advanced unresectable or metastatic GI stromal tumor: Arandomized,open-labelphase III study. J. Clin. Oncol., 2021, 39(28), 3128-3139.
[http://dx.doi.org/10.1200/JCO.21.00217] [PMID: 34343033]
[534]
Sun, Y.; Yue, L.; Xu, P.; Hu, W. An overview of agents and treatments for PDGFRA-mutated gastrointestinal stromal tumors. Front. Oncol., 2022, 12, 927587.
[http://dx.doi.org/10.3389/fonc.2022.927587] [PMID: 36119525]
[535]
Evans, E.K.; Hodous, B.L.; Gardino, A.K.; Davis, A.; Zhu, J.; Shutes, A.; Kim, J.L.; Wilson, K.J.; Wilson, D.; Zhang, Y.; Chu, T.; Kohl, N.E.; Kadambi, V.; Guzi, T.; Lengauer, C. Abstract 791: BLU-285, the first selective inhibitor of PDGFRα D842V and KIT Exon 17 mu-tants. Cancer Res., 2015, 75(15)(Suppl.), 791-791.
[http://dx.doi.org/10.1158/1538-7445.AM2015-791]
[536]
Inxight Drugs. Available from: https://drugs.ncats.io/drug/MC4B01024K
[537]
Wang, P.; Song, L.; Ge, H.; Jin, P.; Jiang, Y.; Hu, W.; Geng, N. Crenolanib, a PDGFR inhibitor, suppresses lung cancer cell proliferation and inhibits tumor growth in vivo. OncoTargets Ther., 2014, 1761-1768.
[http://dx.doi.org/10.2147/OTT.S68773]
[538]
Heinrich, M.C.; Griffith, D.; McKinley, A.; Patterson, J.; Presnell, A.; Ramachandran, A.; Debiec-Rychter, M. Crenolanib Inhibits the Drug-Resistant PDGFRA D842VMutation Associated with Imatinib-Resistant Gastrointestinal StromalTumorsCrenolanib Inhibits PDG-FRA D842V. Clin. Cancer Res., 2012, 18(16), 4375-4384.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-0625] [PMID: 22745105]
[539]
Randhawa, J.K.; Kantarjian, H.M.; Borthakur, G.; Thompson, P.A.; Konopleva, M.; Daver, N.; Pemmaraju, N.; Jabbour, E.; Kadia, T.M.; Estrov, Z.; Ramachandran, A.; Paradela, J.; Andreef, M.; Levis, M.; Ravandi, F.; Cortes, J.E. Results of a phase II study of crenolanib in relapsed/refractory acute myeloidleukemiapatients(Pts)withactivatingFLT3 mutations. Blood, 2014, 124(21), 389.
[http://dx.doi.org/10.1182/blood.V124.21.389.389]
[540]
Gounder, M.M.; Maki, R.G. Molecular basis for primary and secondary tyrosine kinase inhibitor resistance in gastrointestinal stromal tumor. Cancer Chemother. Pharmacol., 2011, 67(S1), 25-43.
[http://dx.doi.org/10.1007/s00280-010-1526-3] [PMID: 21116624]
[541]
Papadopoulos, N.; Lennartsson, J. The PDGF/PDGFR pathway as a drug target. Mol. Aspects Med., 2018, 62, 75-88.
[http://dx.doi.org/10.1016/j.mam.2017.11.007] [PMID: 29137923]
[542]
Baran, Y.; Ural, A.U.; Gunduz, U. Mechanisms of cellular resistance to imatinib in human chronic myeloid leukemia cells. Hematology, 2007, 12(6), 497-503.
[http://dx.doi.org/10.1080/10245330701384179] [PMID: 17852433]
[543]
Wei, Y.; To, K.K.W.; Au-Yeung, S.C.F. Synergistic cytotoxicity from combination of imatinib and platinum-based anticancer drugs spe-cifically in Bcr-Abl positive leukemia cells. J. Pharmacol. Sci., 2015, 129(4), 210-215.
[http://dx.doi.org/10.1016/j.jphs.2015.10.008] [PMID: 26644081]
[544]
Winger, J.A.; Hantschel, O.; Superti-Furga, G.; Kuriyan, J. The structure of the leukemia drug imatinib bound to human quinone reduc-tase 2 (NQO2). BMC Struct. Biol., 2009, 9(1), 7.
[http://dx.doi.org/10.1186/1472-6807-9-7] [PMID: 19236722]
[545]
Stover, E.H.; Chen, J.; Lee, B.H.; Cools, J.; McDowell, E.; Adelsperger, J.; Cullen, D.; Coburn, A.; Moore, S.A.; Okabe, R.; Fabbro, D.; Manley, P.W.; Griffin, J.D.; Gilliland, D.G. The small molecule tyrosine kinase inhibitor AMN107 inhibits TEL-PDGFR and FIP1L1-PDGFR in vitro and in vivo. Blood, 2005, 106(9), 3206-3213.
[http://dx.doi.org/10.1182/blood-2005-05-1932] [PMID: 16030188]
[546]
Avendaño, C.; Menéndez, J.C. Drugs that inhibit signalling pathways for tumorcellgrowthandproliferation. Med. Chem. Anticancer Drugs, 2008, 251-305.
[547]
Blay, J.Y.; von Mehren, M. Nilotinib: A novel, selective tyrosine kinase inhibitor. Semin. Oncol., 2011, 38(1), S3-S9.
[http://dx.doi.org/10.1053/j.seminoncol.2011.01.016] [PMID: 21419934]
[548]
Weisberg, E.; Manley, P.W.; Breitenstein, W.; Brüggen, J.; Cowan-Jacob, S.W.; Ray, A.; Huntly, B.; Fabbro, D.; Fendrich, G.; Hall-Meyers, E.; Kung, A.L.; Mestan, J.; Daley, G.Q.; Callahan, L.; Catley, L.; Cavazza, C.; Mohammed, A.; Neuberg, D.; Wright, R.D.; Gilli-land, D.G.; Griffin, J.D. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell, 2005, 7(2), 129-141.
[http://dx.doi.org/10.1016/j.ccr.2005.01.007] [PMID: 15710326]
[549]
Verstovsek, S.; Akin, C.; Manshouri, T.; Quintás-Cardama, A.; Huynh, L.; Manley, P.; Tefferi, A.; Cortes, J.; Giles, F.J.; Kantarjian, H. Effects of AMN107, a novel aminopyrimidine tyrosine kinase inhibitor, on human mast cells bearing wild-type or mutated codon 816 c-kit. Leuk. Res., 2006, 30(11), 1365-1370.
[http://dx.doi.org/10.1016/j.leukres.2006.04.005] [PMID: 16797704]
[550]
Pan, B.S.; Chan, G.K.Y.; Chenard, M.; Chi, A.; Davis, L.J.; Deshmukh, S.V.; Gibbs, J.B.; Gil, S.; Hang, G.; Hatch, H.; Jewell, J.P.; Kariv, I.; Katz, J.D.; Kunii, K.; Lu, W.; Lutterbach, B.A.; Paweletz, C.P.; Qu, X.; Reilly, J.F.; Szewczak, A.A.; Zeng, Q.; Kohl, N.E.; Dinsmore, C.J. MK-2461, a novel multitargeted kinase inhibitor, preferentially inhibits the activated c-Met receptor. Cancer Res., 2010, 70(4), 1524-1533.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-2541] [PMID: 20145145]
[551]
Camacho, L.H.; Moulder, S.L.; LoRusso, P.M.; Blumenschein, G.R.; Bristow, P.J.; Kurzrock, R.; Fu, S.; Schlienger, K.; Bergstrom, D.A. First in human phase I study of MK-2461, a small molecule inhibitor of c-Met, for patients with advanced solid tumors. J. Clin. Oncol., 2008, 26(15)(Suppl.), 14657-14657.
[http://dx.doi.org/10.1200/jco.2008.26.15_suppl.14657]
[552]
Rickert, K.W.; Patel, S.B.; Allison, T.J.; Byrne, N.J.; Darke, P.L.; Ford, R.E.; Guerin, D.J.; Hall, D.L.; Kornienko, M.; Lu, J.; Munshi, S.K.; Reid, J.C.; Shipman, J.M.; Stanton, E.F.; Wilson, K.J.; Young, J.R.; Soisson, S.M.; Lumb, K.J. Structural basis for selective small molecule kinase inhibition of activated c-Met. J. Biol. Chem., 2011, 286(13), 11218-11225.
[http://dx.doi.org/10.1074/jbc.M110.204404] [PMID: 21247903]
[553]
Zheng, J.; Zhang, W.; Li, L.; He, Y.; Wei, Y.; Dang, Y.; Nie, S.; Guo, Z. Signalling pathway and small-molecule drug discovery of FGFR: A comprehensive review. Front Chem., 2022, 10, 860985.
[http://dx.doi.org/10.3389/fchem.2022.860985] [PMID: 35494629]
[554]
Hanna, K.S. Erdafitinib to treat urothelial carcinoma. Drugs Today, 2019, 55(8), 495-501.
[555]
Wu, C.P.; Hung, T.H.; Hsiao, S.H.; Huang, Y.H.; Hung, L.C.; Yu, Y.J.; Chang, Y.T.; Wang, S.P.; Wu, Y.S. ErdafitinibresensitizesABCB1-overexpressingmultidrug-resistantcancer cells tocytotoxic anticancerdrugs. Cancers, 2020, 12(6), 1366.
[http://dx.doi.org/10.3390/cancers12061366] [PMID: 32466597]
[556]
Siefker-Radtke, A.O.; Necchi, A.; Park, S.H.; García-Donas, J.; Huddart, R.A.; Burgess, E.F.; Fleming, M.T.; Rezazadeh Kalebasty, A.; Mellado, B.; Varlamov, S.; Joshi, M.; Duran, I.; Tagawa, S.T.; Zakharia, Y.; Akapame, S.; Santiago-Walker, A.E.; Monga, M.; O’Hagan, A.; Loriot, Y.; Necchi, A.; Loriot, Y.; Park, S.H.; Tagawa, S.; Flechon, A.; Alexeev, B.; Varlamov, S.; Huddart, R.; Burgess, E.; Rezaza-deh, A.; Siefker-Radtke, A.; Vano, Y.; Gasparro, D.; Hamzaj, A.; Kopyltsov, E.; Gracia Donas, J.; Mellado, B.; Parikh, O.; Schatteman, P.; Culine, S.; Houédé, N.; Zanetta, S.; Facchini, G.; Scagliotti, G.; Schinzari, G.; Lee, J.L.; Shkolnik, M.; Fleming, M.; Joshi, M.; O’Donnell, P.; Stöger, H.; Decaestecker, K.; Dirix, L.; Machiels, J.P.; Borchiellini, D.; Delva, R.; Rolland, F.; Hadaschik, B.; Retz, M.; Rosenbaum, E.; Basso, U.; Mosca, A.; Lee, H.J.; Shin, D.B.; Cebotaru, C.; Duran, I.; Moreno, V.; Perez Gracia, J.L.; Pinto, A.; Su, W-P.; Wang, S-S.; Hainsworth, J.; Schnadig, I.; Srinivas, S.; Vogelzang, N.; Loidl, W.; Meran, J.; Gross Goupil, M.; Joly, F.; Imkamp, F.; Klotz, T.; Krege, S.; May, M.; Schultze-Seemann, W.; Strauss, A.; Zimmermann, U.; Keizman, D.; Peer, A.; Sella, A.; Berardi, R.; De Giorgi, U.; Sternberg, C.N.; Rha, S.Y.; Bulat, I.; Izmailov, A.; Matveev, V.; Vladimirov, V.; Carles, J.; Font, A.; Saez, M.; Syndikus, I.; Tarver, K.; Appleman, L.; Burke, J.; Dawson, N.; Jain, S.; Zakharia, Y. Efficacy and safety of erdafitinib in patients with locally advanced or meta-static urothelial carcinoma: long-term follow-up of a phase 2 study. Lancet Oncol., 2022, 23(2), 248-258.
[http://dx.doi.org/10.1016/S1470-2045(21)00660-4] [PMID: 35030333]
[557]
Eustace, A.J.; Crown, J.; Clynes, M.; O’Donovan, N. Preclinical evaluation of dasatinib, a potent Src kinase inhibitor, in melanoma cell lines. J. Transl. Med., 2008, 6(1), 53.
[http://dx.doi.org/10.1186/1479-5876-6-53] [PMID: 18823558]
[558]
Bantscheff, M.; Eberhard, D.; Abraham, Y.; Bastuck, S.; Boesche, M.; Hobson, S.; Mathieson, T.; Perrin, J.; Raida, M.; Rau, C.; Reader, V.; Sweetman, G.; Bauer, A.; Bouwmeester, T.; Hopf, C.; Kruse, U.; Neubauer, G.; Ramsden, N.; Rick, J.; Kuster, B.; Drewes, G. Quanti-tative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat. Biotechnol., 2007, 25(9), 1035-1044.
[http://dx.doi.org/10.1038/nbt1328] [PMID: 17721511]
[559]
Schuetze, S.M.; Bolejack, V.; Thomas, D.G.; von Mehren, M.; Patel, S.; Samuels, B.; Choy, E.; D’Amato, G.; Staddon, A.P.; Ganjoo, K.N.; Chow, W.A.; Rushing, D.A.; Forscher, C.A.; Priebat, D.A.; Loeb, D.M.; Chugh, R.; Okuno, S.; Reinke, D.K.; Baker, L.H. Associa-tion ofdasatinibwithprogression-freesurvivalamongpatientswithadvancedgastrointestinalstromaltumors resistanttoimatinib. JAMA Oncol., 2018, 4(6), 814-820.
[http://dx.doi.org/10.1001/jamaoncol.2018.0601] [PMID: 29710216]
[560]
Conchon, M.; Freitas, C.M.B.M.; Rego, M.A.C.; Braga Junior, J.W.R. Dasatinib. Rev. Bras. Hematol. Hemoter., 2010, 33(2), 131-139.
[http://dx.doi.org/10.5581/1516-8484.20110034] [PMID: 23284261]
[561]
Zhao, J.; Quan, H.; Xu, Y.; Kong, X.; Jin, L.; Lou, L. Flumatinib, a selective inhibitor of BCR ‐ ABL/PDGFR/KIT, effectively over-comes drug resistance of certain KIT mutants. Cancer Sci., 2014, 105(1), 117-125.
[http://dx.doi.org/10.1111/cas.12320] [PMID: 24205792]
[562]
Kathawala, R.J.; Gupta, P.; Ashby, C.R., Jr; Chen, Z.S. The modulation of ABC transporter-mediated multidrug resistance in cancer: A review of the past decade. Drug Resist. Updat., 2015, 18, 1-17.
[http://dx.doi.org/10.1016/j.drup.2014.11.002] [PMID: 25554624]
[563]
Sodani, K.; Patel, A.; Anreddy, N.; Singh, S.; Yang, D.H.; Kathawala, R.J.; Kumar, P.; Talele, T.T.; Chen, Z.S. Telatinib reverses chemo-therapeutic multidrug resistance mediated by ABCG2 efflux transporter in vitro and in vivo. Biochem. Pharmacol., 2014, 89(1), 52-61.
[http://dx.doi.org/10.1016/j.bcp.2014.02.012] [PMID: 24565910]
[564]
Touyz, R.M.; Herrmann, S.M.S.; Herrmann, J. Vascular toxicities with VEGF inhibitor therapies–focus on hypertension and arterial thrombotic events. J. Am. Soc. Hypertens., 2018, 12(6), 409-425.
[http://dx.doi.org/10.1016/j.jash.2018.03.008] [PMID: 29703600]
[565]
Ng, E.W.M.; Shima, D.T.; Calias, P.; Cunningham, E.T., Jr; Guyer, D.R.; Adamis, A.P. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat. Rev. Drug Discov., 2006, 5(2), 123-132.
[http://dx.doi.org/10.1038/nrd1955] [PMID: 16518379]
[566]
Cunningham, E.T., Jr; Shukla, D.; Namperumalsamy, P.; Goldbaum, M. Pegaptanib sodium for ocular vascular disease. Indian J. Ophthalmol., 2007, 55(6), 427-430.
[http://dx.doi.org/10.4103/0301-4738.36476] [PMID: 17951898]
[567]
Gragoudas, E.S.; Adamis, A.P.; Cunningham, E.T., Jr; Feinsod, M.; Guyer, D.R. Pegaptanib for neovascular age-related macular degener-ation. N. Engl. J. Med., 2004, 351(27), 2805-2816.
[http://dx.doi.org/10.1056/NEJMoa042760] [PMID: 15625332]
[568]
Chakravarthy, U.; Adamis, A.P.; Cunningham, E.T., Jr; Goldbaum, M.; Guyer, D.R.; Katz, B.; Patel, M. Year 2 efficacy results of 2 ran-domized controlled clinical trials of pegaptanib for neovascular age-related macular degeneration. Ophthalmology, 2006, 113(9), 1508.e1-1508.e25.
[PMID: 16828500]
[569]
Yang, J.; Wang, X.; Fuh, G.; Yu, L.; Wakshull, E.; Khosraviani, M.; Day, E.S.; Demeule, B.; Liu, J.; Shire, S.J.; Ferrara, N.; Yadav, S. Comparison of binding characteristics and in vitro activities of three inhibitors of vascular endothelial growth factor A. Mol. Pharm., 2014, 11(10), 3421-3430.
[http://dx.doi.org/10.1021/mp500160v] [PMID: 25162961]
[570]
Bellesoeur, A.; Carton, E.; Alexandre, J.; Goldwasser, F.; Huillard, O. Axitinib in the treatment of renal cell carcinoma: design, develop-ment, and place in therapy. Drug Des. Devel. Ther., 2017, 11, 2801-2811.
[http://dx.doi.org/10.2147/DDDT.S109640] [PMID: 29033542]
[571]
Cochin, V.; Gross-Goupil, M.; Ravaud, A.; Godbert, Y.; Le Moulec, S. Cabozantinib: modalités d’action, efficacité et indications. Bull. Cancer, 2017, 104(5), 393-401.
[http://dx.doi.org/10.1016/j.bulcan.2017.03.013] [PMID: 28477875]
[572]
Roskoski, R. Jr Vascular endothelial growth factor (VEGF) and VEGF receptor inhibitors in the treatment of renal cell carcinomas. Pharmacol. Res., 2017, 120, 116-132.
[http://dx.doi.org/10.1016/j.phrs.2017.03.010] [PMID: 28330784]
[573]
You, W.K.; Sennino, B.; Williamson, C.W.; Falcón, B.; Hashizume, H.; Yao, L.C.; Aftab, D.T.; McDonald, D.M. VEGF and c-Met block-ade amplify angiogenesis inhibition in pancreatic islet cancer. Cancer Res., 2011, 71(14), 4758-4768.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2527] [PMID: 21613405]
[574]
Morabito, A.; De Maio, E.; Di Maio, M.; Normanno, N.; Perrone, F. Tyrosine kinase inhibitors of vascular endothelial growth factor receptors in clinical trials: current status and future directions. Oncologist, 2006, 11(7), 753-764.
[http://dx.doi.org/10.1634/theoncologist.11-7-753] [PMID: 16880234]
[575]
Heymach, J.V.; Desai, J.; Manola, J.; Davis, D.W.; McConkey, D.J.; Harmon, D.; Ryan, D.P.; Goss, G.; Quigley, T.; Van den Abbeele, A.D.; Silverman, S.G.; Connors, S.; Folkman, J.; Fletcher, C.D.M.; Demetri, G.D. Phase II study of the antiangiogenic agent SU5416 in patients with advanced soft tissue sarcomas. Clin. Cancer Res., 2004, 10(17), 5732-5740.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-0157] [PMID: 15355900]
[576]
Kuenen, B.C.; Tabernero, J.; Baselga, J.; Cavalli, F.; Pfanner, E.; Conte, P.F.; Seeber, S.; Madhusudan, S.; Deplanque, G.; Huisman, H.; Scigalla, P.; Hoekman, K.; Harris, A.L. Efficacy and toxicity of the angiogenesis inhibitor SU5416 as a single agent in patients with ad-vanced renal cell carcinoma, melanoma, and soft tissue sarcoma. Clin. Cancer Res., 2003, 9(5), 1648-1655.
[PMID: 12738717]
[577]
Yamaguchi, T.; Kakefuda, R.; Tajima, N.; Sowa, Y.; Sakai, T. Antitumor activities of JTP-74057 (GSK1120212), a novel MEK1/2 inhibi-tor, on colorectal cancer cell lines in vitro and in vivo. Int. J. Oncol., 2011, 39(1), 23-31.
[PMID: 21523318]
[578]
Yamaguchi, T.; Kakefuda, R.; Tanimoto, A.; Watanabe, Y.; Tajima, N. Suppressive effect of an orally active MEK1/2 inhibitor in two different animal models for rheumatoid arthritis: A comparison with leflunomide. Inflamm. Res., 2012, 61(5), 445-454.
[http://dx.doi.org/10.1007/s00011-011-0431-5] [PMID: 22245957]
[579]
Infante, J.R.; Fecher, L.A.; Falchook, G.S.; Nallapareddy, S.; Gordon, M.S.; Becerra, C.; DeMarini, D.J.; Cox, D.S.; Xu, Y.; Morris, S.R.; Peddareddigari, V.G.R.; Le, N.T.; Hart, L.; Bendell, J.C.; Eckhardt, G.; Kurzrock, R.; Flaherty, K.; Burris, H.A., III; Messersmith, W.A. Safety, pharmacokinetic, pharmacodynamic, and efficacy data for the oral MEK inhibitor trametinib: A phase 1 dose-escalation trial. Lancet Oncol., 2012, 13(8), 773-781.
[http://dx.doi.org/10.1016/S1470-2045(12)70270-X] [PMID: 22805291]
[580]
Norman, M.H.; Liu, L.; Lee, M.; Xi, N.; Fellows, I.; D’Angelo, N.D.; Dominguez, C.; Rex, K.; Bellon, S.F.; Kim, T.S.; Dussault, I. Struc-ture-based design of novel class II c-Met inhibitors: 1. Identification of pyrazolone-based derivatives. J. Med. Chem., 2012, 55(5), 1858-1867.
[http://dx.doi.org/10.1021/jm201330u] [PMID: 22320343]
[581]
Bellon, S.F.; Kaplan-Lefko, P.; Yang, Y.; Zhang, Y.; Moriguchi, J.; Rex, K.; Johnson, C.W.; Rose, P.E.; Long, A.M.; O’Connor, A.B.; Gu, Y.; Coxon, A.; Kim, T.S.; Tasker, A.; Burgess, T.L.; Dussault, I. c-Met inhibitors with novel binding mode show activity against several hereditary papillary renal cell carcinoma-related mutations. J. Biol. Chem., 2008, 283(5), 2675-2683.
[http://dx.doi.org/10.1074/jbc.M705774200] [PMID: 18055465]
[582]
Kataoka, Y.; Mukohara, T.; Tomioka, H.; Funakoshi, Y.; Kiyota, N.; Fujiwara, Y.; Yashiro, M.; Hirakawa, K.; Hirai, M.; Minami, H. Foretinib (GSK1363089), a multi-kinase inhibitor of MET and VEGFRs, inhibits growth of gastric cancer cell lines by blocking inter-receptor tyrosine kinase networks. Invest. New Drugs, 2012, 30(4), 1352-1360.
[http://dx.doi.org/10.1007/s10637-011-9699-0] [PMID: 21655918]
[583]
Lee, J.; Chan, J.; Choo, S. Clinical development of c-MET inhibition in hepatocellular carcinoma. Diseases, 2015, 3(4), 306-324.
[http://dx.doi.org/10.3390/diseases3040306] [PMID: 28943627]
[584]
Ebrahim, H.Y.; Elsayed, H.E.; Mohyeldin, M.M.; Akl, M.R.; Bhattacharjee, J.; Egbert, S.; El Sayed, K.A. Norstictic acid inhibits breast cancer cell proliferation, migration, invasion, and in vivo invasive growth through targeting C‐Met. Phytother. Res., 2016, 30(4), 557-566.
[http://dx.doi.org/10.1002/ptr.5551] [PMID: 26744260]
[585]
Han, L.; Xu, D.; Xi, Z.; Wu, M.; Nik Nabil, W.N.; Zhang, J.; Sui, H.; Fu, W.; Zhou, H.; Lao, Y.; Xu, G.; Guo, C.; Xu, H. The natural compound oblongifolin c exhibits anticancer activity by inhibiting HSPA8 and cathepsin B in vitro. Front. Pharmacol., 2020, 11, 564833.
[http://dx.doi.org/10.3389/fphar.2020.564833] [PMID: 33390942]
[586]
Dhillon, S. Capmatinib: First Approval. Drugs, 2020, 80(11), 1125-1131.
[http://dx.doi.org/10.1007/s40265-020-01347-3] [PMID: 32557339]
[587]
Sohn, S.H.; Kim, B.; Sul, H.J.; Kim, Y.J.; Kim, H.S.; Kim, H.; Seo, J.B.; Koh, Y.; Zang, D.Y. INC280 inhibits Wnt/β-catenin and EMT signaling pathways and its induce apoptosis in diffuse gastric cancer positive for c-MET amplification. BMC Res. Notes, 2019, 12(1), 125.
[http://dx.doi.org/10.1186/s13104-019-4163-x] [PMID: 30871613]
[588]
Buchanan, S.G.; Hendle, J.; Lee, P.S.; Smith, C.R.; Bounaud, P.Y.; Jessen, K.A.; Tang, C.M.; Huser, N.H.; Felce, J.D.; Froning, K.J.; Pe-terman, M.C.; Aubol, B.E.; Gessert, S.F.; Sauder, J.M.; Schwinn, K.D.; Russell, M.; Rooney, I.A.; Adams, J.; Leon, B.C.; Do, T.H.; Blaney, J.M.; Sprengeler, P.A.; Thompson, D.A.; Smyth, L.; Pelletier, L.A.; Atwell, S.; Holme, K.; Wasserman, S.R.; Emtage, S.; Burley, S.K.; Reich, S.H. SGX523 is an exquisitely selective, ATP-competitive inhibitor of the MET receptor tyrosine kinase with antitumor ac-tivity in vivo. Mol. Cancer Ther., 2009, 8(12), 3181-3190.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0477] [PMID: 19934279]
[589]
Cui, J.J.; Tran-Dubé, M.; Shen, H.; Nambu, M.; Kung, P.P.; Pairish, M.; Jia, L.; Meng, J.; Funk, L.; Botrous, I.; McTigue, M.; Grodsky, N.; Ryan, K.; Padrique, E.; Alton, G.; Timofeevski, S.; Yamazaki, S.; Li, Q.; Zou, H.; Christensen, J.; Mroczkowski, B.; Bender, S.; Kania, R.S.; Edwards, M.P. Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchy-mal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J. Med. Chem., 2011, 54(18), 6342-6363.
[http://dx.doi.org/10.1021/jm2007613] [PMID: 21812414]
[590]
Miranda, O.; Farooqui, M.; Siegfried, J. Status of agents targeting the HGF/c-Met axis in lung cancer. Cancers (Basel), 2018, 10(9), 280.
[http://dx.doi.org/10.3390/cancers10090280] [PMID: 30134579]
[591]
Dorsch, D.; Schadt, O.; Stieber, F.; Meyring, M.; Grädler, U.; Bladt, F.; Friese-Hamim, M.; Knühl, C.; Pehl, U.; Blaukat, A. Identification and optimization of pyridazinones as potent and selective c-Met kinase inhibitors. Bioorg. Med. Chem. Lett., 2015, 25(7), 1597-1602.
[http://dx.doi.org/10.1016/j.bmcl.2015.02.002] [PMID: 25736998]
[592]
Cecchi, F.; Rabe, D.C.; Bottaro, D.P. Targeting the HGF/Met signaling pathway in cancer therapy. Expert Opin. Ther. Targets, 2012, 16(6), 553-572.
[http://dx.doi.org/10.1517/14728222.2012.680957] [PMID: 22530990]
[593]
Demkova, L.; Kucerova, L. Role of the HGF/c-MET tyrosine kinase inhibitors in metastasic melanoma. Mol. Cancer, 2018, 17(1), 26.
[http://dx.doi.org/10.1186/s12943-018-0795-z] [PMID: 29455657]
[594]
Padmavathi, G.; Roy, N.K.; Bordoloi, D.; Arfuso, F.; Mishra, S.; Sethi, G.; Bishayee, A.; Kunnumakkara, A.B. Butein in health and dis-ease: A comprehensive review. Phytomedicine, 2017, 25, 118-127.
[http://dx.doi.org/10.1016/j.phymed.2016.12.002] [PMID: 28190465]
[595]
Yang, E.B.; Zhang, K.; Cheng, L.Y.; Mack, P. Butein, a specific protein tyrosine kinase inhibitor. Biochem. Biophys. Res. Commun., 1998, 245(2), 435-438.
[http://dx.doi.org/10.1006/bbrc.1998.8452] [PMID: 9571170]
[596]
Mehta, R.; Katta, H.; Alimirah, F.; Patel, R.; Murillo, G.; Peng, X.; Muzzio, M.; Mehta, R.G. Deguelin action involves c-Met and EGFR signaling pathways in triple negative breast cancer cells. PLoS One, 2013, 8(6), e65113.
[http://dx.doi.org/10.1371/journal.pone.0065113] [PMID: 23762292]
[597]
About NCATS Inxight Drugs. Available from: https://drugs.ncats.io/
[598]
Upadhya, A.; Yadav, K.S.; Misra, A. Targeted drug therapy in non-small cell lung cancer: Clinical significance and possible solutions-Part I. Expert Opin. Drug Deliv., 2021, 18(1), 73-102.
[http://dx.doi.org/10.1080/17425247.2021.1825377] [PMID: 32954834]
[599]
Lee, N.Y.; Hazlett, T.L.; Koland, J.G. Structure and dynamics of the epidermal growth factor receptor C‐terminal phosphorylation do-main. Protein Sci., 2006, 15(5), 1142-1152.
[http://dx.doi.org/10.1110/ps.052045306] [PMID: 16597832]
[600]
Commander, H.; Whiteside, G.; Perry, C. Vandetanib. Drugs, 2011, 71(10), 1355-1365.
[http://dx.doi.org/10.2165/11595310-000000000-00000] [PMID: 21770481]
[601]
Zhang, C.; Leighl, N.B.; Wu, Y.L.; Zhong, W.Z. Emerging therapies for non-small cell lung cancer. J. Hematol. Oncol., 2019, 12(1), 45.
[http://dx.doi.org/10.1186/s13045-019-0731-8] [PMID: 31023335]
[602]
Chau, N.G.; Haddad, R.I. Vandetanib for the treatment of medullary thyroid cancer. Clin. Cancer Res., 2013, 19(3), 524-529.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-2353] [PMID: 23231950]
[603]
Knowles, P.P.; Murray-Rust, J.; Kjær, S.; Scott, R.P.; Hanrahan, S.; Santoro, M.; Ibáñez, C.F.; McDonald, N.Q. Structure and chemical inhibition of the RET tyrosine kinase domain. J. Biol. Chem., 2006, 281(44), 33577-33587.
[http://dx.doi.org/10.1074/jbc.M605604200] [PMID: 16928683]
[604]
Martin-Fernandez, M.L.; Clarke, D.T.; Roberts, S.K.; Zanetti-Domingues, L.C.; Gervasio, F.L. Structure and Dynamics of the EGF Re-ceptor as Revealed by Experiments and Simulations and Its Relevance to Non-Small Cell Lung. Cancer Cells, 2019, 8(4), 316.
[http://dx.doi.org/10.3390/cells8040316] [PMID: 30959819]
[605]
Abourehab, M.A.S.; Alqahtani, A.M.; Youssif, B.G.M.; Gouda, A.M. Globally Approved EGFR Inhibitors: Insights into Their Synthe-ses, Target Kinases, Biological Activities, Receptor Interactions, and Metabolism. Molecules, 2021, 26(21), 6677.
[http://dx.doi.org/10.3390/molecules26216677] [PMID: 34771085]
[606]
Wedge, S.R.; Ogilvie, D.J.; Dukes, M.; Kendrew, J.; Chester, R.; Jackson, J.A.; Boffey, S.J.; Valentine, P.J.; Curwen, J.O.; Musgrove, H.L.; Graham, G.A.; Hughes, G.D.; Thomas, A.P.; Stokes, E.S.; Curry, B.; Richmond, G.H.; Wadsworth, P.F.; Bigley, A.L.; Hennequin, L.F. ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res., 2002, 62(16), 4645-4655.
[PMID: 12183421]
[607]
Hegedüs, C.; Truta-Feles, K.; Antalffy, G.; Várady, G.; Német, K.; Özvegy-Laczka, C.; Kéri, G.; Őrfi, L.; Szakács, G.; Settleman, J.; Váradi, A.; Sarkadi, B. Interaction of the EGFR inhibitors gefitinib, vandetanib, pelitinib and neratinib with the ABCG2 multidrug trans-porter: Implications for the emergence and reversal of cancer drug resistance. Biochem. Pharmacol., 2012, 84(3), 260-267.
[http://dx.doi.org/10.1016/j.bcp.2012.04.010] [PMID: 22548830]
[608]
Guérin, O.; Etienne-Grimaldi, M.C.; Monteverde, M.; Sudaka, A.; Brunstein, M.C.; Formento, P.; Lattanzio, L.; Maffi, M.; Tonissi, F.; Ortholan, C.; Pagès, G.; Fischel, J.L.; Lo Nigro, C.; Merlano, M.; Milano, G. Contrasted effects of the multitarget TKi vandetanib on docetaxel-sensitive and docetaxel-resistant prostate cancer cell lines. Urol. Oncol., 2013, 31(8), 1567-1575.
[http://dx.doi.org/10.1016/j.urolonc.2012.03.003] [PMID: 22608542]
[609]
Inoue, K.; Torimura, T.; Nakamura, T.; Iwamoto, H.; Masuda, H.; Abe, M.; Hashimoto, O.; Koga, H.; Ueno, T.; Yano, H.; Sata, M. Vandetanib, an inhibitor of VEGF receptor-2 and EGF receptor, suppresses tumor development and improves prognosis of liver cancer in mice. Clin. Cancer Res., 2012, 18(14), 3924-3933.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2041] [PMID: 22611027]
[610]
Ciardiello, F.; Caputo, R.; Damiano, V.; Caputo, R.; Troiani, T.; Vitagliano, D.; Carlomagno, F.; Veneziani, B.M.; Fontanini, G.; Bianco, A.R.; Tortora, G. Antitumor effects of ZD6474, a small molecule vascular endothelial growth factor receptor tyrosine kinase inhibitor, with additional activity against epidermal growth factor receptor tyrosine kinase. Clin. Cancer Res., 2003, 9(4), 1546-1556.
[PMID: 12684431]
[612]
Bates, D. Current opinion in investigational drugs. Astra Zeneca., 2003, 4(12), 1468-1472.
[613]
Ton, G.N.; Banaszynski, M.E.; Kolesar, J.M. Vandetanib: A novel targeted therapy for the treatment of metastatic or locally advanced medullary thyroid cancer. Am. J. Health Syst. Pharm., 2013, 70(10), 849-855.
[http://dx.doi.org/10.2146/ajhp120253] [PMID: 23640345]
[614]
Capozzi, M.; De Divitiis, C.; Ottaiano, A.; von Arx, C.; Scala, S.; Tatangelo, F.; Delrio, P.; Tafuto, S. Lenvatinib, a molecule with versatile application: from preclinical evidence to future development in anti-cancer treatment. Cancer Manag. Res., 2019, 11, 3847-3860.
[http://dx.doi.org/10.2147/CMAR.S188316] [PMID: 31118801]
[615]
Glen, H.; Mason, S.; Patel, H.; Macleod, K.; Brunton, V.G. E7080, a multi-targeted tyrosine kinase inhibitor suppresses tumor cell migra-tion and invasion. BMC Cancer, 2011, 11(1), 309.
[http://dx.doi.org/10.1186/1471-2407-11-309] [PMID: 21781317]
[616]
Matsui, J.; Funahashi, Y.; Uenaka, T.; Watanabe, T.; Tsuruoka, A.; Asada, M. Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase. Clin. Cancer Res., 2008, 14(17), 5459-5465.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-5270] [PMID: 18765537]
[617]
Nishio, M.; Horai, T.; Horiike, A.; Nokihara, H.; Yamamoto, N.; Takahashi, T.; Murakami, H.; Yamamoto, N.; Koizumi, F.; Nishio, K.; Yusa, W.; Koyama, N.; Tamura, T. Phase 1 study of lenvatinib combined with carboplatin and paclitaxel in patients with non-small-cell lung cancer. Br. J. Cancer, 2013, 109(3), 538-544.
[http://dx.doi.org/10.1038/bjc.2013.374] [PMID: 23860537]
[618]
Okamoto, K.; Ikemori-Kawada, M.; Jestel, A.; von König, K.; Funahashi, Y.; Matsushima, T.; Tsuruoka, A.; Inoue, A.; Matsui, J. Dis-tinct binding mode of multikinase inhibitor lenvatinib revealed by biochemical characterization. ACS Med. Chem. Lett., 2015, 6(1), 89-94.
[http://dx.doi.org/10.1021/ml500394m] [PMID: 25589937]
[619]
Ogasawara, S.; Mihara, Y.; Kondo, R.; Kusano, H.; Akiba, J.; Yano, H. Antiproliferative effect of lenvatinib on human liver cancer cell lines in vitro and in vivo. Anticancer Res., 2019, 39(11), 5973-5982.
[http://dx.doi.org/10.21873/anticanres.13802] [PMID: 31704822]
[620]
Nair, A.; Reece, K.; Donoghue, M.B.; Yuan, W.V.; Rodriguez, L.; Keegan, P.; Pazdur, R. FDA supplemental approval summary: len-vatinib for the treatment of unresectablehepatocellularcarcinoma. Oncologist, 2021, 26(3), e484-e491.
[http://dx.doi.org/10.1002/onco.13566] [PMID: 33044793]
[621]
Matsui, J.; Yamamoto, Y.; Funahashi, Y.; Tsuruoka, A.; Watanabe, T.; Wakabayashi, T.; Uenaka, T.; Asada, M. E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition. Int. J. Cancer, 2008, 122(3), 664-671.
[http://dx.doi.org/10.1002/ijc.23131] [PMID: 17943726]
[622]
Roth, G.J.; Binder, R.; Colbatzky, F.; Dallinger, C.; Schlenker-Herceg, R.; Hilberg, F.; Wollin, S.L.; Kaiser, R. Nintedanib: from discovery to the clinic. J. Med. Chem., 2015, 58(3), 1053-1063.
[http://dx.doi.org/10.1021/jm501562a] [PMID: 25474320]
[623]
Wollin, L.; Wex, E.; Pautsch, A.; Schnapp, G.; Hostettler, K.E.; Stowasser, S.; Kolb, M. Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis. Eur. Respir. J., 2015, 45(5), 1434-1445.
[http://dx.doi.org/10.1183/09031936.00174914] [PMID: 25745043]
[624]
Hilberg, F.; Roth, G.J.; Krssak, M.; Kautschitsch, S.; Sommergruber, W.; Tontsch-Grunt, U.; Garin-Chesa, P.; Bader, G.; Zoephel, A.; Quant, J.; Heckel, A.; Rettig, W.J. BIBF 1120: triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy. Cancer Res., 2008, 68(12), 4774-4782.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6307] [PMID: 18559524]
[625]
Nintedanib. 2004. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Nintedanib
[626]
EMA. Available from: www.ema.europa.eu
[627]
Reck, M.; Kaiser, R.; Mellemgaard, A.; Douillard, J.Y.; Orlov, S.; Krzakowski, M.; von Pawel, J.; Gottfried, M.; Bondarenko, I.; Liao, M.; Gann, C.N.; Barrueco, J.; Gaschler-Markefski, B.; Novello, S. Docetaxel plus nintedanib Versus docetaxel plus placebo in patients with previously treated non-small-cell lung cancer (LUME-Lung 1): A phase 3, double-blind, randomised controlled trial. Lancet Oncol., 2014, 15(2), 143-155.
[http://dx.doi.org/10.1016/S1470-2045(13)70586-2] [PMID: 24411639]
[628]
Terzyan, S.S.; Shen, T.; Liu, X.; Huang, Q.; Teng, P.; Zhou, M.; Hilberg, F.; Cai, J.; Mooers, B.H.M.; Wu, J. Structural basis of resistance of mutant RET protein-tyrosine kinase to its inhibitors nintedanib and vandetanib. J. Biol. Chem., 2019, 294(27), 10428-10437.
[http://dx.doi.org/10.1074/jbc.RA119.007682] [PMID: 31118272]
[629]
Wollin, L.; Maillet, I.; Quesniaux, V.; Holweg, A.; Ryffel, B. Antifibrotic and anti-inflammatory activity of the tyrosine kinase inhibitor nintedanib in experimental models of lung fibrosis. J. Pharmacol. Exp. Ther., 2014, 349(2), 209-220.
[http://dx.doi.org/10.1124/jpet.113.208223] [PMID: 24556663]
[630]
Ofev FDA Approval History 2021. Available from: https://www.drugs.com/history/ofev.html
[631]
Fukihara, J.; Kondoh, Y. Nintedanib (OFEV) in the treatment of idiopathic pulmonary fibrosis. Expert Rev. Respir. Med., 2016, 10(12), 1247-1254.
[http://dx.doi.org/10.1080/17476348.2016.1249854] [PMID: 27744713]
[632]
Noth, I.; Oelberg, D.; Kaul, M.; Conoscenti, C.S.; Raghu, G. Safety and tolerability of nintedanib in patients with IPF in the United States. Eur. Respir. J., 2018.
[http://dx.doi.org/10.1183/13993003.02106-2017] [PMID: 29794129]
[633]
Harris, P.A.; Boloor, A.; Cheung, M.; Kumar, R.; Crosby, R.M.; Davis-Ward, R.G.; Epperly, A.H.; Hinkle, K.W.; Hunter, R.N., III; John-son, J.H.; Knick, V.B.; Laudeman, C.P.; Luttrell, D.K.; Mook, R.A.; Nolte, R.T.; Rudolph, S.K.; Szewczyk, J.R.; Truesdale, A.T.; Veal, J.M.; Wang, L.; Stafford, J.A. Discovery of 5-[[4-[(2,3-dimethyl-2H-indazol-6-yl)methylamino]-2-pyrimidinyl]amino]-2-methyl-benzenesulfonamide (Pazopanib), a novel and potent vascular endothelial growth factor receptor inhibitor. J. Med. Chem., 2008, 51(15), 4632-4640.
[http://dx.doi.org/10.1021/jm800566m] [PMID: 18620382]
[634]
Miller, K.D. E2100: A phase III trial of paclitaxel Versus paclitaxel/bevacizumab for metastatic breast cancer. Clin. Breast Cancer, 2003, 3(6), 421-422.
[http://dx.doi.org/10.3816/CBC.2003.n.007] [PMID: 12636887]
[635]
McTigue, M.; Murray, B.W.; Chen, J.H.; Deng, Y.L.; Solowiej, J.; Kania, R.S. Molecular conformations, interactions, and properties as-sociated with drug efficiency and clinical performance among VEGFR TK inhibitors. Proc. Natl. Acad. Sci. USA, 2012, 109(45), 18281-18289.
[http://dx.doi.org/10.1073/pnas.1207759109] [PMID: 22988103]
[636]
Hosaka, S.; Horiuchi, K.; Yoda, M.; Nakayama, R.; Tohmonda, T.; Susa, M.; Nakamura, M.; Chiba, K.; Toyama, Y.; Morioka, H. A novel multi‐kinase inhibitor pazopanib suppresses growth of synovial sarcoma cells through inhibition of the PI3K‐AKT pathway. J. Orthop. Res., 2012, 30(9), 1493-1498.
[http://dx.doi.org/10.1002/jor.22091] [PMID: 22359392]
[637]
Kernt, M.; Thiele, S.; Neubauer, A.S.; Koenig, S.; Hirneiss, C.; Haritoglou, C.; Ulbig, M.W.; Kampik, A. Inhibitory activity of ranibi-zumab, sorafenib, and pazopanib on light-induced overexpression of platelet-derived growth factor and vascular endothelial growth fac-tor A and the vascular endothelial growth factor A receptors 1 and 2 and neuropilin 1 and 2. Retina, 2012, 32(8), 1652-1663.
[http://dx.doi.org/10.1097/IAE.0b013e318240a558] [PMID: 22466477]
[638]
Sternberg, C.N.; Hawkins, R.E.; Wagstaff, J.; Salman, P.; Mardiak, J.; Barrios, C.H.; Zarba, J.J.; Gladkov, O.A.; Lee, E.; Szczylik, C.; McCann, L.; Rubin, S.D.; Chen, M.; Davis, I.D. A randomised, double-blind phase III study of pazopanib in patients with advanced and/or metastatic renal cell carcinoma: Final overall survival results and safety update. Eur. J. Cancer, 2013, 49(6), 1287-1296.
[http://dx.doi.org/10.1016/j.ejca.2012.12.010] [PMID: 23321547]
[639]
Hutson, T.E.; Davis, I.D.; Machiels, J.P.H.; De Souza, P.L.; Rottey, S.; Hong, B.; Epstein, R.J.; Baker, K.L.; McCann, L.; Crofts, T.; Pan-dite, L.; Figlin, R.A. Efficacy and safety of pazopanib in patients with metastatic renal cell carcinoma. J. Clin. Oncol., 2010, 28(3), 475-480.
[http://dx.doi.org/10.1200/JCO.2008.21.6994] [PMID: 20008644]
[640]
Bukowski, R.M.; Yasothan, U.; Kirkpatrick, P. Pazopanib. Nat. Rev. Drug Discov., 2010, 9(1), 17-18.
[http://dx.doi.org/10.1038/nrd3073] [PMID: 20043026]
[641]
Cella, D.; Beaumont, J.L. Pazopanib in the treatment of advanced renal cell carcinoma. Ther. Adv. Urol., 2016, 8(1), 61-69.
[http://dx.doi.org/10.1177/1756287215614236] [PMID: 26834841]
[642]
Rossari, F.; Minutolo, F.; Orciuolo, E. Past, present, and future of Bcr-Abl inhibitors: from chemical development to clinical efficacy. J. Hematol. Oncol., 2018, 11(1), 84.
[http://dx.doi.org/10.1186/s13045-018-0624-2] [PMID: 29925402]
[643]
Zhou, T.; Commodore, L.; Huang, W.S.; Wang, Y.; Thomas, M.; Keats, J.; Xu, Q.; Rivera, V.M.; Shakespeare, W.C.; Clackson, T.; Dal-garno, D.C.; Zhu, X. Structural mechanism of the Pan-BCR-ABL inhibitor ponatinib (AP24534): lessons for overcoming kinase inhibitor resistance. Chem. Biol. Drug Des., 2011, 77(1), 1-11.
[http://dx.doi.org/10.1111/j.1747-0285.2010.01054.x] [PMID: 21118377]
[644]
O’Hare, T.; Shakespeare, W.C.; Zhu, X.; Eide, C.A.; Rivera, V.M.; Wang, F.; Adrian, L.T.; Zhou, T.; Huang, W.S.; Xu, Q.; Metcalf, C.A., III; Tyner, J.W.; Loriaux, M.M.; Corbin, A.S.; Wardwell, S.; Ning, Y.; Keats, J.A.; Wang, Y.; Sundaramoorthi, R.; Thomas, M.; Zhou, D.; Snodgrass, J.; Commodore, L.; Sawyer, T.K.; Dalgarno, D.C.; Deininger, M.W.N.; Druker, B.J.; Clackson, T. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell, 2009, 16(5), 401-412.
[http://dx.doi.org/10.1016/j.ccr.2009.09.028] [PMID: 19878872]
[645]
Gozgit, J.M.; Wong, M.J.; Wardwell, S.; Tyner, J.W.; Loriaux, M.M.; Mohemmad, Q.K.; Narasimhan, N.I.; Shakespeare, W.C.; Wang, F.; Druker, B.J.; Clackson, T.; Rivera, V.M. Potent activity of ponatinib (AP24534) in models of FLT3-driven acute myeloid leukemia and other hematologic malignancies. Mol. Cancer Ther., 2011, 10(6), 1028-1035.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-1044] [PMID: 21482694]
[646]
Jain, P.; Kantarjian, H.; Jabbour, E.; Gonzalez, G.N.; Borthakur, G.; Pemmaraju, N.; Daver, N.; Gachimova, E.; Ferrajoli, A.; Kornblau, S.; Ravandi, F.; O’Brien, S.; Cortes, J. Ponatinib as first-line treatment for patients with chronic myeloid leukaemia in chronic phase: A phase 2 study. Lancet Haematol., 2015, 2(9), e376-e383.
[http://dx.doi.org/10.1016/S2352-3026(15)00127-1] [PMID: 26436130]
[647]
Cortes, J.E.; Kim, D.W.; Pinilla-Ibarz, J.; le Coutre, P.; Paquette, R.; Chuah, C.; Nicolini, F.E.; Apperley, J.F.; Khoury, H.J.; Talpaz, M.; DiPersio, J.; DeAngelo, D.J.; Abruzzese, E.; Rea, D.; Baccarani, M.; Müller, M.C.; Gambacorti-Passerini, C.; Wong, S.; Lustgarten, S.; Ri-vera, V.M.; Clackson, T.; Turner, C.D.; Haluska, F.G.; Guilhot, F.; Deininger, M.W.; Hochhaus, A.; Hughes, T.; Goldman, J.M.; Shah, N.P.; Kantarjian, H. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N. Engl. J. Med., 2013, 369(19), 1783-1796.
[http://dx.doi.org/10.1056/NEJMoa1306494] [PMID: 24180494]
[648]
Sanford, D.; Kantarjian, H.; Skinner, J.; Jabbour, E.; Cortes, J.; Phase, I.I. Phase II trial of ponatinib in patients with chronic myeloid leukemia resistant to one previous tyrosine kinase inhibitor. Haematologica, 2015, 100(12), e494-e495.
[http://dx.doi.org/10.3324/haematol.2015.132845] [PMID: 26341741]
[649]
Lipton, J.H.; Chuah, C.; Guerci-Bresler, A.; Rosti, G.; Simpson, D.; Assouline, S.; Etienne, G.; Nicolini, F.E.; le Coutre, P.; Clark, R.E.; Stenke, L.; Andorsky, D.; Oehler, V.; Lustgarten, S.; Rivera, V.M.; Clackson, T.; Haluska, F.G.; Baccarani, M.; Cortes, J.E.; Guilhot, F.; Hochhaus, A.; Hughes, T.; Kantarjian, H.M.; Shah, N.P.; Talpaz, M.; Deininger, M.W. Ponatinib Versus imatinib for newly diagnosed chronic myeloid leukaemia: An international, randomised, open-label, phase 3 trial. Lancet Oncol., 2016, 17(5), 612-621.
[http://dx.doi.org/10.1016/S1470-2045(16)00080-2] [PMID: 27083332]
[650]
Ponatinib for Chronic Myeloid Leukemia (CML) Evaluation and Ph+ Acute Lymphoblastic Leukemia (ALL) (PACE). NCT01207440, 2021.
[651]
Pulte, E.D.; Chen, H.; Price, L.S.L.; Gudi, R.; Li, H.; Okusanya, O.O.; Ma, L.; Rodriguez, L.; Vallejo, J.; Norsworthy, K.J.; de Claro, R.A.; Theoret, M.R.; Pazdur, R. FDA Approval Summary: Revised Indication and Dosing Regimen for Ponatinib Based on the Results of the OPTIC Trial. Oncologist, 2022, 27(2), 149-157.
[http://dx.doi.org/10.1093/oncolo/oyab040] [PMID: 35641211]
[652]
Fisher, C.J.; Lejeune, A.T.; Dark, M.J.; Hernandez, O.M.; Shiomitsu, K. Evaluation of ponatinib in vitro effect in three canine mast cell tumor cell lines expressing FGFR-1, PDGFR-α, and VEGFR-2. Vet. J., 2021, 269, 105621.
[http://dx.doi.org/10.1016/j.tvjl.2021.105621] [PMID: 33593493]
[653]
Reddy, E.P.; Aggarwal, A.K. The ins and outs of bcr-abl inhibition. Genes Cancer, 2012, 3(5-6), 447-454.
[http://dx.doi.org/10.1177/1947601912462126] [PMID: 23226582]
[654]
Cortes, J.; Apperley, J.; Lomaia, E.; Moiraghi, B. Undurraga, Sutton, M.; Pavlovsky,C.; Chuah, C.; Sacha, T.; Lipton, J.H.; Schiffer, C.A.; McCloskey, J. Ponatinib dose-ranging study in chronic-phase chronic myeloid leukemia: A randomized, open-labelphase2 clinical trial. Blood, 2021, 138(21), 2042-2050.
[http://dx.doi.org/10.1182/blood.2021012082] [PMID: 34407543]
[655]
Gyawali, B.; Prasad, V. Me-too drugs with limited benefits — the tale of regorafenib for HCC. Nat. Rev. Clin. Oncol., 2017, 14(11), 653-654.
[http://dx.doi.org/10.1038/nrclinonc.2017.100] [PMID: 28719584]
[656]
Wilhelm, S.M.; Dumas, J.; Adnane, L.; Lynch, M.; Carter, C.A.; Schütz, G.; Thierauch, K.H.; Zopf, D. Regorafenib (BAY 73‐4506): A new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int. J. Cancer, 2011, 129(1), 245-255.
[http://dx.doi.org/10.1002/ijc.25864] [PMID: 21170960]
[657]
Carr, B.I.; Cavallini, A.; Lippolis, C.; D’Alessandro, R.; Messa, C.; Refolo, M.G.; Tafaro, A. Fluoro-Sorafenib (Regorafenib) effects on hepatoma cells: Growth inhibition, quiescence, and recovery. J. Cell. Physiol., 2013, 228(2), 292-297.
[http://dx.doi.org/10.1002/jcp.24148] [PMID: 22777740]
[658]
Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.L.; Forner, A.; Schwartz, M.; Porta, C.; Zeuzem, S.; Bolondi, L.; Greten, T.F.; Galle, P.R.; Seitz, J.F.; Borbath, I.; Häussinger, D.; Giannaris, T.; Shan, M.; Mosco-vici, M.; Voliotis, D.; Bruix, J. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med., 2008, 359(4), 378-390.
[http://dx.doi.org/10.1056/NEJMoa0708857] [PMID: 18650514]
[659]
Bruix, J.; Qin, S.; Merle, P.; Granito, A.; Huang, Y.H.; Bodoky, G.; Pracht, M.; Yokosuka, O.; Rosmorduc, O.; Breder, V.; Gerolami, R.; Masi, G.; Ross, P.J.; Song, T.; Bronowicki, J.P.; Ollivier-Hourmand, I.; Kudo, M.; Cheng, A.L.; Llovet, J.M.; Finn, R.S.; LeBerre, M.A.; Baumhauer, A.; Meinhardt, G.; Han, G. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet, 2017, 389(10064), 56-66.
[http://dx.doi.org/10.1016/S0140-6736(16)32453-9] [PMID: 27932229]
[660]
Schmieder, R.; Hoffmann, J.; Becker, M.; Bhargava, A.; Müller, T.; Kahmann, N.; Ellinghaus, P.; Adams, R.; Rosenthal, A.; Thierauch, K.H.; Scholz, A.; Wilhelm, S.M.; Zopf, D. Regorafenib (BAY 73‐4506): Antitumor and antimetastatic activities in preclinical models of colorectal cancer. Int. J. Cancer, 2014, 135(6), 1487-1496.
[http://dx.doi.org/10.1002/ijc.28669] [PMID: 24347491]
[661]
Grothey, A.; George, S.; van Cutsem, E.; Blay, J.Y.; Sobrero, A.; Demetri, G.D. Optimizing treatment outcomes with regorafenib: person-alized dosing and other strategies to support patient care. Oncologist, 2014, 19(6), 669-680.
[http://dx.doi.org/10.1634/theoncologist.2013-0059] [PMID: 24821824]
[662]
Eso, Y.; Marusawa, H. Novel approaches for molecular targeted therapy against hepatocellular carcinoma. Hepatol. Res., 2018, 48(8), 597-607.
[http://dx.doi.org/10.1111/hepr.13181] [PMID: 29689631]
[664]
Li, Y.; He, X.; Olauson, H.; Larsson, T.E.; Lindgren, U. FGF23 affects the lineage fate determination of mesenchymal stem cells. Calcif. Tissue Int., 2013, 93(6), 556-564.
[http://dx.doi.org/10.1007/s00223-013-9795-6] [PMID: 24068282]
[665]
Paterson, J.L.; Li, Z.; Wen, X.Y.; Masih-Khan, E.; Chang, H.; Pollett, J.B.; Trudel, S.; Stewart, A.K. Preclinical studies of fibroblast growth factor receptor 3 as a therapeutic target in multiple myeloma. Br. J. Haematol., 2004, 124(5), 595-603.
[http://dx.doi.org/10.1111/j.1365-2141.2004.04814.x] [PMID: 14871245]
[666]
Fong, T.A.; Shawver, L.K.; Sun, L.; Tang, C.; App, H.; Powell, T.J.; Kim, Y.H.; Schreck, R.; Wang, X.; Risau, W.; Ullrich, A.; Hirth, K.P.; McMahon, G. SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits ty-rosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res., 1999, 59(1), 99-106.
[PMID: 9892193]
[667]
Lo, A.K.F.; Dawson, C.W.; Young, L.S.; Ko, C.W.; Hau, P.M.; Lo, K.W. Activation of the FGFR1 signalling pathway by the Epstein–Barr virus‐encoded LMP1 promotes aerobic glycolysis and transformation of human nasopharyngeal epithelial cells. J. Pathol., 2015, 237(2), 238-248.
[http://dx.doi.org/10.1002/path.4575] [PMID: 26096068]
[668]
Liu, R.; Meng, Y.; Zhu, M.; Zhai, H.; Lv, W.; Wen, T.; Jin, N. Study on novel PtNP–sorafenib and its interaction with VEGFR2. J. Biochem., 2021, 170(3), 411-417.
[http://dx.doi.org/10.1093/jb/mvab053] [PMID: 33944931]
[669]
Gao, L.; Morine, Y.; Yamada, S.; Saito, Y.; Ikemoto, T.; Tokuda, K.; Takasu, C.; Miyazaki, K.; Shimada, M. Nrf2 signaling promotes cancer stemness, migration, and expression of ABC transporter genes in sorafenib-resistant hepatocellular carcinoma cells. PLoS One, 2021, 16(9), e0256755.
[http://dx.doi.org/10.1371/journal.pone.0256755] [PMID: 34473785]
[670]
Simard, J.R.; Getlik, M.; Grütter, C.; Pawar, V.; Wulfert, S.; Rabiller, M.; Rauh, D. Development of a fluorescent-tagged kinase assay system for the detection and characterization of allosteric kinase inhibitors. J. Am. Chem. Soc., 2009, 131(37), 13286-13296.
[http://dx.doi.org/10.1021/ja902010p] [PMID: 19572644]
[671]
Chang, Y.S.; Su, C.W.; Chen, S.C.; Chen, Y.Y.; Liang, Y.J.; Wu, J.C. Upregulation ofUSP22 and ABCC1 during sorafenib treatment of hepatocellular carcinoma contributetodevelopment of resistance. Cells, 2022, 11(4), 634.
[http://dx.doi.org/10.3390/cells11040634] [PMID: 35203285]
[672]
Zhu, Y.; Zheng, B.; Wang, H.; Chen, L. New knowledge of the mechanisms of sorafenib resistance in liver cancer. Acta Pharmacol. Sin., 2017, 38(5), 614-622.
[http://dx.doi.org/10.1038/aps.2017.5] [PMID: 28344323]
[673]
Brown, T.J.; Gupta, A.; Sedhom, R.; Karasic, T.B.; Yarchoan, M. Trends of clinical outcomes with sorafenib in randomized controlled trials for patients with treatment-naïve advanced hepatocellular carcinoma. J. Clin. Oncol., 2021, 39(3)(Suppl.), 327-327.
[http://dx.doi.org/10.1200/JCO.2021.39.3_suppl.327]
[674]
Kamba, T.; McDonald, D.M. Mechanisms of adverse effects of anti-VEGF therapy for cancer. Br. J. Cancer, 2007, 96(12), 1788-1795.
[http://dx.doi.org/10.1038/sj.bjc.6603813] [PMID: 17519900]
[675]
Nakamura, K.; Taguchi, E.; Miura, T.; Yamamoto, A.; Takahashi, K.; Bichat, F.; Guilbaud, N.; Hasegawa, K.; Kubo, K.; Fujiwara, Y.; Suzuki, R.; Kubo, K.; Shibuya, M.; Isae, T. KRN951, a highly potent inhibitor of vascular endothelial growth factor receptor tyrosine ki-nases, has antitumor activities and affects functional vascular properties. Cancer Res., 2006, 66(18), 9134-9142.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4290] [PMID: 16982756]
[676]
Salgia, N.J.; Zengin, Z.B.; Pal, S.K. Tivozanib in renal cell carcinoma: A new approach to previously treated disease. Ther. Adv. Med. Oncol., 2020, 12.
[http://dx.doi.org/10.1177/1758835920923818] [PMID: 32547647]
[677]
Hepgur, M.; Sadeghi, S.; Dorff, T.B.; Quinn, D.I. Tivozanib in the treatment of renalcell scarcinoma. Biologics, 2013, 139-148.
[PMID: 23788831]
[679]
Jacob, A.; Shook, J.; Hutson, T.E. Tivozanib, a highly potent and selective inhibitor of VEGF receptor tyrosine kinases, for the treatment of metastatic renal cell carcinoma. Future Oncol., 2020, 16(28), 2147-2164.
[http://dx.doi.org/10.2217/fon-2020-0443] [PMID: 32692256]
[680]
Mulet-Margalef, N.; Garcia del Muro, X. Sunitinib in the treatment of gastrointestinal stromal tumor: patient selection and perspectives. OncoTargets Ther., 2016, 9, 7573-7582.
[http://dx.doi.org/10.2147/OTT.S101385] [PMID: 28008275]
[681]
Zhang, J.; Yang, P.L.; Gray, N.S. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer, 2009, 9(1), 28-39.
[http://dx.doi.org/10.1038/nrc2559] [PMID: 19104514]
[682]
Sramek, M.; Neradil, J.; Macigova, P.; Mudry, P.; Polaskova, K.; Slaby, O.; Noskova, H.; Sterba, J.; Veselska, R. Effects of sunitinib and other kinase inhibitors on cellsharboring a PDGFRB mutation associated with infantile myofibromatosis. Int. J. Mol. Sci., 2018, 19(9), 2599.
[http://dx.doi.org/10.3390/ijms19092599] [PMID: 30200486]
[683]
Faivre, S.; Demetri, G.; Sargent, W.; Raymond, E. Molecular basis for sunitinib efficacy and future clinical development. Nat. Rev. Drug Discov., 2007, 6(9), 734-745.
[http://dx.doi.org/10.1038/nrd2380] [PMID: 17690708]
[684]
Abouantoun, T.J.; Castellino, R.C.; MacDonald, T.J. Sunitinib induces PTEN expression and inhibits PDGFR signaling and migration of medulloblastoma cells. J. Neurooncol., 2011, 101(2), 215-226.
[http://dx.doi.org/10.1007/s11060-010-0259-9] [PMID: 20524040]
[685]
Mendel, D.B.; Laird, A.D.; Xin, X.; Louie, S.G.; Christensen, J.G.; Li, G.; Schreck, R.E.; Abrams, T.J.; Ngai, T.J.; Lee, L.B.; Murray, L.J.; Carver, J.; Chan, E.; Moss, K.G.; Haznedar, J.O.; Sukbuntherng, J.; Blake, R.A.; Sun, L.; Tang, C.; Miller, T.; Shirazian, S.; McMahon, G.; Cherrington, J.M. in vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin. Cancer Res., 2003, 9(1), 327-337.
[PMID: 12538485]
[686]
George, S.; Merriam, P.; Maki, R.G.; Van den Abbeele, A.D.; Yap, J.T.; Akhurst, T.; Harmon, D.C.; Bhuchar, G.; O’Mara, M.M.; D’Adamo, D.R.; Morgan, J.; Schwartz, G.K.; Wagner, A.J.; Butrynski, J.E.; Demetri, G.D.; Keohan, M.L. Multicenter phase II trial of sunitinib in the treatment of nongastrointestinal stromal tumor sarcomas. J. Clin. Oncol., 2009, 27(19), 3154-3160.
[http://dx.doi.org/10.1200/JCO.2008.20.9890] [PMID: 19451429]
[687]
Rizzo, M.; Porta, C. Sunitinib in the treatment of renal cell carcinoma: An update on recent evidence. Ther. Adv. Urol., 2017, 9(8), 195-207.
[http://dx.doi.org/10.1177/1756287217713902] [PMID: 29662544]
[688]
Ravaud, A.; Oudard, S.; De Fromont, M.; Chevreau, C.; Gravis, G.; Zanetta, S.; Theodore, C.; Jimenez, M.; Sevin, E.; Laguerre, B.; Rol-land, F.; Ouali, M.; Culine, S.; Escudier, B. First-line treatment with sunitinib for type 1 and type 2 locally advanced or metastatic papil-lary renal cell carcinoma: A phase II study (SUPAP) by the French Genitourinary Group (GETUG). Ann. Oncol., 2015, 26(6), 1123-1128.
[http://dx.doi.org/10.1093/annonc/mdv149] [PMID: 25802238]
[689]
Ustun-Alkan, F.; Bakırel, T.; Üstüner, O. Effects of tyrosine kinase inhibitor-masitinib mesylate on canine mammary tumour cell lines. J. Vet. Res., 2021, 65(3), 351-359.
[http://dx.doi.org/10.2478/jvetres-2021-042] [PMID: 34917849]
[690]
Vermersch, P.; Brieva-Ruiz, L.; Fox, R.J.; Paul, F.; Ramio-Torrenta, L.; Schwab, M.; Moussy, A.; Mansfield, C.; Hermine, O.; Maciejowski, M. AB07002 Study Group. Efficacy and safety of masitinib in progressive forms of multiple sclerosis: A randomized, phase 3, clinical trial. Neurol. Neuroimmunol. Neuroinflamm., 2022, 9(3), e1148.
[http://dx.doi.org/10.1212/NXI.0000000000001148] [PMID: 35190477]
[691]
Folch, J.; Petrov, D.; Ettcheto, M.; Pedros, I.; Abad, S.; Beas-Zarate, C.; Lazarowski, A.; Marin, M.; Olloquequi, J.; Auladell, C.; Camins, A. Masitinib for the treatment of mild to moderate Alzheimer’s disease. Expert Rev. Neurother., 2015, 15(6), 587-596.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy