Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Review Article

A Concise Review of Synthetic Strategy, Mechanism of Action, and SAR Studies of Phthalazine Derivatives as Anticancer Agent

Author(s): Girish Chandra Arya*, Rajiv Sharma and Shefali Mehla

Volume 21, Issue 14, 2024

Published on: 25 October, 2023

Page: [2838 - 2852] Pages: 15

DOI: 10.2174/0115701808245049231019095755

Price: $65

Abstract

Background: Colorectal cancer is the third foremost cause of death in women and men. Globally, about 1.94 million colon cancer cases were diagnosed and around 0.93 million patients died in the previous year.

Introduction: Several drugs have been permitted by the Food And Drug Administration (FDA) for the treatment of colorectal cancer. The main difficulties of current drugs are the expansion of resistance issues, target selectivity issues and toxicity issues. The existing therapies, such as surgery and hormonal therapy, are in use but exhibit numerous adverse effects, such as pharmacokinetic issues and pharmacodynamic issues. Hence, hereby is a crucial requirement of novel moieties that are peaceable and efficient in the handling of colorectal cancer.

Methods: Phthalazine derivatives have expanded admiration over a few years due to their efficient anticancer significance. These Phthalazine derivatives exhibit anticancer activity by targeting various mechanisms such as apoptosis induction, tubulin polymerization inhibition, EGFR inhibition, and aurora kinase inhibition.

Results: In this study, we have focused on the Structural Activity relationship, numerous synthetic strategies and mechanism of action of phthalazine derivatives for potential treatment of cancer.

Conclusion: Among some of phthalazine derivative compounds not only induced antiproliferative activity even also improve bioavailability and reduce side effects, like 4-(phthalazine-1-yl) aniline with (IC50 = 0.22 ± 0.11 μM), and 4-phthalazin-1-yl-amino) benzonitrile (IC50 = 1.20 μM), 4-((5- methyl-pyrazole-3-yl) amino)-2-phenylphthalazin-1-one (IC50 = 0.031 μM) and 4-((5-methyl-pyrazole- 3-yl) amino)-2-(p-tolyl)phthalazin-1-one (IC50 = 0.065 μM). Therefore, this study would be the inspiration for the betterment of human health.

Keywords: Colon cancer, synthetic strategies, structure-activity relationship, mechanism of action, signalling pathways, phthalazine.

Graphical Abstract
[1]
Sideris, M.; Papagrigoriadis, S. Molecular biomarkers and classification models in the evaluation of the prognosis of colorectal cancer. Anticancer Res., 2014, 34(5), 2061-2068.
[PMID: 24778007]
[2]
Budinska, E.; Popovici, V.; Tejpar, S.; D’Ario, G.; Lapique, N.; Sikora, K.O.; Di Narzo, A.F.; Yan, P.; Hodgson, J.G.; Weinrich, S.; Bosman, F.; Roth, A.; Delorenzi, M. Gene expression patterns unveil a new level of molecular heterogeneity in colorectal cancer. J. Pathol., 2013, 231(1), 63-76.
[http://dx.doi.org/10.1002/path.4212] [PMID: 23836465]
[3]
Siegel, R.; DeSantis, C.; Jemal, A. Colorectal cancer statistics, 2014. CA Cancer J. Clin., 2014, 64(2), 104-117.
[http://dx.doi.org/10.3322/caac.21220] [PMID: 24639052]
[4]
Peifer, M. Colon construction. Nature, 2002, 420(6913), 274-275, 277.
[http://dx.doi.org/10.1038/420274a] [PMID: 12447423]
[5]
Xi, Y.; Xu, P. Global colorectal cancer burden in 2020 and projections to 2040. Transl. Oncol., 2021, 14(10), 101174.
[http://dx.doi.org/10.1016/j.tranon.2021.101174] [PMID: 34243011]
[6]
Benson, A. III Epidemiology, disease progression, and economic burden of colorectal cancer. J. Manag. Care Pharm., 2007, 13(6 Supp C)(C), 5-18.
[http://dx.doi.org/10.18553/jmcp.2007.13.s6-c.5] [PMID: 17713990]
[7]
Minicozzi, A.; Mosconi, E.; Cordiano, C.; Rubello, D.; Marzola, P.; Ferretti, A.; Maffione, A.M.; Sboarina, A.; Bencivenga, M.; Boschi, F.; Conti, G.; Sbarbati, A. Proton magnetic resonance spectroscopy: Ex vivo study to investigate its prognostic role in colorectal cancer. Biomed. Pharmacother., 2013, 67(7), 593-597.
[http://dx.doi.org/10.1016/j.biopha.2013.05.002] [PMID: 23830479]
[8]
Goh, V.; Shastry, M.; Engledow, A.; Kozarski, R.; Peck, J.; Endozo, R.; Rodriguez-Justo, M.; Taylor, S.A.; Halligan, S.; Groves, A.M. Integrated (18)F-FDG PET/CT and perfusion CT of primary colorectal cancer: effect of inter- and intraobserver agreement on metabolic-vascular parameters. AJR Am. J. Roentgenol., 2012, 199(5), 1003-1009.
[http://dx.doi.org/10.2214/AJR.11.7823] [PMID: 23096172]
[9]
Keum, N.; Giovannucci, E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(12), 713-732.
[http://dx.doi.org/10.1038/s41575-019-0189-8] [PMID: 31455888]
[10]
Alter, P. Cardiotoxicity of 5-fluorouracil. Cardiovascs. Hematolog. Agent Med. Chem., 2006, 4(1), 1-5.
[11]
van Essen, M.; Krenning, E.P.; Kam, B.L.; de Herder, W.W.; van Aken, M.O.; Kwekkeboom, D.J. Report on short-term side effects of treatments with 177Lu-octreotate in combination with capecitabine in seven patients with gastroenteropancreatic neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imaging, 2008, 35(4), 743-748.
[http://dx.doi.org/10.1007/s00259-007-0688-7] [PMID: 18188559]
[12]
Kweekel, D.; Guchelaar, H.J.; Gelderblom, H. Clinical and pharmacogenetic factors associated with irinotecan toxicity. Cancer Treat. Rev., 2008, 34(7), 656-669.
[http://dx.doi.org/10.1016/j.ctrv.2008.05.002] [PMID: 18558463]
[13]
James, E.; Podoltsev, N.; Salehi, E.; Curtis, B.R.; Saif, M.W. Oxaliplatin-induced immune thrombocytopenia: Another cumulative dose-dependent side effect? Clin. Colorectal Cancer, 2009, 8(4), 220-224.
[http://dx.doi.org/10.3816/CCC.2009.n.037] [PMID: 19822513]
[14]
Desrame, J.; Broustet, H.; de Tailly, P.D.; Girard, D.; Saissy, J.M. Oxaliplatin-induced haemolytic anaemia. Lancet, 1999, 354(9185), 1179-1180.
[http://dx.doi.org/10.1016/S0140-6736(99)03827-1] [PMID: 10513718]
[15]
White, T. Metastatic colorectal cancer: Management with trifluridine/tipiracil. Clin. J. Oncol. Nurs., 2017, 21(2), E30-E37.
[16]
Sangshetti, J.; Pathan, S.K.; Patil, R.; Akber Ansari, S.; Chhajed, S.; Arote, R.; Shinde, D.B. Synthesis and biological activity of structurally diverse phthalazine derivatives: A systematic review. Bioorg. Med. Chem., 2019, 27(18), 3979-3997.
[http://dx.doi.org/10.1016/j.bmc.2019.07.050] [PMID: 31401008]
[17]
Abulkhair, H. Triazolophthalazine incorporating piperazine derivatives: Synthesis and in vitro anticancer evaluation study. Al-Azhar J. Pharm. Sci., 2020, 61(1), 104-116.
[http://dx.doi.org/10.21608/ajps.2020.86020]
[18]
Jangir, N. Poonam; Dhadda, S.; Jangid, D.K. Recent advances in the synthesis of five- and six-membered heterocycles as bioactive skeleton: A concise overview. ChemistrySelect, 2022, 7(6), e202103139.
[http://dx.doi.org/10.1002/slct.202103139]
[19]
Vila, N.; Besada, P.; Costas, T.; Costas-Lago, M.C.; Terán, C. Phthalazin-1(2H)-one as a remarkable scaffold in drug discovery. Eur. J. Med. Chem., 2015, 97, 462-482.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.043] [PMID: 25482553]
[20]
Wasfy, A.F. Synthesis of novel series of phthalazine derivatives as potential antitumor agents. Synth, 2013, 10, 20-32.
[21]
Han, Y.T.; Jung, J.W.; Kim, N.J. Recent advances in the synthesis of biologically active cinnoline, phthalazine and quinoxaline derivatives. Curr. Org. Chem., 2017, 21(14), 1265-1291.
[http://dx.doi.org/10.2174/1385272821666170221150901]
[22]
Chakraborty, M.; Sengupta, D.; Saha, T.; Goswami, S. Ligand redox-controlled tandem synthesis of azines from aromatic alcohols and hydrazine in air: One-pot synthesis of phthalazine. J. Org. Chem., 2018, 83(15), 7771-7778.
[http://dx.doi.org/10.1021/acs.joc.8b00661] [PMID: 29869492]
[23]
Kessler, S.N.; Wegner, H.A. One-pot synthesis of phthalazines and pyridazino-aromatics: A novel strategy for substituted naphthalenes. Org. Lett., 2012, 14(13), 3268-3271.
[http://dx.doi.org/10.1021/ol301167q] [PMID: 22686471]
[24]
Suchand, B.; Satyanarayana, G. Palladium-catalyzed acylation reactions: A one-pot diversified synthesis of phthalazines, phthalazinones and benzoxazinones. Eur. J. Org. Chem., 2018, 2018(19), 2233-2246.
[http://dx.doi.org/10.1002/ejoc.201800159]
[25]
Terán, C.; Besada, P.; Vila, N.; Costas-Lago, M.C. Recent advances in the synthesis of phthalazin-1(2H)-one core as a relevant pharmacophore in medicinal chemistry. Eur. J. Med. Chem., 2019, 161, 468-478.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.047] [PMID: 30388463]
[26]
Wheeler, D.L.; Dunn, E.F.; Harari, P.M. Understanding resistance to EGFR inhibitors—impact on future treatment strategies. Nat. Rev. Clin. Oncol., 2010, 7(9), 493-507.
[http://dx.doi.org/10.1038/nrclinonc.2010.97] [PMID: 20551942]
[27]
Lynch, T.J.; Bell, D.W.; Sordella, R.; Gurubhagavatula, S.; Okimoto, R.A.; Brannigan, B.W.; Harris, P.L.; Haserlat, S.M.; Supko, J.G.; Haluska, F.G.; Louis, D.N.; Christiani, D.C.; Settleman, J.; Haber, D.A. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med., 2004, 350(21), 2129-2139.
[http://dx.doi.org/10.1056/NEJMoa040938] [PMID: 15118073]
[28]
Chinnaiyan, P.; Huang, S.; Vallabhaneni, G.; Armstrong, E.; Varambally, S.; Tomlins, S.A.; Chinnaiyan, A.M.; Harari, P.M. Mechanisms of enhanced radiation response following epidermal growth factor receptor signaling inhibition by erlotinib (Tarceva). Cancer Res., 2005, 65(8), 3328-3335.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-3547] [PMID: 15833866]
[29]
Seshacharyulu, P.; Ponnusamy, M.P.; Haridas, D.; Jain, M.; Ganti, A.K.; Batra, S.K. Targeting the EGFR signaling pathway in cancer therapy. Expert Opin. Ther. Targets, 2012, 16(1), 15-31.
[http://dx.doi.org/10.1517/14728222.2011.648617] [PMID: 22239438]
[30]
Doebele, R.C.; Oton, A.B.; Peled, N.; Camidge, D.R.; Bunn, P.A. Jr New strategies to overcome limitations of reversible EGFR tyrosine kinase inhibitor therapy in non-small cell lung cancer. Lung Cancer, 2010, 69(1), 1-12.
[http://dx.doi.org/10.1016/j.lungcan.2009.12.009] [PMID: 20092908]
[31]
Martin, P.; Kelly, C.M.A.; Carney, D. Epidermal growth factor receptor-targeted agents for lung cancer. Cancer Contr., 2006, 13(2), 129-140.
[http://dx.doi.org/10.1177/107327480601300207] [PMID: 16735987]
[32]
Oliveira-Cunha, M.; Newman, W.G.; Siriwardena, A.K. Epidermal growth factor receptor in pancreatic cancer. Cancers, 2011, 3(2), 1513-1526.
[http://dx.doi.org/10.3390/cancers3021513] [PMID: 24212772]
[33]
Patel, R. EGFR Signaling and its inhibition by EGFR inhibitors in NSCLC. Int. J. Appl. Sci. Biotechnol., 2014, 2(4), 375-388.
[http://dx.doi.org/10.3126/ijasbt.v2i4.11263]
[34]
Köhler, J.; Schuler, M. Afatinib, erlotinib and gefitinib in the first-line therapy of EGFR mutation-positive lung adenocarcinoma: A review. Onkologie, 2013, 36(9), 510-518.
[PMID: 24051929]
[35]
Nair, P. Epidermal growth factor receptor family and its role in cancer progression. Curr. Sci., 2005, 890-898.
[36]
Boraei, A.T.A.; Ashour, H.K.; El Tamany, E.S.H.; Abdelmoaty, N.; El-Falouji, A.I.; Gomaa, M.S. Design and synthesis of new phthalazine-based derivatives as potential EGFR inhibitors for the treatment of hepatocellular carcinoma. Bioorg. Chem., 2019, 85, 293-307.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.039] [PMID: 30654221]
[37]
Amin, K.M.; Barsoum, F.F.; Awadallah, F.M.; Mohamed, N.E. Identification of new potent phthalazine derivatives with VEGFR-2 and EGFR kinase inhibitory activity. Eur. J. Med. Chem., 2016, 123, 191-201.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.049] [PMID: 27484508]
[38]
Kroemer, G.; Galluzzi, L.; Vandenabeele, P.; Abrams, J.; Alnemri, E.S.; Baehrecke, E.H.; Blagosklonny, M.V.; El-Deiry, W.S.; Golstein, P.; Green, D.R.; Hengartner, M.; Knight, R.A.; Kumar, S.; Lipton, S.A.; Malorni, W.; Nuñez, G.; Peter, M.E.; Tschopp, J.; Yuan, J.; Piacentini, M.; Zhivotovsky, B.; Melino, G. Classification of cell death: Recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ., 2009, 16(1), 3-11.
[http://dx.doi.org/10.1038/cdd.2008.150] [PMID: 18846107]
[39]
Hassan, M.; Watari, H.; AbuAlmaaty, A.; Ohba, Y.; Sakuragi, N. Apoptosis and molecular targeting therapy in cancer. BioMed Res. Int., 2014, 2014, 1-23.
[http://dx.doi.org/10.1155/2014/150845] [PMID: 25013758]
[40]
Lopez, J.; Tait, S.W.G. Mitochondrial apoptosis: Killing cancer using the enemy within. Br. J. Cancer, 2015, 112(6), 957-962.
[http://dx.doi.org/10.1038/bjc.2015.85] [PMID: 25742467]
[41]
Green, D.R.; Llambi, F. Cell death signaling. Cold Spring Harb. Perspect. Biol., 2015, 7(12), a006080.
[http://dx.doi.org/10.1101/cshperspect.a006080] [PMID: 26626938]
[42]
Lomonosova, E.; Chinnadurai, G. BH3-only proteins in apoptosis and beyond: an overview. Oncogene, 2008, 27(S1)(1), S2-S19.
[http://dx.doi.org/10.1038/onc.2009.39] [PMID: 19641503]
[43]
Pfeffer, C.; Singh, A. Apoptosis: A target for anticancer therapy. Int. J. Mol. Sci., 2018, 19(2), 448.
[http://dx.doi.org/10.3390/ijms19020448] [PMID: 29393886]
[44]
Zaman, S.; Wang, R.; Gandhi, V. Targeting the apoptosis pathway in hematologic malignancies. Leuk. Lymphoma, 2014, 55(9), 1980-1992.
[http://dx.doi.org/10.3109/10428194.2013.855307] [PMID: 24295132]
[45]
Xu, G.; Shi, Y. Apoptosis signaling pathways and lymphocyte homeostasis. Cell Res., 2007, 17(9), 759-771.
[http://dx.doi.org/10.1038/cr.2007.52] [PMID: 17576411]
[46]
Eldehna, W.M.; Ibrahim, H.S.; Abdel-Aziz, H.A.; Farrag, N.N.; Youssef, M.M. Design, synthesis and in vitro antitumor activity of novel N-substituted-4-phenyl/benzylphthalazin-1-ones. Eur. J. Med. Chem., 2015, 89, 549-560.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.064] [PMID: 25462265]
[47]
Parida, P.K.; Mahata, B.; Santra, A.; Chakraborty, S.; Ghosh, Z.; Raha, S.; Misra, A.K.; Biswas, K.; Jana, K. Inhibition of cancer progression by a novel trans-stilbene derivative through disruption of microtubule dynamics, driving G2/M arrest, and p53-dependent apoptosis. Cell Death Dis., 2018, 9(5), 448.
[http://dx.doi.org/10.1038/s41419-018-0476-2] [PMID: 29670107]
[48]
Abulkhair, H.S.; Turky, A.; Ghiaty, A.; Ahmed, H.E.A.; Bayoumi, A.H. Novel triazolophthalazine-hydrazone hybrids as potential PCAF inhibitors: Design, synthesis, in vitro anticancer evaluation, apoptosis, and molecular docking studies. Bioorg. Chem., 2020, 100, 103899.
[http://dx.doi.org/10.1016/j.bioorg.2020.103899] [PMID: 32454390]
[49]
Wang, G.; Peng, Z.; Zhang, J.; Qiu, J.; Xie, Z.; Gong, Z. Synthesis, biological evaluation and molecular docking studies of aminochalcone derivatives as potential anticancer agents by targeting tubulin colchicine binding site. Bioorg. Chem., 2018, 78, 332-340.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.028] [PMID: 29627654]
[50]
Yan, J.; Hu, J.; An, B.; Huang, L.; Li, X. Design, synthesis, and biological evaluation of cyclic-indole derivatives as anti-tumor agents via the inhibition of tubulin polymerization. Eur. J. Med. Chem., 2017, 125, 663-675.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.056] [PMID: 27721152]
[51]
Kaur, R.; Kaur, G.; Gill, R.K.; Soni, R.; Bariwal, J. Recent developments in tubulin polymerization inhibitors: An overview. Eur. J. Med. Chem., 2014, 87, 89-124.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.051] [PMID: 25240869]
[52]
Lu, Y.; Chen, J.; Xiao, M.; Li, W.; Miller, D.D. An overview of tubulin inhibitors that interact with the colchicine binding site. Pharm. Res., 2012, 29(11), 2943-2971.
[http://dx.doi.org/10.1007/s11095-012-0828-z] [PMID: 22814904]
[53]
Zhou, J.; Giannakakou, P. Targeting microtubules for cancer chemotherapy. Curr. Med. Chem. Anticancer Agents, 2005, 5(1), 65-71.
[http://dx.doi.org/10.2174/1568011053352569] [PMID: 15720262]
[54]
Hu, M.J.; Zhang, B.; Yang, H.K.; Liu, Y.; Chen, Y.R.; Ma, T.Z.; Lu, L.; You, W.W.; Zhao, P.L. Design, synthesis and molecular docking studies of novel indole–pyrimidine hybrids as tubulin polymerization inhibitors. Chem. Biol. Drug Des., 2015, 86(6), 1491-1500.
[http://dx.doi.org/10.1111/cbdd.12616] [PMID: 26177395]
[55]
Kamath, P.R.; Sunil, D.; Ajees, A.A. Synthesis of indole–quinoline–oxadiazoles: Their anticancer potential and computational tubulin binding studies. Res. Chem. Intermed., 2016, 42(6), 5899-5914.
[http://dx.doi.org/10.1007/s11164-015-2412-8]
[56]
Zabala, J.C.; Cowan, N.J. Tubulin dimer formation via the release of? - and? -tubulin monomers from multimolecular complexes. Cell Motil. Cytoskeleton, 1992, 23(3), 222-230.
[http://dx.doi.org/10.1002/cm.970230306] [PMID: 1292878]
[57]
Downing, K.H.; Nogales, E. Tubulin structure: Insights into microtubule properties and functions. Curr. Opin. Struct. Biol., 1998, 8(6), 785-791.
[http://dx.doi.org/10.1016/S0959-440X(98)80099-7] [PMID: 9914260]
[58]
Arya, G.C.; Kaur, K.; Jaitak, V. Isoxazole derivatives as anticancer agent: A review on synthetic strategies, mechanism of action and SAR studies. Eur. J. Med. Chem., 2021, 221, 113511.
[http://dx.doi.org/10.1016/j.ejmech.2021.113511] [PMID: 34000484]
[59]
Popovici, L.; Amarandi, R.M.; Mangalagiu, I.I.; Mangalagiu, V.; Danac, R. Synthesis, molecular modelling and anticancer evaluation of new pyrrolo[1,2- b]pyridazine and pyrrolo[2,1- a]phthalazine derivatives. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 230-243.
[http://dx.doi.org/10.1080/14756366.2018.1550085] [PMID: 30734610]
[60]
El-Feky, S.A. Design, synthesis and in vitro antitumor activity of novel phthalazin-1, 4-dione/chalcone hybrids and phthalazin-1, 4-dione/pyrazoline hybrids. J. Chem. Pharm. Res., 2015, 7(7), 1154-1166.
[61]
Borah, N.A.; Reddy, M.M. Aurora kinase B inhibition: A potential therapeutic strategy for cancer. Molecules, 2021, 26(7), 1981.
[http://dx.doi.org/10.3390/molecules26071981] [PMID: 33915740]
[62]
Nigg, E.A. Mitotic kinases as regulators of cell division and its checkpoints. Nat. Rev. Mol. Cell Biol., 2001, 2(1), 21-32.
[http://dx.doi.org/10.1038/35048096] [PMID: 11413462]
[63]
Dieterich, K.; Soto Rifo, R.; Faure, A.K.; Hennebicq, S.; Ben Amar, B.; Zahi, M.; Perrin, J.; Martinez, D.; Sèle, B.; Jouk, P.S.; Ohlmann, T.; Rousseaux, S.; Lunardi, J.; Ray, P.F. Homozygous mutation of AURKC yields large-headed polyploid spermatozoa and causes male infertility. Nat. Genet., 2007, 39(5), 661-665.
[http://dx.doi.org/10.1038/ng2027] [PMID: 17435757]
[64]
Sharif, B.; Na, J.; Lykke-Hartmann, K.; McLaughlin, S.H.; Laue, E.; Glover, D.M.; Zernicka-Goetz, M. The chromosome passenger complex is required for fidelity of chromosome transmission and cytokinesis in meiosis of mouse oocytes. J. Cell Sci., 2010, 123(24), 4292-4300.
[http://dx.doi.org/10.1242/jcs.067447] [PMID: 21123620]
[65]
Carmena, M.; Earnshaw, W.C. The cellular geography of Aurora kinases. Nat. Rev. Mol. Cell Biol., 2003, 4(11), 842-854.
[http://dx.doi.org/10.1038/nrm1245] [PMID: 14625535]
[66]
Li, S.; Deng, Z.; Fu, J.; Xu, C.; Xin, G.; Wu, Z.; Luo, J.; Wang, G.; Zhang, S.; Zhang, B.; Zou, F.; Jiang, Q.; Zhang, C. Spatial compartmentalization specializes the function of Aurora A and Aurora B. J. Biol. Chem., 2015, 290(28), 17546-17558.
[http://dx.doi.org/10.1074/jbc.M115.652453] [PMID: 25987563]
[67]
Nguyen, H.G.; Chinnappan, D.; Urano, T.; Ravid, K. Mechanism of Aurora-B degradation and its dependency on intact KEN and A-boxes: Identification of an aneuploidy-promoting property. Mol. Cell. Biol., 2005, 25(12), 4977-4992.
[http://dx.doi.org/10.1128/MCB.25.12.4977-4992.2005] [PMID: 15923616]
[68]
Marumoto, T.; Zhang, D.; Saya, H. Aurora:A: A guardian of poles. Nat. Rev. Cancer, 2005, 5(1), 42-50.
[http://dx.doi.org/10.1038/nrc1526] [PMID: 15630414]
[69]
Galetta, D.; Cortes-Dericks, L. Promising therapy in lung cancer: Spotlight on aurora kinases. Cancers, 2020, 12(11), 3371.
[http://dx.doi.org/10.3390/cancers12113371] [PMID: 33202573]
[70]
Tang, A.; Gao, K.; Chu, L.; Zhang, R.; Yang, J.; Zheng, J. Aurora kinases: Novel therapy targets in cancers. Oncotarget, 2017, 8(14), 23937-23954.
[http://dx.doi.org/10.18632/oncotarget.14893] [PMID: 28147341]
[71]
Prime, M.E.; Courtney, S.M.; Brookfield, F.A.; Marston, R.W.; Walker, V.; Warne, J.; Boyd, A.E.; Kairies, N.A.; von der Saal, W.; Limberg, A.; Georges, G.; Engh, R.A.; Goller, B.; Rueger, P.; Rueth, M. Phthalazinone pyrazoles as potent, selective, and orally bioavailable inhibitors of Aurora: A kinase. J. Med. Chem., 2011, 54(1), 312-319.
[http://dx.doi.org/10.1021/jm101346r] [PMID: 21128645]

© 2024 Bentham Science Publishers | Privacy Policy