Research Article

USP3通过抑制Wnt/β-catenin抑制化疗耐药肝癌锚定非依赖性生长

卷 24, 期 5, 2024

发表于: 30 October, 2023

页: [667 - 675] 页: 9

弟呕挨: 10.2174/0115665240258296231024112309

价格: $65

摘要

背景:USPs是一个调节蛋白质降解的酶家族,它们的失调与癌症的发生和发展有关。 目标:他的研究旨在确定泛素特异性蛋白酶3 (USP3)是否可能成为肝细胞癌(HCC),特别是耐药HCC治疗的潜在靶点。本研究系统地研究了USP3在HCC中的作用,重点是化疗耐药的HCC细胞。方法:采用ELISA法测定临床标本中USP3的水平。进行细胞增殖、凋亡、迁移和不依赖锚定的集落形成实验。转染USP3表达,检测β-catenin活性,real-time PCR检测MYC和CYCLIN D1基因水平。 结果:USP3蛋白在HCC组织中表达上调,但其上调与临床病理无关。USP3敲低对敏感和耐药HCC细胞的生长均有相似的抑制作用,不影响迁移,并诱导敏感而非耐药HCC细胞凋亡。此外,与化疗敏感细胞相比,USP3敲低在抑制化疗耐药细胞中锚定非依赖性集落形成方面更有效。Pearson相关系数分析显示,USP3与CTNNB1呈正相关,且USP3基因敲低一致降低了HCC细胞中β-catenin的水平和活性。在救援研究中使用Wnt激活剂(锂)可显著逆转USP3敲低的抑制作用。 结论:研究结果表明,抑制USP3是一种有效的治疗癌症干细胞和化疗耐药HCC细胞的策略。

关键词: USP3, HCC,化疗耐药,β-catenin, USPs,致敏靶点。

[1]
Vogel A, Meyer T, Sapisochin G, Salem R, Saborowski A. Hepatocellular carcinoma. Lancet 2022; 400(10360): 1345-62.
[http://dx.doi.org/10.1016/S0140-6736(22)01200-4] [PMID: 36084663]
[2]
Yang C, Zhang H, Zhang L, et al. Evolving therapeutic landscape of advanced hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2023; 20(4): 203-22.
[http://dx.doi.org/10.1038/s41575-022-00704-9] [PMID: 36369487]
[3]
Chakraborty E, Sarkar D. Emerging therapies for Hepatocellular Carcinoma (HCC). Cancers 2022; 14(11): 2798.
[http://dx.doi.org/10.3390/cancers14112798] [PMID: 35681776]
[4]
Antao AM, Tyagi A, Kim KS, Ramakrishna S. Advances in deubiquitinating enzyme inhibition and applications in cancer therapeutics. Cancers 2020; 12(6): 1579.
[http://dx.doi.org/10.3390/cancers12061579] [PMID: 32549302]
[5]
Young MJ, Hsu KC, Lin TE, Chang WC, Hung JJ. The role of ubiquitin-specific peptidases in cancer progression. J Biomed Sci 2019; 26(1): 42.
[http://dx.doi.org/10.1186/s12929-019-0522-0] [PMID: 31133011]
[6]
Isik A, Ramanathan R. Approaches to the treatment of pilonidal sinus disease, clinical practice in 2019. Int Wound J 2020; 17(2): 508-9.
[http://dx.doi.org/10.1111/iwj.13265] [PMID: 31710171]
[7]
Isik A, Kurnaz E, Isik NA. Intermammary pilonidal disease. J Galician Med 2019; 26(2): 265-8.
[http://dx.doi.org/10.21802/gmj.2019.2.11]
[8]
Li Y, Xu Y, Gao C, et al. USP1 maintains the survival of liver circulating tumor cells by deubiquitinating and stabilizing TBLR1. Front Oncol 2020; 10: 554809.
[http://dx.doi.org/10.3389/fonc.2020.554809]
[9]
Chen Z, Ma Y, Guo Z, Song D, Chen Z, Sun M. Ubiquitin specific protease 1 acts as an oncogene and promotes lenvatinib efficacy in hepatocellular carcinoma by stabilizing c-kit. Ann Hepatol 2022; 27(2): 100669.
[http://dx.doi.org/10.1016/j.aohep.2022.100669] [PMID: 35045360]
[10]
Nadolny C, Zhang X, Chen Q, et al. Dysregulation and activities of ubiquitin specific peptidase 2b in the pathogenesis of hepatocellular carcinoma. Am J Cancer Res 2021; 11(10): 4746-67.
[PMID: 34765291]
[11]
Qiu C, Liu Y, Mei Y, et al. Ubiquitin-specific protease 4 promotes metastasis of hepatocellular carcinoma by increasing TGF-β signaling-induced epithelial-mesenchymal transition. Aging 2018; 10(10): 2783-99.
[http://dx.doi.org/10.18632/aging.101587] [PMID: 30335615]
[12]
Zhang W, Zhang J, Xu C, et al. Ubiquitin-specific protease 7 is a drug-able target that promotes hepatocellular carcinoma and chemoresistance. Cancer Cell Int 2020; 20: 28.
[http://dx.doi.org/10.1186/s12935-020-1109-2]
[13]
Liu Y, Wang WM, Lu YF, et al. Usp5 functions as an oncogene for stimulating tumorigenesis in hepatocellular carcinoma. Oncotarget 2017; 8(31): 50655-64.
[http://dx.doi.org/10.18632/oncotarget.16901] [PMID: 28881591]
[14]
Zhu Y, Xu J, Hu W, et al. Inhibiting USP8 overcomes hepatocellular carcinoma resistance via suppressing receptor tyrosine kinases. Aging 2021; 13(11): 14999-5012.
[http://dx.doi.org/10.18632/aging.203061] [PMID: 34081623]
[15]
Xu J, Zhu Y, Wang F, Zhou Y, Xia G, Xu W. ICMT contributes to hepatocellular carcinoma growth, survival, migration and chemoresistance via multiple oncogenic pathways. Biochem Biophys Res Commun 2019; 518(3): 584-9.
[http://dx.doi.org/10.1016/j.bbrc.2019.08.094] [PMID: 31451223]
[16]
Gao CF, Xie Q, Su YL, et al. Proliferation and invasion: Plasticity in tumor cells. Proc Natl Acad Sci 2005; 102(30): 10528-33.
[http://dx.doi.org/10.1073/pnas.0504367102]
[17]
Batlle E, Clevers H. Cancer stem cells revisited. Nat Med 2017; 23(10): 1124-34.
[http://dx.doi.org/10.1038/nm.4409] [PMID: 28985214]
[18]
Clément-Lacroix P, Ai M, Morvan F, et al. Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proc Natl Acad Sci 2005; 102(48): 17406-11.
[http://dx.doi.org/10.1073/pnas.0505259102] [PMID: 16293698]
[19]
Fan L, Chen Z, Wu X, et al. Ubiquitin-specific protease 3 promotes glioblastoma cell invasion and epithelial-mesenchymal transition via stabilizing snail. Mol Cancer Res 2019; 17(10): 1975-84.
[http://dx.doi.org/10.1158/1541-7786.MCR-19-0197] [PMID: 31266817]
[20]
Wu X, Liu M, Zhu H, et al. Ubiquitin-specific protease 3 promotes cell migration and invasion by interacting with and deubiquitinating SUZ12 in gastric cancer. J Exp Clin Cancer Res 2019; 38(1): 277.
[http://dx.doi.org/10.1186/s13046-019-1270-4] [PMID: 31234902]
[21]
Liao XH, Wang Y, Zhong B, Zhu SY. USP3 promotes proliferation of non-small cell lung cancer through regulating RBM4. Eur Rev Med Pharmacol Sci 2020; 24(6): 3143-51.
[http://dx.doi.org/10.26355/eurrev_202003_20681] [PMID: 32271432]
[22]
Wu Y, Qin J, Li F, et al. USP3 promotes breast cancer cell proliferation by deubiquitinating KLF5. J Biol Chem 2019; 294(47): 17837-47.
[http://dx.doi.org/10.1074/jbc.RA119.009102] [PMID: 31624151]
[23]
Wu X, Wang H, Zhu D, et al. USP3 promotes gastric cancer progression and metastasis by deubiquitination-dependent COL9A3/COL6A5 stabilisation. Cell Death Dis 2021; 13(1): 10.
[http://dx.doi.org/10.1038/s41419-021-04460-7] [PMID: 34930901]
[24]
Lancini C, van den Berk PCM, Vissers JHA, et al. Tight regulation of ubiquitin-mediated DNA damage response by USP3 preserves the functional integrity of hematopoietic stem cells. J Exp Med 2014; 211(9): 1759-77.
[http://dx.doi.org/10.1084/jem.20131436] [PMID: 25113974]
[25]
Wang Z, Yang J, Di J, et al. Downregulated USP3 mRNA functions as a competitive endogenous RNA of SMAD4 by sponging miR-224 and promotes metastasis in colorectal cancer. Sci Rep 2017; 7(1): 4281.
[http://dx.doi.org/10.1038/s41598-017-04368-3] [PMID: 28655924]
[26]
Rhie BH, Antao AM, Karapurkar JK, et al. Ubiquitin-specific protease 3 deubiquitinates and stabilizes oct4 protein in human embryonic stem cells. Int J Mol Sci 2021; 22(11): 5584.
[http://dx.doi.org/10.3390/ijms22115584] [PMID: 34070420]
[27]
Leung HW, Leung CON, Lau EY, et al. EPHB2 activates β-catenin to enhance cancer stem cell properties and drive sorafenib resistance in hepatocellular carcinoma. Cancer Res 2021; 81(12): 3229-40.
[http://dx.doi.org/10.1158/0008-5472.CAN-21-0184] [PMID: 33903122]
[28]
Xu C, Xu Z, Zhang Y, Evert M, Calvisi DF, Chen X. β-Catenin signaling in hepatocellular carcinoma J Clin Invest 2022; 132(4): e154515.
[http://dx.doi.org/10.1172/JCI154515] [PMID: 35166233]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy