Review Article

The Surging Mechanistic Role of Angiotensin Converting Enzyme 2 in Human Pathologies: A Potential Approach for Herbal Therapeutics

Author(s): Priyadarshini Gupta and Vibha Rani*

Volume 24, Issue 13, 2023

Published on: 11 October, 2023

Page: [1046 - 1054] Pages: 9

DOI: 10.2174/0113894501247616231009065415

Price: $65

Open Access Journals Promotions 2
Abstract

Advancements in biological sciences revealed the significant role of angiotensin-converting enzyme 2 (ACE2), a key cell surface receptor in various human pathologies. ACE2 is a metalloproteinase that not only functions in the regulation of Angiotensin II but also possesses some non-catalytic roles in the human body. There is considerable uncertainty regarding its protein expression, despite its presence in virtually all organs. The level of ACE2 expression and its subcellular localisation in humans may be a key determinant of susceptibility to various infections, symptoms, and outcomes of numerous diseases. Therefore, we summarize the distribution and expression pattern of ACE2 in different cell types related to all major human tissues and organs. Moreover, this review constitutes accumulated evidences of the important resources for further studies on ACE2 Inhibitory capacity via different natural compounds in order to understand its mechanism as the potential drug target in disease pathophysiology and to aid in the development of an effective therapeutic approach towards the various diseases.

Keywords: Renin-angiotensin system, Gene expression, phytotherapeutics, natural compounds, diseases, cancer genome atlas.

Graphical Abstract
[1]
Chappell MC, Marshall AC, Alzayadneh EM, Shaltout HA, Diz DI. Update on the Angiotensin converting enzyme 2-Angiotensin (1-7)-MAS receptor axis: fetal programing, sex differences, and intracellular pathways. Front Endocrinol (Lausanne) 2014; 4: 201.
[http://dx.doi.org/10.3389/fendo.2013.00201] [PMID: 24409169]
[2]
Hamming I, Timens W, Bulthuis MLC, Lely AT, Navis GJ, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 2004; 203(2): 631-7.
[http://dx.doi.org/10.1002/path.1570] [PMID: 15141377]
[3]
Inoue N, Kasahara T, Ikawa M, Okabe M. Identification and disruption of sperm-specific angiotensin converting enzyme-3 (ACE3) in mouse. PLoS One 2010; 5(4): e10301.
[http://dx.doi.org/10.1371/journal.pone.0010301] [PMID: 20421979]
[4]
Gembardt F, Sterner-Kock A, Imboden H, et al. Organ-specific distribution of ACE2 mRNA and correlating peptidase activity in rodents. Peptides 2005; 26(7): 1270-7.
[http://dx.doi.org/10.1016/j.peptides.2005.01.009] [PMID: 15949646]
[5]
South AM, Diz DI, Chappell MC. COVID-19, ACE2, and the cardiovascular consequences. Am J Physiol Heart Circ Physiol 2020; 318(5): H1084-90.
[http://dx.doi.org/10.1152/ajpheart.00217.2020] [PMID: 32228252]
[6]
Patel S, Rauf A, Khan H, Abu-Izneid T. Renin-angiotensin-aldosterone (RAAS): The ubiquitous system for homeostasis and pathologies. Biomed Pharmacother 2017; 94: 317-25.
[http://dx.doi.org/10.1016/j.biopha.2017.07.091] [PMID: 28772209]
[7]
de Oliveira EC, Becker LK, Totou NL, et al. Lifetime overproduction of circulating angiotensin-(1-7) in rats attenuates the increase in skeletal muscle damage biomarkers after exhaustive exercise. Chin J Physiol 2019; 62(5): 226-30.
[http://dx.doi.org/10.4103/CJP.CJP_57_19] [PMID: 31670287]
[8]
Kuba K, Imai Y, Ohto-Nakanishi T, Penninger JM. Trilogy of ACE2: A peptidase in the renin–angiotensin system, a SARS receptor, and a partner for amino acid transporters. Pharmacol Ther 2010; 128(1): 119-28.
[http://dx.doi.org/10.1016/j.pharmthera.2010.06.003] [PMID: 20599443]
[9]
WHO. Situation Report - 75. 2020. Available From: https://www.who.int/publications/m/item/situation-report---75
[10]
Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nat Med 2005; 11(8): 875-9.
[http://dx.doi.org/10.1038/nm1267] [PMID: 16007097]
[11]
Viana SD, Nunes S, Reis F. ACE2 imbalance as a key player for the poor outcomes in COVID-19 patients with age-related comorbidities – Role of gut microbiota dysbiosis. Ageing Res Rev 2020; 62: 101123.
[http://dx.doi.org/10.1016/j.arr.2020.101123] [PMID: 32683039]
[12]
Sharma N, Anders HJ, Gaikwad AB. Fiend and friend in the renin angiotensin system: An insight on acute kidney injury. Biomed Pharmacother 2019; 110: 764-74.
[http://dx.doi.org/10.1016/j.biopha.2018.12.018] [PMID: 30554115]
[13]
Wu CH, Mohammadmoradi S, Chen JZ, Sawada H, Daugherty A, Lu HS. Renin-Angiotensin System and Cardiovascular Functions. Arterioscler Thromb Vasc Biol 2018; 38(7): e108-16.
[http://dx.doi.org/10.1161/ATVBAHA.118.311282] [PMID: 29950386]
[14]
Malik U, Raizada V. Some Aspects of the Renin-Angiotensin-System in Hemodialysis Patients. Kidney Blood Press Res 2015; 40(6): 614-22.
[http://dx.doi.org/10.1159/000368537] [PMID: 26618349]
[15]
Ni W, Yang X, Yang D, et al. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit Care 2020; 24(1): 422.
[http://dx.doi.org/10.1186/s13054-020-03120-0] [PMID: 32660650]
[16]
Paz Ocaranza M, Riquelme JA, García L, et al. Counter-regulatory renin–angiotensin system in cardiovascular disease. Nat Rev Cardiol 2020; 17(2): 116-29.
[http://dx.doi.org/10.1038/s41569-019-0244-8] [PMID: 31427727]
[17]
Li MY, Li L, Zhang Y, Wang XS. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty 2020; 9(1): 45.
[http://dx.doi.org/10.1186/s40249-020-00662-x] [PMID: 32345362]
[18]
Bindom SM, Hans CP, Xia H, Boulares AH, Lazartigues E. Angiotensin I-converting enzyme type 2 (ACE2) gene therapy improves glycemic control in diabetic mice. Diabetes 2010; 59(10): 2540-8.
[http://dx.doi.org/10.2337/db09-0782] [PMID: 20660625]
[19]
Cheng Q, Leung PS. An update on the islet renin–angiotensin system. Peptides 2011; 32(5): 1087-95.
[http://dx.doi.org/10.1016/j.peptides.2011.03.003] [PMID: 21396973]
[20]
Lonsdale J, Thomas J, Salvatore M, et al. The Genotype-Tissue Expression (GTEx) project. Nat Genet 2013; 45(6): 580-5.
[http://dx.doi.org/10.1038/ng.2653] [PMID: 23715323]
[21]
Wang Z, Xu X. scRNA-seq Profiling of Human Testes Reveals the Presence of the ACE2 Receptor, A Target for SARS-CoV-2 Infection in Spermatogonia, Leydig and Sertoli Cells. Cells 2020; 9(4): 920.
[http://dx.doi.org/10.3390/cells9040920] [PMID: 32283711]
[22]
Raghav PK, Kalyanaraman K, Kumar D. Human cell receptors: potential drug targets to combat COVID-19. Amino Acids 2021; 53(6): 813-42.
[http://dx.doi.org/10.1007/s00726-021-02991-z] [PMID: 33950300]
[23]
Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W. Single-Cell RNA Expression Profiling of ACE2, the Receptor of SARS-CoV-2. Am J Respir Crit Care Med 2020; 202(5): 756-9.
[http://dx.doi.org/10.1164/rccm.202001-0179LE] [PMID: 32663409]
[24]
Li Y, Zhou W, Yang L, You R. Physiological and pathological regulation of ACE2, the SARS-CoV-2 receptor. Pharmacol Res 2020; 157: 104833.
[http://dx.doi.org/10.1016/j.phrs.2020.104833] [PMID: 32302706]
[25]
Abdelli I, Hassani F, Bekkel Brikci S, Ghalem S. In silico study the inhibition of angiotensin converting enzyme 2 receptor of COVID-19 by Ammoides verticillata components harvested from Western Algeria. J Biomol Struct Dyn 2020; 1-14.
[http://dx.doi.org/10.1080/07391102.2020.1763199] [PMID: 32362217]
[26]
Singh H, Choudhari R, Nema V, Khan AA. ACE2 and TMPRSS2 polymorphisms in various diseases with special reference to its impact on COVID-19 disease. Microb Pathog 2021; 150: 104621.
[http://dx.doi.org/10.1016/j.micpath.2020.104621] [PMID: 33278516]
[27]
Shang Y, Pan C, Yang X, et al. Management of critically ill patients with COVID-19 in ICU: statement from front-line intensive care experts in Wuhan, China. Ann Intensive Care 2020; 10(1): 73.
[http://dx.doi.org/10.1186/s13613-020-00689-1] [PMID: 32506258]
[28]
Crackower MA, Sarao R, Oudit GY, et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 2002; 417(6891): 822-8.
[http://dx.doi.org/10.1038/nature00786] [PMID: 12075344]
[29]
Forrester SJ, Booz GW, Sigmund CD, et al. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98(3): 1627-738.
[http://dx.doi.org/10.1152/physrev.00038.2017] [PMID: 29873596]
[30]
Chen L, Hao G. The role of angiotensin-converting enzyme 2 in coronaviruses/influenza viruses and cardiovascular disease. Cardiovasc Res 2020; 116(12): 1932-6.
[http://dx.doi.org/10.1093/cvr/cvaa093] [PMID: 32267499]
[31]
Chen J, Ma Y, Li H, et al. Rare and potential pathogenic mutations of LMNA and LAMA4 associated with familial arrhythmogenic right ventricular cardiomyopathy/dysplasia with right ventricular heart failure, cerebral thromboembolism and hereditary electrocardiogram abnormality. Orphanet J Rare Dis 2022; 17(1): 183.
[http://dx.doi.org/10.1186/s13023-022-02348-z] [PMID: 35526016]
[32]
Fan Q, Zhu H, Zhao J, et al. Risk factors for myocardial injury in patients with coronavirus disease 2019 in China. ESC Heart Fail 2020; 7(6): 4108-17.
[http://dx.doi.org/10.1002/ehf2.13022] [PMID: 33006440]
[33]
Guan W, Ni Z, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med 2020; 382(18): 1708-20.
[http://dx.doi.org/10.1056/NEJMoa2002032] [PMID: 32109013]
[34]
Yamamoto K, Ohishi M, Katsuya T, et al. Deletion of angiotensin-converting enzyme 2 accelerates pressure overload-induced cardiac dysfunction by increasing local angiotensin II. Hypertension 2006; 47(4): 718-26.
[http://dx.doi.org/10.1161/01.HYP.0000205833.89478.5b] [PMID: 16505206]
[35]
Aguiar JA, Tremblay BJM, Mansfield MJ, et al. Gene expression and in situ protein profiling of candidate SARS-CoV-2 receptors in human airway epithelial cells and lung tissue. Eur Respir J 2020; 56(3): 2001123.
[http://dx.doi.org/10.1183/13993003.01123-2020] [PMID: 32675206]
[36]
Selo MA, Sake JA, Kim KJ, Ehrhardt C. In vitro and ex-vivo models in inhalation biopharmaceutical research — advances, challenges and future perspectives. Adv Drug Deliv Rev 2021; 177: 113862.
[http://dx.doi.org/10.1016/j.addr.2021.113862] [PMID: 34256080]
[37]
Cui X, Chen W, Zhou H, et al. Pulmonary Edema in COVID-19 Patients: Mechanisms and Treatment Potential. Front Pharmacol 2021; 12: 664349.
[http://dx.doi.org/10.3389/fphar.2021.664349] [PMID: 34163357]
[38]
Imai Y, Kuba K, Penninger JM. The discovery of angiotensin-converting enzyme 2 and its role in acute lung injury in mice. Exp Physiol 2008; 93(5): 543-8.
[http://dx.doi.org/10.1113/expphysiol.2007.040048] [PMID: 18448662]
[39]
Thomas MC, Pickering RJ, Tsorotes D, et al. Genetic Ace2 deficiency accentuates vascular inflammation and atherosclerosis in the ApoE knockout mouse. Circ Res 2010; 107(7): 888-97.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.219279] [PMID: 20671240]
[40]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[41]
Cheng Y, Luo R, Wang K, et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int 2020; 97(5): 829-38.
[http://dx.doi.org/10.1016/j.kint.2020.03.005] [PMID: 32247631]
[42]
Liu J, Ji H, Zheng W, et al. Sex differences in renal angiotensin converting enzyme 2 (ACE2) activity are 17β-oestradiol-dependent and sex chromosome-independent. Biol Sex Differ 2010; 1(1): 6.
[http://dx.doi.org/10.1186/2042-6410-1-6] [PMID: 21208466]
[43]
Ye M, Wysocki J, Naaz P, Salabat MR, LaPointe MS, Batlle D. Increased ACE 2 and decreased ACE protein in renal tubules from diabetic mice: a renoprotective combination? Hypertension 2004; 43(5): 1120-5.
[http://dx.doi.org/10.1161/01.HYP.0000126192.27644.76] [PMID: 15078862]
[44]
Nath KA, Singh RD, Grande JP, et al. Expression of ACE2 in the Intact and Acutely Injured Kidney. Kidney360 2021; 2(7): 1095-106.
[http://dx.doi.org/10.34067/KID.0001562021] [PMID: 35368365]
[45]
Subramanian A, Vernon KA, Slyper M, Waldman J, Luecken MD, Gosik K. RAAS blockade, kidney disease, and expression of ACE2, the entry receptor for SARS-CoV-2, in kidney epithelial and endothelial cells Human Cell. BioRxiv 2020.
[http://dx.doi.org/10.1101/2020.06.23.167098]
[46]
Perlot T, Penninger JM. ACE2 – From the renin–angiotensin system to gut microbiota and malnutrition. Microbes Infect 2013; 15(13): 866-73.
[http://dx.doi.org/10.1016/j.micinf.2013.08.003] [PMID: 23962453]
[47]
Guo Y, Wang B, Gao H, Gao L, Hua R, Xu JD. ACE2 in the Gut: The Center of the 2019-nCoV Infected Pathology. Front Mol Biosci 2021; 8: 708336.
[http://dx.doi.org/10.3389/fmolb.2021.708336] [PMID: 34631794]
[48]
Yu Z, Yang Z, Wang Y, et al. Recent advance of ACE2 and microbiota dysfunction in COVID-19 pathogenesis. Heliyon 2021; 7(7): e07548.
[http://dx.doi.org/10.1016/j.heliyon.2021.e07548] [PMID: 34296023]
[49]
Koester ST, Li N, Lachance DM, Morella NM, Dey N. Variability in digestive and respiratory tract Ace2 expression is associated with the microbiome. PLoS One 2021; 16(3): e0248730.
[http://dx.doi.org/10.1371/journal.pone.0248730] [PMID: 33725024]
[50]
Sundararaman A, Ray M, Ravindra PV, Halami PM. Role of probiotics to combat viral infections with emphasis on COVID-19. Appl Microbiol Biotechnol 2020; 104(19): 8089-104.
[http://dx.doi.org/10.1007/s00253-020-10832-4] [PMID: 32813065]
[51]
Niu MJ, Yang JK, Lin SS, Ji XJ, Guo LM. Loss of angiotensin-converting enzyme 2 leads to impaired glucose homeostasis in mice. Endocrine 2008; 34(1-3): 56-61.
[http://dx.doi.org/10.1007/s12020-008-9110-x] [PMID: 18956256]
[52]
Patel VB, Bodiga S, Fan D, et al. Cardioprotective effects mediated by angiotensin II type 1 receptor blockade and enhancing angiotensin 1-7 in experimental heart failure in angiotensin-converting enzyme 2-null mice. Hypertension 2012; 59(6): 1195-203.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.112.191650] [PMID: 22508831]
[53]
Basu R, Oudit GY, Wang X, et al. Type 1 diabetic cardiomyopathy in the Akita ( Ins2WT/C96Y ) mouse model is characterized by lipotoxicity and diastolic dysfunction with preserved systolic function. Am J Physiol Heart Circ Physiol 2009; 297(6): H2096-108.
[http://dx.doi.org/10.1152/ajpheart.00452.2009] [PMID: 19801494]
[54]
Akhtar S, Yousif MHM, Dhaunsi GS, Chandrasekhar B, Al-Farsi O, Benter IF. Angiotensin-(1-7) inhibits epidermal growth factor receptor transactivation via a Mas receptor-dependent pathway. Br J Pharmacol 2012; 165(5): 1390-400.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01613.x] [PMID: 21806601]
[55]
Crowe DL, Shuler CF. Regulation of tumor cell invasion by extracellular matrix. Histol Histopathol 1999; 14(2): 665-71.
[http://dx.doi.org/10.14670/HH-14.665] [PMID: 10212827]
[56]
Liu Y, Qu HQ, Qu J, Tian L, Hakonarson H. Expression Pattern of the SARS-CoV-2 Entry Genes ACE2 and TMPRSS2 in the Respiratory Tract. Viruses 2020; 12(10): 1174.
[http://dx.doi.org/10.3390/v12101174] [PMID: 33081421]
[57]
Wan H, Ni L, Wan H, et al. Overexpression of ACE2 produces antitumor effects via inhibition of angiogenesis and tumor cell invasion in vivo and in vitro. Oncol Rep 2011; 26(5): 1157-64.
[http://dx.doi.org/10.3892/or.2011.1394] [PMID: 21769437]
[58]
Liu C, Wang K, Zhang M, et al. High expression of ACE2 and TMPRSS2 and clinical characteristics of COVID-19 in colorectal cancer patients. NPJ Precis Oncol 2021; 5(1): 1.
[http://dx.doi.org/10.1038/s41698-020-00139-y] [PMID: 33479506]
[59]
Wang Q, Li L, Qu T, et al. High Expression of ACE2 and TMPRSS2 at the Resection Margin Makes Lung Cancer Survivors Susceptible to SARS-CoV-2 With Unfavorable Prognosis. Front Oncol 2021; 11: 644575.
[http://dx.doi.org/10.3389/fonc.2021.644575] [PMID: 34094930]
[60]
Dai YJ, Hu F, Li H, Huang HY, Wang DW, Liang Y. A profiling analysis on the receptor ACE2 expression reveals the potential risk of different type of cancers vulnerable to SARS-CoV-2 infection. Ann Transl Med 2020; 8(7): 481-1.
[http://dx.doi.org/10.21037/atm.2020.03.61] [PMID: 32395525]
[61]
Liu C, Zhou Q, Li Y, et al. Research and Development on Therapeutic Agents and Vaccines for COVID-19 and Related Human Coronavirus Diseases. ACS Cent Sci 2020; 6(3): 315-31.
[http://dx.doi.org/10.1021/acscentsci.0c00272] [PMID: 32226821]
[62]
Luethi D, Liechti ME. Designer drugs: mechanism of action and adverse effects. Arch Toxicol 2020; 94(4): 1085-133.
[http://dx.doi.org/10.1007/s00204-020-02693-7] [PMID: 32249347]
[63]
Rakib A, Paul A, Chy MNU, et al. Biochemical and Computational Approach of Selected Phytocompounds from Tinospora crispa in the Management of COVID-19. Molecules 2020; 25(17): 3936.
[http://dx.doi.org/10.3390/molecules25173936] [PMID: 32872217]
[64]
Joshi S, Balasubramanian N, Vasam G, Jarajapu YPR. Angiotensin converting enzyme versus angiotensin converting enzyme-2 selectivity of MLN-4760 and DX600 in human and murine bone marrow-derived cells. Eur J Pharmacol 2016; 774: 25-33.
[http://dx.doi.org/10.1016/j.ejphar.2016.01.007] [PMID: 26851370]
[65]
Yang Z, Yu X, Cheng L, et al. Effects of enalapril on the expression of cardiac angiotensin-converting enzyme and angiotensin-converting enzyme 2 in spontaneously hypertensive rats. Arch Cardiovasc Dis 2013; 106(4): 196-201.
[http://dx.doi.org/10.1016/j.acvd.2013.01.004] [PMID: 23706365]
[66]
Yudi Utomo R, Meiyanto E. Revealing the Potency of Citrus and Galangal Constituents to Halt SARS-CoV-2 Infection Preprints 2020.
[http://dx.doi.org/10.20944/preprints202003.0214.v1]
[67]
Wachtel-Galor S, Benzie IFF. Herbal Medicine: An Introduction to Its History, Usage, Regulation, Current Trends, and Research Needs. Herbal Medicine: Biomolecular and Clinical Aspects. Boca Raton (FL): CRC Press/Taylor & Francis 2011.
[68]
Li JWH, Vederas JC. Drug discovery and natural products: end of an era or an endless frontier? Science 2009; 325(5937): 161-5.
[http://dx.doi.org/10.1126/science.1168243] [PMID: 19589993]
[69]
Gheblawi M, Wang K, Viveiros A, et al. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System. Circ Res 2020; 126(10): 1456-74.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.317015] [PMID: 32264791]
[70]
Muchtaridi M, Fauzi M, Khairul Ikram NK, Mohd Gazzali A, Wahab HA. Natural Flavonoids as Potential Angiotensin-Converting Enzyme 2 Inhibitors for Anti-SARS-CoV-2. Molecules 2020; 25(17): 3980.
[http://dx.doi.org/10.3390/molecules25173980] [PMID: 32882868]
[71]
Benarba B, Pandiella A. Medicinal Plants as Sources of Active Molecules Against COVID-19. Front Pharmacol 2020; 11: 1189.
[http://dx.doi.org/10.3389/fphar.2020.01189] [PMID: 32848790]
[72]
Chau F, Fung K, Koon C, Lau K, Wei S, Leung P. Bioactive Components in Herbal Medicine Experimental Approaches.Herbal Medicine: Biomolecular and Clinical Aspects. (2nd edi..), Rockville Pike: National Library of Medicine 2011.
[73]
Patten GS, Abeywardena MY, Bennett LE. Inhibition of Angiotensin Converting Enzyme, Angiotensin II Receptor Blocking, and Blood Pressure Lowering Bioactivity across Plant Families. Crit Rev Food Sci Nutr 2016; 56(2): 181-214.
[http://dx.doi.org/10.1080/10408398.2011.651176] [PMID: 24915402]
[74]
Abubakar MB, Usman D, El-Saber Batiha G, et al. Natural Products Modulating Angiotensin Converting Enzyme 2 (ACE2) as Potential COVID-19 Therapies. Front Pharmacol 2021; 12: 629935.
[http://dx.doi.org/10.3389/fphar.2021.629935] [PMID: 34012391]
[75]
Rathinavel T, Palanisamy M, Palanisamy S, Subramanian A, Thangaswamy S. Phytochemical 6-Gingerol – A promising Drug of choice for COVID-19. International Journal of Advanced Science and Engineering 2020; 6(4): 1482-9.
[http://dx.doi.org/10.29294/IJASE.6.4.2020.1482-1489]
[76]
Thuy BTP, My TTA, Hai NTT, et al. Investigation into SARS-CoV-2 Resistance of Compounds in Garlic Essential Oil. ACS Omega 2020; 5(14): 8312-20.
[http://dx.doi.org/10.1021/acsomega.0c00772] [PMID: 32363255]
[77]
Sharma M, Kishore K, Gupta SK, Joshi S, Arya DS. Cardioprotective potential of ocimum sanctum in isoproterenol induced myocardial infarction in rats. Mol Cell Biochem 2001; 225(1/2): 75-83.
[http://dx.doi.org/10.1023/A:1012220908636] [PMID: 11716367]
[78]
Wen CC, Kuo YH, Jan JT, et al. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J Med Chem 2007; 50(17): 4087-95.
[http://dx.doi.org/10.1021/jm070295s] [PMID: 17663539]
[79]
Kumar G, Kumar D, Singh NP. Therapeutic Approach against 2019-nCoV by Inhibition of ACE-2 Receptor. Drug Res (Stuttg) 2021; 71(4): 213-8.
[http://dx.doi.org/10.1055/a-1275-0228] [PMID: 33184809]
[80]
Ashour OM, Abdel-Naim AB, Abdallah HM, Nagy AA, Mohamadin AM, Abdel-Sattar EA. Evaluation of the potential cardioprotective activity of some Saudi plants against doxorubicin toxicity. Z Naturforsch C J Biosci 2012; 67(5-6): 297-307.
[http://dx.doi.org/10.1515/znc-2012-5-609] [PMID: 22888535]
[81]
Sharma P, Dwivedee BP, Bisht D, Dash AK, Kumar D. The chemical constituents and diverse pharmacological importance of Tinospora cordifolia. Heliyon 2019; 5(9): e02437.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02437] [PMID: 31701036]
[82]
Alpsoy S, Aktas C, Uygur R, et al. Antioxidant and anti-apoptotic effects of onion ( Allium cepa ) extract on doxorubicin-induced cardiotoxicity in rats. J Appl Toxicol 2013; 33(3): 202-8.
[http://dx.doi.org/10.1002/jat.1738] [PMID: 21996788]
[83]
Chen J, Wang P, Xia Y, Xu M, Pei S. Genetic diversity and differentiation of Camellia sinensis L. (cultivated tea) and its wild relatives in Yunnan province of China, revealed by morphology, biochemistry and allozyme studies. Genet Resour Crop Evol 2005; 52(1): 41-52.
[http://dx.doi.org/10.1007/s10722-005-0285-1]
[84]
Dwivedi S, Chopra D. Revisiting Terminalia arjuna – An Ancient Cardiovascular Drug. J Tradit Complement Med 2014; 4(4): 224-31.
[http://dx.doi.org/10.4103/2225-4110.139103] [PMID: 25379463]
[85]
K A, K S. A novel antifungal protein with lysozyme-like activity from seeds of Clitoria ternatea. Appl Biochem Biotechnol 2014; 173(3): 682-93.
[http://dx.doi.org/10.1007/s12010-014-0880-8] [PMID: 24691882]
[86]
Santos CA, Almeida FA, Quecán BXV, et al. Bioactive Properties of Syzygium cumini (L.) Skeels Pulp and Seed Phenolic Extracts. Front Microbiol 2020; 11: 990.
[http://dx.doi.org/10.3389/fmicb.2020.00990] [PMID: 32528438]
[87]
Alghamdi S, Migdadi H, Khan M, El-Harty EH, Ammar M, Farooq M. Phytochemical Profiling of Soybean (Glycine max (L.) Merr.) Genotypes Using GC-MS Analysis.Phytochemicals - Source of Antioxidants and Role in Disease Prevention. London: IntechOpen Limited 2018.
[http://dx.doi.org/10.5772/intechopen.78035]
[88]
Marami LM, Dilba GM, Babele DA, et al. Phytochemical Screening and in-vitro Evaluation of Antibacterial Activities of Echinops amplexicaulis, Ruta chalepensis and Salix subserrata Against Selected Pathogenic Bacterial Strains in West Shewa Zone, Ethiopia. J Exp Pharmacol 2021; 13: 511-20.
[http://dx.doi.org/10.2147/JEP.S305936] [PMID: 34040458]
[89]
Tang Y, Tsao R. Phytochemicals in quinoa and amaranth grains and their antioxidant, anti-inflammatory, and potential health beneficial effects: a review. Mol Nutr Food Res 2017; 61(7): 1600767.
[http://dx.doi.org/10.1002/mnfr.201600767] [PMID: 28239982]
[90]
Lima EBC, Sousa CNS, Meneses LN, et al. Cocos nucifera (L.) (Arecaceae): A phytochemical and pharmacological review. Braz J Med Biol Res 2015; 48(11): 953-64.
[http://dx.doi.org/10.1590/1414-431x20154773] [PMID: 26292222]
[91]
Kauser A, Shah SMA, Iqbal N, et al. in vitro antioxidant and cytotoxic potential of methanolic extracts of selected indigenous medicinal plants. Prog Nutr 2018; 20: 706-12.
[http://dx.doi.org/10.23751/pn.v20i4.7523]
[92]
El-Saber Batiha G, Alkazmi LM, Wasef LG, Beshbishy AM, Nadwa EH, Rashwan EK. Syzygium aromaticum L. (Myrtaceae): Traditional Uses, Bioactive Chemical Constituents, Pharmacological and Toxicological Activities. Biomolecules 2020; 10(2): 202.
[http://dx.doi.org/10.3390/biom10020202] [PMID: 32019140]
[93]
Pastorino G, Cornara L, Soares S, Rodrigues F, Oliveira MBPP. Liquorice (Glycyrrhiza glabra ): A phytochemical and pharmacological review. Phytother Res 2018; 32(12): 2323-39.
[http://dx.doi.org/10.1002/ptr.6178] [PMID: 30117204]
[94]
Elhassan MA, Hoyam HSA, Samia HA, Salwa MEKGC. MS Analysis of Pumpkin Seeds (Cucurbita maxima, Cucurbitaceae). Archives of Business Research 2018; 6: 1-9.
[http://dx.doi.org/10.14738/abr.68.4933]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy