Research Article

基于血管生成相关lncRNAs的结肠癌预后预测风险评分模型的建立

卷 31, 期 17, 2024

发表于: 13 November, 2023

页: [2449 - 2466] 页: 18

弟呕挨: 10.2174/0109298673277243231108071620

价格: $65

摘要

目标:筛选基于结肠腺癌(COAD)血管生成相关的关键lncRNAs,构建预测COAD预后的RiskScore模型,有助于揭示COAD的发病机制,优化临床治疗。 背景:lncRNAs在肿瘤进展和预后中的调节作用已被证实,但很少有研究探讨血管生成相关的lncRNAs在COAD中的作用。 目的:识别血管生成相关的关键lncRNAs并建立RiskScore模型,预测COAD患者的生存概率,帮助优化临床治疗。 方法:从癌症基因组图谱(TCGA)和基因表达图谱(GEO)数据库中收集样本数据。采用单样本基因集富集分析(ssGSEA)方法计算样品中的HALLMARK通路评分。通过集成管道算法过滤与血管生成相关的lncrna。利用ConsensusClusterPlus对基于lncrna的亚型进行分类,并与其他已建立的亚型进行比较。基于单变量Cox、最小绝对收缩和选择算子(LASSO)回归和逐步回归分析,建立了RiskScore模型。应用R包生存法绘制Kaplan-Meier曲线。用timeROC包绘制随时间变化的ROC曲线。最后,使用肿瘤免疫功能障碍和排斥(TIDE)软件和pRRophetic软件包分析免疫治疗的益处和药物敏感性。结果:通路分析显示血管生成通路是影响COAD患者预后的危险因素。共筛选了66个与血管生成相关的lncRNAs,获得了3个分子亚型(S1、S2、S3)。S1、S2预后好于S3。与现有亚型相比,S3亚型与其他两个亚型差异显著。免疫分析显示S2亚型的免疫细胞评分低于S1和S3亚型,而S1和S3亚型的TIDE评分也最高。我们招募了8个关键的lncRNAs来开发一个RiskScore模型。高风险评分组生存率较低,TIDE评分较高,预计免疫治疗的获益有限,但可能对化疗更敏感。由RiskScore签名和其他临床病理特征设计的nomogram揭示了COAD治疗的合理预测能力。 结论:我们构建了基于血管生成相关lncRNAs的RiskScore模型,该模型可作为COAD患者的潜在预后预测指标,并可为抗血管生成应用的干预提供线索。我们的结果可能有助于评估COAD的预后,并提供更好的治疗策略。

关键词: 结肠腺癌,血管生成相关lncrna, RiskScore模型,预后,药物敏感性,免疫微环境。

[1]
Akimoto, N.; Ugai, T.; Zhong, R.; Hamada, T.; Fujiyoshi, K.; Giannakis, M.; Wu, K.; Cao, Y.; Ng, K.; Ogino, S. Rising incidence of early-onset colorectal cancer - a call to action. Nat. Rev. Clin. Oncol., 2021, 18(4), 230-243.
[http://dx.doi.org/10.1038/s41571-020-00445-1] [PMID: 33219329]
[2]
Burnett-Hartman, A.N.; Lee, J.K.; Demb, J.; Gupta, S. An update on the epidemiology, molecular characterization, diagnosis, and screening strategies for early-onset colorectal cancer. Gastroenterology, 2021, 160(4), 1041-1049.
[http://dx.doi.org/10.1053/j.gastro.2020.12.068] [PMID: 33417940]
[3]
Jung, F.; Lee, M.; Doshi, S.; Zhao, G.; Lam Tin Cheung, K.; Chesney, T.; Guidolin, K.; Englesakis, M.; Lukovic, J.; O’Kane, G.; Quereshy, F.A.; Chadi, S.A. Neoadjuvant therapy versus direct to surgery for T4 colon cancer: Meta-analysis. Br. J. Surg., 2021, 109(1), 30-36.
[http://dx.doi.org/10.1093/bjs/znab382] [PMID: 34921604]
[4]
Xu, M.; Chang, J.; Wang, W.; Wang, X.; Wang, X.; Weng, W.; Tan, C.; Zhang, M.; Ni, S.; Wang, L.; Huang, Z.; Deng, Z.; Li, W.; Huang, D.; Sheng, W. Classification of colon adenocarcinoma based on immunological characterizations: Implications for prognosis and immunotherapy. Front. Immunol., 2022, 13, 934083.
[http://dx.doi.org/10.3389/fimmu.2022.934083] [PMID: 35967414]
[5]
Carlino, M.S.; Larkin, J.; Long, G.V. Immune checkpoint inhibitors in melanoma. Lancet, 2021, 398(10304), 1002-1014.
[http://dx.doi.org/10.1016/S0140-6736(21)01206-X] [PMID: 34509219]
[6]
Doroshow, D.B.; Bhalla, S.; Beasley, M.B.; Sholl, L.M.; Kerr, K.M.; Gnjatic, S.; Wistuba, I.I.; Rimm, D.L.; Tsao, M.S.; Hirsch, F.R. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat. Rev. Clin. Oncol., 2021, 18(6), 345-362.
[http://dx.doi.org/10.1038/s41571-021-00473-5] [PMID: 33580222]
[7]
Choi, S.W.; Kim, H.W.; Nam, J.W. The small peptide world in long noncoding RNAs. Brief. Bioinform., 2019, 20(5), 1853-1864.
[http://dx.doi.org/10.1093/bib/bby055] [PMID: 30010717]
[8]
Nojima, T.; Proudfoot, N.J. Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics. Nat. Rev. Mol. Cell Biol., 2022, 23(6), 389-406.
[http://dx.doi.org/10.1038/s41580-021-00447-6] [PMID: 35079163]
[9]
Núñez-Martínez, H.N.; Recillas-Targa, F. Emerging functions of lncRNA loci beyond the transcript itself. Int. J. Mol. Sci., 2022, 23(11), 6258.
[http://dx.doi.org/10.3390/ijms23116258] [PMID: 35682937]
[10]
Park, E.G.; Pyo, S.J.; Cui, Y.; Yoon, S.H.; Nam, J.W. Tumor immune microenvironment lncRNAs. Brief. Bioinform., 2022, 23(1), bbab504.
[http://dx.doi.org/10.1093/bib/bbab504] [PMID: 34891154]
[11]
Tan, Y.T.; Lin, J.F.; Li, T.; Li, J.J.; Xu, R.H.; Ju, H.Q. LncRNA-mediated posttranslational modifications and reprogramming of energy metabolism in cancer. Cancer Commun., 2021, 41(2), 109-120.
[http://dx.doi.org/10.1002/cac2.12108] [PMID: 33119215]
[12]
Bao, G.; Xu, R.; Wang, X.; Ji, J.; Wang, L.; Li, W.; Zhang, Q.; Huang, B.; Chen, A.; Zhang, D.; Kong, B.; Yang, Q.; Yuan, C.; Wang, X.; Wang, J.; Li, X. Identification of lncRNA signature associated with pan-cancer prognosis. IEEE J. Biomed. Health Inform., 2021, 25(6), 2317-2328.
[http://dx.doi.org/10.1109/JBHI.2020.3027680] [PMID: 32991297]
[13]
Wang, L.; Cho, K.B.; Li, Y.; Tao, G.; Xie, Z.; Guo, B. Long noncoding RNA (lncRNA)-mediated competing endogenous RNA networks provide novel potential biomarkers and therapeutic targets for colorectal cancer. Int. J. Mol. Sci., 2019, 20(22), 5758.
[http://dx.doi.org/10.3390/ijms20225758] [PMID: 31744051]
[14]
Nasibova, A. Generation of nanoparticles in biological systems and their application prospects. Adv. Biol. Earth Sci, 2023, 8, 140-146.
[15]
Ahmadian, E.; Dizaj, S.M.; Sharifi, S.; Shahi, S.; Khalilov, R.; Eftekhari, A.; Hasanzadeh, M. The potential of nanomaterials in theranostics of oral squamous cell carcinoma: Recent progress. Trends Analyt. Chem., 2019, 116, 167-176.
[http://dx.doi.org/10.1016/j.trac.2019.05.009]
[16]
Eftekhari, A.; Kryschi, C.; Pamies, D.; Gulec, S.; Ahmadian, E.; Janas, D.; Davaran, S.; Khalilov, R. Natural and synthetic nanovectors for cancer therapy. Nanotheranostics, 2023, 7(3), 236-257.
[http://dx.doi.org/10.7150/ntno.77564] [PMID: 37064613]
[17]
Hu, X.; Jing, F.; Wang, Q.; Shi, L.; Cao, Y.; Zhu, Z. Alteration of ornithine metabolic pathway in colon cancer and multivariate data modelling for cancer diagnosis. Oncologie, 2021, 23(2), 203-217.
[http://dx.doi.org/10.32604/Oncologie.2021.016155]
[18]
Ramapriyan, R.; Caetano, M.S.; Barsoumian, H.B.; Mafra, A.C.P.; Zambalde, E.P.; Menon, H.; Tsouko, E.; Welsh, J.W.; Cortez, M.A. Altered cancer metabolism in mechanisms of immunotherapy resistance. Pharmacol. Ther., 2019, 195, 162-171.
[http://dx.doi.org/10.1016/j.pharmthera.2018.11.004] [PMID: 30439456]
[19]
Jiang, X.; Wang, J.; Deng, X.; Xiong, F.; Zhang, S.; Gong, Z.; Li, X.; Cao, K.; Deng, H.; He, Y.; Liao, Q.; Xiang, B.; Zhou, M.; Guo, C.; Zeng, Z.; Li, G.; Li, X.; Xiong, W. The role of microenvironment in tumor angiogenesis. J. Experimen. Clin. Cancer Res., 2020, 39(1), 204.
[20]
Ru, B.; Wong, C.N.; Tong, Y.; Zhong, J.Y.; Zhong, S.S.W.; Wu, W.C.; Chu, K.C.; Wong, C.Y.; Lau, C.Y.; Chen, I.; Chan, N.W.; Zhang, J. TISIDB: An integrated repository portal for tumor-immune system interactions. Bioinformatics, 2019, 35(20), 4200-4202.
[http://dx.doi.org/10.1093/bioinformatics/btz210] [PMID: 30903160]
[21]
Song, X.; Guo, Y.; Song, P.; Duan, D.; Guo, W. Non-coding RNAs in regulating tumor angiogenesis. Front. Cell Dev. Biol., 2021, 9, 751578.
[http://dx.doi.org/10.3389/fcell.2021.751578] [PMID: 34616746]
[22]
He, L.; Jin, M.; Jian, D.; Yang, B.; Dai, N.; Feng, Y.; Xiao, H.; Wang, D. Identification of four immune subtypes in locally advanced rectal cancer treated with neoadjuvant chemotherapy for predicting the efficacy of subsequent immune checkpoint blockade. Front. Immunol., 2022, 13, 955187.
[http://dx.doi.org/10.3389/fimmu.2022.955187] [PMID: 36238279]
[23]
Marisa, L.; de Reyniès, A.; Duval, A.; Selves, J.; Gaub, M.P.; Vescovo, L.; Etienne-Grimaldi, M.C.; Schiappa, R.; Guenot, D.; Ayadi, M.; Kirzin, S.; Chazal, M.; Fléjou, J.F.; Benchimol, D.; Berger, A.; Lagarde, A.; Pencreach, E.; Piard, F.; Elias, D.; Parc, Y.; Olschwang, S.; Milano, G.; Laurent-Puig, P.; Boige, V. Gene expression classification of colon cancer into molecular subtypes: Characterization, validation, and prognostic value. PLoS Med., 2013, 10(5), e1001453.
[http://dx.doi.org/10.1371/journal.pmed.1001453] [PMID: 23700391]
[24]
Tripathi, M.K.; Deane, N.G.; Zhu, J.; An, H.; Mima, S.; Wang, X.; Padmanabhan, S.; Shi, Z.; Prodduturi, N.; Ciombor, K.K.; Chen, X.; Washington, M.K.; Zhang, B.; Beauchamp, R.D. Nuclear factor of activated T-cell activity is associated with metastatic capacity in colon cancer. Cancer Res., 2014, 74(23), 6947-6957.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-1592] [PMID: 25320007]
[25]
Kemper, K.; Versloot, M.; Cameron, K.; Colak, S.; de Sousa e Melo, F.; de Jong, J.H.; Bleackley, J.; Vermeulen, L.; Versteeg, R.; Koster, J.; Medema, J.P. Mutations in the Ras-Raf Axis underlie the prognostic value of CD133 in colorectal cancer. Clin. Cancer Res., 2012, 18(11), 3132-3141.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-3066] [PMID: 22496204]
[26]
Liu, Z.; Lu, T.; Wang, Y.; Jiao, D.; Li, Z.; Wang, L.; Liu, L.; Guo, C.; Zhao, Y.; Han, X. Establishment and experimental validation of an immune miRNA signature for assessing prognosis and immune landscape of patients with colorectal cancer. J. Cell. Mol. Med., 2021, 25(14), 6874-6886.
[http://dx.doi.org/10.1111/jcmm.16696] [PMID: 34101338]
[27]
Li, Y.; Jiang, T.; Zhou, W.; Li, J.; Li, X.; Wang, Q.; Jin, X.; Yin, J.; Chen, L.; Zhang, Y.; Xu, J.; Li, X. Pan-cancer characterization of immune-related lncRNAs identifies potential oncogenic biomarkers. Nat. Commun., 2020, 11(1), 1000.
[http://dx.doi.org/10.1038/s41467-020-14802-2] [PMID: 32081859]
[28]
Tian, Y.; Morris, T.J.; Webster, A.P.; Yang, Z.; Beck, S.; Feber, A.; Teschendorff, A.E. ChAMP: Updated methylation analysis pipeline for Illumina BeadChips. Bioinformatics, 2017, 33(24), 3982-3984.
[http://dx.doi.org/10.1093/bioinformatics/btx513] [PMID: 28961746]
[29]
Hu, X.; Ni, S.; Zhao, K.; Qian, J.; Duan, Y. Bioinformatics-led discovery of osteoarthritis biomarkers and inflammatory infiltrates. Front. Immunol., 2022, 13, 871008.
[http://dx.doi.org/10.3389/fimmu.2022.871008] [PMID: 35734177]
[30]
Li, Q.; Cheng, Z.; Zhou, L.; Darmanis, S.; Neff, N.F.; Okamoto, J.; Gulati, G.; Bennett, M.L.; Sun, L.O.; Clarke, L.E.; Marschallinger, J.; Yu, G.; Quake, S.R.; Wyss-Coray, T.; Barres, B.A. Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single-cell RNA sequencing. Neuron, 2019, 101(2), 207-223.e10.
[http://dx.doi.org/10.1016/j.neuron.2018.12.006] [PMID: 30606613]
[31]
Huang, T.X.; Fu, L. The immune landscape of esophageal cancer. Cancer Commun., 2019, 39(1), 79.
[http://dx.doi.org/10.1186/s40880-019-0427-z] [PMID: 31771653]
[32]
Giraud, J.; Chalopin, D.; Blanc, J.F.; Saleh, M. Hepatocellular carcinoma immune landscape and the potential of immunotherapies. Front. Immunol., 2021, 12, 655697.
[http://dx.doi.org/10.3389/fimmu.2021.655697] [PMID: 33815418]
[33]
Eide, P.W.; Bruun, J.; Lothe, R.A.; Sveen, A. CMScaller: An R package for consensus molecular subtyping of colorectal cancer pre-clinical models. Sci. Rep., 2017, 7(1), 16618.
[http://dx.doi.org/10.1038/s41598-017-16747-x] [PMID: 29192179]
[34]
Therneau, T.M.; Lumley, T. Package ‘survival’. R Top Doc., 2015, 128(10), 28-33.
[35]
McHugh, M.L. Multiple comparison analysis testing in ANOVA. Biochem. Med., 2011, 21(3), 203-209.
[http://dx.doi.org/10.11613/BM.2011.029] [PMID: 22420233]
[36]
Pei, S.; Liu, T.; Ren, X.; Li, W.; Chen, C.; Xie, Z. Benchmarking variant callers in next-generation and third-generation sequencing analysis. Brief. Bioinform., 2021, 22(3), bbaa148.
[http://dx.doi.org/10.1093/bib/bbaa148] [PMID: 32698196]
[37]
Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[38]
Charoentong, P.; Finotello, F.; Angelova, M.; Mayer, C.; Efremova, M.; Rieder, D.; Hackl, H.; Trajanoski, Z. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep., 2017, 18(1), 248-262.
[http://dx.doi.org/10.1016/j.celrep.2016.12.019] [PMID: 28052254]
[39]
Danilova, L.; Ho, W.J.; Zhu, Q.; Vithayathil, T.; De Jesus-Acosta, A.; Azad, N.S.; Laheru, D.A.; Fertig, E.J.; Anders, R.; Jaffee, E.M.; Yarchoan, M. Programmed cell death ligand-1 (PD-L1) and CD8 expression profiling identify an immunologic subtype of pancreatic ductal adenocarcinomas with favorable survival. Cancer Immunol. Res., 2019, 7(6), 886-895.
[http://dx.doi.org/10.1158/2326-6066.CIR-18-0822] [PMID: 31043417]
[40]
Jiang, P.; Gu, S.; Pan, D.; Fu, J.; Sahu, A.; Hu, X.; Li, Z.; Traugh, N.; Bu, X.; Li, B.; Liu, J.; Freeman, G.J.; Brown, M.A.; Wucherpfennig, K.W.; Liu, X.S. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med., 2018, 24(10), 1550-1558.
[http://dx.doi.org/10.1038/s41591-018-0136-1] [PMID: 30127393]
[41]
Mariathasan, S.; Turley, S.J.; Nickles, D.; Castiglioni, A.; Yuen, K.; Wang, Y.; Kadel, E.E., III; Koeppen, H.; Astarita, J.L.; Cubas, R.; Jhunjhunwala, S.; Banchereau, R.; Yang, Y.; Guan, Y.; Chalouni, C.; Ziai, J.; Şenbabaoğlu, Y.; Santoro, S.; Sheinson, D.; Hung, J.; Giltnane, J.M.; Pierce, A.A.; Mesh, K.; Lianoglou, S.; Riegler, J.; Carano, R.A.D.; Eriksson, P.; Höglund, M.; Somarriba, L.; Halligan, D.L.; van der Heijden, M.S.; Loriot, Y.; Rosenberg, J.E.; Fong, L.; Mellman, I.; Chen, D.S.; Green, M.; Derleth, C.; Fine, G.D.; Hegde, P.S.; Bourgon, R.; Powles, T. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature, 2018, 554(7693), 544-548.
[http://dx.doi.org/10.1038/nature25501] [PMID: 29443960]
[42]
Geeleher, P.; Cox, N.; Huang, R.S. pRRophetic: An R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PLoS One, 2014, 9(9), e107468.
[http://dx.doi.org/10.1371/journal.pone.0107468] [PMID: 25229481]
[43]
Kuczynski, E.A.; Vermeulen, P.B.; Pezzella, F.; Kerbel, R.S.; Reynolds, A.R. Vessel co-option in cancer. Nat. Rev. Clin. Oncol., 2019, 16(8), 469-493.
[http://dx.doi.org/10.1038/s41571-019-0181-9] [PMID: 30816337]
[44]
Saman, H.; Raza, S.S.; Uddin, S.; Rasul, K. Inducing angiogenesis, a key step in cancer vascularization, and treatment approaches. cancers, 2020, 12(5), 1172.
[http://dx.doi.org/10.3390/cancers12051172] [PMID: 32384792]
[45]
Sun, W.; Xu, Y.; Zhao, B.; Zhao, M.; Chen, J.; Chu, Y.; Peng, H. The prognostic value and immunological role of angiogenesis-related patterns in colon adenocarcinoma. Front. Oncol., 2022, 12, 1003440.
[http://dx.doi.org/10.3389/fonc.2022.1003440] [PMID: 36439446]
[46]
Fransvea, P.; Costa, G.; Sganga, G. Colorectal cancer: Greater neo-angiogenesis, less perforation, worst oncological outcomes. Med. Hypotheses, 2021, 146, 110458.
[http://dx.doi.org/10.1016/j.mehy.2020.110458] [PMID: 33341528]
[47]
Deng, F.; Zhou, R.; Lin, C.; Yang, S.; Wang, H.; Li, W.; Zheng, K.; Lin, W.; Li, X.; Yao, X.; Pan, M.; Zhao, L. Tumor-secreted dickkopf2 accelerates aerobic glycolysis and promotes angiogenesis in colorectal cancer. Theranostics, 2019, 9(4), 1001-1014.
[http://dx.doi.org/10.7150/thno.30056] [PMID: 30867812]
[48]
Ng, L.; Wong, S.K.M.; Huang, Z.; Lam, C.S.C.; Chow, A.K.M.; Foo, D.C.C.; Lo, O.S.H.; Pang, R.W.C.; Law, W.L. CD26 induces colorectal cancer angiogenesis and metastasis through CAV1/MMP1 signaling. Int. J. Mol. Sci., 2022, 23(3), 1181.
[http://dx.doi.org/10.3390/ijms23031181] [PMID: 35163100]
[49]
Pashirzad, M.; Khorasanian, R.; Fard, M.M.; Arjmand, M.H.; Langari, H.; Khazaei, M.; Soleimanpour, S.; Rezayi, M.; Ferns, G.A.; Hassanian, S.M.; Avan, A. The therapeutic potential of MAPK/ERK inhibitors in the treatment of colorectal cancer. Curr. Cancer Drug Targets, 2021, 21(11), 932-943.
[http://dx.doi.org/10.2174/1568009621666211103113339] [PMID: 34732116]
[50]
Guo, Y.; Guo, Y.; Chen, C.; Fan, D.; Wu, X.; Zhao, L.; Shao, B.; Sun, Z.; Ji, Z. Circ3823 contributes to growth, metastasis and angiogenesis of colorectal cancer: Involvement of miR-30c-5p/TCF7 axis. Mol. Cancer, 2021, 20(1), 93.
[http://dx.doi.org/10.1186/s12943-021-01372-0] [PMID: 34172072]
[51]
Hao, Z.; Liang, P.; He, C.; Sha, S.; Yang, Z.; Liu, Y.; Shi, J.; Zhu, Z.; Chang, Q. Prognostic risk assessment model and drug sensitivity analysis of colon adenocarcinoma (COAD) based on immune-related lncRNA pairs. BMC Bioinformatics, 2022, 23(1), 435.
[http://dx.doi.org/10.1186/s12859-022-04969-4] [PMID: 36258178]
[52]
Xiao, J.; Wang, X.; Liu, Y.; Liu, X.; Yi, J.; Hu, J. Lactate metabolism-associated lncRNA pairs: A prognostic signature to reveal the immunological landscape and mediate therapeutic response in patients with colon adenocarcinoma. Front. Immunol., 2022, 13, 881359.
[http://dx.doi.org/10.3389/fimmu.2022.881359] [PMID: 35911752]
[53]
Wang, H.; Lin, K.; Zhu, L.; Zhang, S.; Li, L.; Liao, Y.; Zhang, B.; Yang, M.; Liu, X.; Li, L.; Li, S.; Yang, L.; Wang, H.; Wang, Q.; Li, H.; Fu, S.; Zhang, X.; Jiang, P.; Zhang, Q.C.; Cheng, J.; Wang, D. Oncogenic lncRNA LINC00973 promotes Warburg effect by enhancing LDHA enzyme activity. Sci. Bull., 2021, 66(13), 1330-1341.
[http://dx.doi.org/10.1016/j.scib.2021.01.001] [PMID: 36654155]
[54]
Liang, W.; Wu, J.; Qiu, X. LINC01116 facilitates colorectal cancer cell proliferation and angiogenesis through targeting EZH2-regulated TPM1. J. Transl. Med., 2021, 19(1), 45.
[http://dx.doi.org/10.1186/s12967-021-02707-7] [PMID: 33499872]
[55]
Liu, X.; Chen, J.; Zhang, S.; Liu, X.; Long, X.; Lan, J.; Zhou, M.; Zheng, L.; Zhou, J. LINC00839 promotes colorectal cancer progression by recruiting RUVBL1 /Tip60 complexes to activate NRF1. EMBO Rep., 2022, 23(9), e54128.
[http://dx.doi.org/10.15252/embr.202154128] [PMID: 35876654]
[56]
Chen, J.; Song, Y.; Li, M.; Zhang, Y.; Lin, T.; Sun, J.; Wang, D.; Liu, Y.; Guo, J.; Yu, W. Comprehensive analysis of ceRNA networks reveals prognostic lncRNAs related to immune infiltration in colorectal cancer. BMC Cancer, 2021, 21(1), 255.
[http://dx.doi.org/10.1186/s12885-021-07995-2] [PMID: 33750326]
[57]
Ghafouri-Fard, S.; Khoshbakht, T.; Taheri, M.; Ebrahimzadeh, K. A review on the role of PCAT6 lncRNA in tumorigenesis. Biomed. Pharmacother., 2021, 142, 112010.
[58]
Wang, S.; Chen, Z.; Gu, J.; Chen, X.; Wang, Z. The role of lncRNA PCAT6 in cancers. Front. Oncol., 2021, 11, 701495.
[http://dx.doi.org/10.3389/fonc.2021.701495] [PMID: 34327141]
[59]
Huang, W.; Su, G.; Huang, X.; Zou, A.; Wu, J.; Yang, Y.; Zhu, Y.; Liang, S.; Li, D.; Ma, F.; Guo, L. Long noncoding RNA PCAT6 inhibits colon cancer cell apoptosis by regulating anti-apoptotic protein ARC expression via EZH2. Cell Cycle, 2019, 18(1), 69-83.
[http://dx.doi.org/10.1080/15384101.2018.1558872] [PMID: 30569799]
[60]
Dong, F.; Ruan, S.; Wang, J.; Xia, Y.; Le, K.; Xiao, X.; Hu, T.; Wang, Q. M2 macrophage-induced lncRNA PCAT6 facilitates tumorigenesis and angiogenesis of triple-negative breast cancer through modulation of VEGFR2. Cell Death Dis., 2020, 11(9), 728.
[http://dx.doi.org/10.1038/s41419-020-02926-8] [PMID: 32908134]
[61]
Batlle, E.; Massagué, J. Transforming growth factor-β signaling in immunity and cancer. Immunity, 2019, 50(4), 924-940.
[http://dx.doi.org/10.1016/j.immuni.2019.03.024] [PMID: 30995507]
[62]
Hao, Y.; Baker, D.; ten Dijke, P. TGF-β-mediated epithelial-mesenchymal transition and cancer metastasis. Int. J. Mol. Sci., 2019, 20(11), 2767.
[http://dx.doi.org/10.3390/ijms20112767] [PMID: 31195692]
[63]
Ruan, X.J.; Ye, B.L.; Zheng, Z.H.; Li, S.T.; Zheng, X.F.; Zhang, S.Z. TGFβ1I1 suppressed cell migration and invasion in colorectal cancer by inhibiting the TGF-β pathway and EMT progress. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(13), 7294-7302.
[PMID: 32706067]
[64]
Khalilov, R. A comprehensive review of advanced nano-biomaterials in regenerative medicine and drug delivery. Adv. Biol. Earth Sci., 2023, 8(1)

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy