Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Review Article

An Outlook of Substantial Progress in Nanotechnology Emerged in Treatment Approaches for Rheumatoid Arthritis

Author(s): Amana Parveen*, Pranay Wal, Awani Kumar Rai and Ankita Wal

Volume 19, Issue 3, 2024

Published on: 10 October, 2023

Page: [289 - 301] Pages: 13

DOI: 10.2174/0115748855238869231002073717

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Rheumatoid arthritis affects roughly 5 out of every 1000 persons, rheumatoid arthritis is a persistent anarchic ailment with complicated pathophysiology a well-known cause of arthritis- related stinging apropos nexus, degradation of synovium, the creation of pannus, damage to bones, and loss of the cartilage. Thus, it is imperative to diagnose and treat rheumatoid arthritis. Due to rheumatoid arthritis's complexity, early diagnosis is difficult, which makes the treatment difficult. Moreover, anti- rheumatoid arthritis drugs taken on a long-term basis can damage patients' organs as well. Due to this, these anti- rheumatoid arthritis medications may cause severe side effects in extraarticular tissues since they cannot selectively target the affected zone. There has been substantial progress in the discovery of this disease's pathophysiology and treatment strategy over the past few years, as well as in developing effective diagnostic methods, early detection, and efficient treatment strategies. In the rheumatoid arthritis, nanotechnology has come to the fore as a game-changer in effectively managing many diseases. Various nanotechnology approaches are promising for designing formulations that can deliver drugs to bone and cartilage in targeted and non-targeted ways like Targeting receptors on inflammation-related cells (CD44, Scavengers receptors, etc.).

Conclusion: Nanotechnology is used to treat Rheumatoid arthritis, improve implants and prostheses, and develop new diagnostic and treatment methods in orthopedic medicine. Many chronic orthopedic diseases exist, but rheumatoid arthritis is the most common. Several research studies have found that nanotechnology could deliver targeted drugs, reduce adverse effects on non-target organs, increase drug concentration in synovial tissues, and slow the progression of immune-mediated rheumatoid diseases such as rheumatoid arthritis. This review examines how nanotechnology can be used to diagnose and treat rheumatoid arthritis.

Keywords: Rheumatoid arthritis, pathophysiology, nanomedicine, drug delivery, nanotechnology, anti- rheumatoid arthritis drugs.

Graphical Abstract
[1]
Üreten K. Maraş HH. Automated classification of rheumatoid arthritis, osteoarthritis, and normal hand radiographs with deep learning methods. J Digit Imaging 2022; 35(2): 193-9.
[http://dx.doi.org/10.1007/s10278-021-00564-w] [PMID: 35018539]
[2]
Wawrzyniak A, Balawender K. Structural and Metabolic Changes in Bone. Animals (Basel) 2022; 12(15): 1946.
[http://dx.doi.org/10.3390/ani12151946] [PMID: 35953935]
[3]
Chancay MG, Guendsechadze SN, Blanco I. Types of pain and their psychosocial impact in women with rheumatoid arthritis. Womens Midlife Health 2019; 5(1): 3.
[http://dx.doi.org/10.1186/s40695-019-0047-4] [PMID: 31417683]
[4]
Ren J, Masi AT, Aldag JC, Asche CV. Hereditary, socio-behavioural, and immuno-hormonal predictors of incident rheumatoid arthritis and therapy response influences on survival versus matched control subjects using a generalised structural equation model. Clin Exp Rheumatol 2020; 38(4): 640-8.
[PMID: 31694742]
[5]
Naik SA, Parhad SV, Bairagi RS. A detailed review on Rheumatoid Arthritis (RA). Int J Res Pub Rev 2022; 3(7): 486-94.
[6]
Hsieh LF, Mao HF, Lu CC, Hsu WL. Rheumatologic rehabilitation. Internist (Berl) 2010; 51(10): 1239-45.
[7]
Erre GL, Buscetta G, Mangoni AA, et al. Diagnostic accuracy of different blood cells-derived indexes in rheumatoid arthritis. Medicine (Baltimore) 2020; 99(44): e22557.
[http://dx.doi.org/10.1097/MD.0000000000022557] [PMID: 33126304]
[8]
Gwinnutt JM, Verstappen SMM, Humphreys JH. The impact of lifestyle behaviours, physical activity and smoking on morbidity and mortality in patients with rheumatoid arthritis. Best Pract Res Clin Rheumatol 2020; 34(2): 101562.
[http://dx.doi.org/10.1016/j.berh.2020.101562] [PMID: 32646673]
[9]
Intriago M, Maldonado G, Cárdenas J, Ríos C. Clinical characteristics in patients with rheumatoid arthritis: Differences between genders. ScientificWorldJournal 2019; 2019: 1-6.
[http://dx.doi.org/10.1155/2019/8103812] [PMID: 31354388]
[10]
Romão VC, Fonseca JE. Etiology and Risk Factors for Rheumatoid Arthritis: A State-of-the-Art Review. Front Med (Lausanne) 2021; 8: 689698.
[http://dx.doi.org/10.3389/fmed.2021.689698] [PMID: 34901047]
[11]
Zhao J, Chen X, Ho KH, et al. Nanotechnology for diagnosis and therapy of rheumatoid arthritis: Evolution towards theranostic approaches. Chin Chem Lett 2021; 32(1): 66-86.
[http://dx.doi.org/10.1016/j.cclet.2020.11.048]
[12]
ten Klooster PM, de Graaf N, Vonkeman HE. Association between pain phenotype and disease activity in rheumatoid arthritis patients: A non-interventional, longitudinal cohort study. Arthritis Res Ther 2019; 21(1): 257.
[http://dx.doi.org/10.1186/s13075-019-2042-4] [PMID: 31783899]
[13]
Cheng Q, Chen X, Wu H, Du Y. Three hematologic/immune system-specific expressed genes are considered as the potential biomarkers for the diagnosis of early rheumatoid arthritis through bioinformatics analysis. J Transl Med 2021; 19(1): 18.
[http://dx.doi.org/10.1186/s12967-020-02689-y] [PMID: 33407587]
[14]
Aziz Z, Al-Bustany DA. Neutrophil: Lymphocyte Ratio and Platelet: Lymphocyte Ratio related to Disease Activity among Rheumatoid Arthritis in Erbil governorate/Iraq. Polytechnic Journal 2022; 12: 79-88.
[15]
Filippucci E, Cipolletta E, Mashadi Mirza R, et al. Ultrasound imaging in rheumatoid arthritis. Radiol Med (Torino) 2019; 124(11): 1087-100.
[http://dx.doi.org/10.1007/s11547-019-01002-2] [PMID: 30852792]
[16]
Moura RA, Fonseca JE. JAK inhibitors and modulation of B cell immune responses in rheumatoid arthritis. Front Med (Lausanne) 2021; 7: 607725.
[http://dx.doi.org/10.3389/fmed.2020.607725] [PMID: 33614673]
[17]
Zhang C. Flare up of cytokines in rheumatoid arthritis and their role in triggering depression: Shared common function and their possible applications in treatment (Review). Biomed Rep 2020; 14(1): 16.
[http://dx.doi.org/10.3892/br.2020.1392] [PMID: 33269077]
[18]
Hascoët E, Blanchard F, Blin-Wakkach C, Guicheux J, Lesclous P, Cloitre A. New insights into inflammatory osteoclast precursors as therapeutic targets for rheumatoid arthritis and periodontitis. Bone Res 2023; 11(1): 26.
[http://dx.doi.org/10.1038/s41413-023-00257-w] [PMID: 37217496]
[19]
Jacques C, Floris I, Lejeune B. Ultra-low dose cytokines in rheumatoid arthritis, three birds with one stone as the rationale of the 2LARTH® micro-immunotherapy treatment. Int J Mol Sci 2021; 22(13): 6717.
[http://dx.doi.org/10.3390/ijms22136717] [PMID: 34201546]
[20]
Kany S, Vollrath JT, Relja B. Cytokines in inflammatory disease. Int J Mol Sci 2019; 20(23): 6008.
[http://dx.doi.org/10.3390/ijms20236008] [PMID: 31795299]
[21]
Subedi S, Gong Y, Chen Y, Shi Y. Infliximab and biosimilar infliximab in psoriasis: Efficacy, loss of efficacy, and adverse events. Drug Des Devel Ther 2019; 13: 2491-502.
[http://dx.doi.org/10.2147/DDDT.S200147] [PMID: 31413544]
[22]
Zhao C, Pan Y, Yu G, Zhao XZ, Chen X, Rao L. Vesicular antibodies: Shedding light on antibody therapeutics with cell membrane nanotechnology. Adv Mater 2023; 35(12): 2207875.
[http://dx.doi.org/10.1002/adma.202207875] [PMID: 36721058]
[23]
Xiao S, Tang Y, Lv Z, Lin Y, Chen L. Nanomedicine – advantages for their use in rheumatoid arthritis theranostics. J Control Release 2019; 316: 302-16.
[http://dx.doi.org/10.1016/j.jconrel.2019.11.008] [PMID: 31715278]
[24]
Shanley LC, Mahon OR, Kelly DJ, Dunne A. Harnessing the innate and adaptive immune system for tissue repair and regeneration: Considering more than macrophages. Acta Biomater 2021; 133: 208-21.
[http://dx.doi.org/10.1016/j.actbio.2021.02.023] [PMID: 33657453]
[25]
Ientile R, Caccamo D, Griffin M. Tissue transglutaminase and the stress response. Amino Acids 2007; 33(2): 385-94.
[http://dx.doi.org/10.1007/s00726-007-0517-0] [PMID: 17390097]
[26]
Song S, Xia H, Guo M, et al. Role of macrophage in nanomedicine-based disease treatment. Drug Deliv 2021; 28(1): 752-66.
[http://dx.doi.org/10.1080/10717544.2021.1909175] [PMID: 33860719]
[27]
Gorantla S, Gorantla G, Saha RN, Singhvi G. CD44 receptor-targeted novel drug delivery strategies for rheumatoid arthritis therapy. Expert Opin Drug Deliv 2021; 18(11): 1553-7.
[http://dx.doi.org/10.1080/17425247.2021.1950686] [PMID: 34190674]
[28]
Cannito S, Bincoletto V, Turato C, et al. Hyaluronated and PEGylated Liposomes as a Potential Drug-Delivery Strategy to Specifically Target Liver Cancer and Inflammatory Cells. Molecules 2022; 27(3): 1062.
[http://dx.doi.org/10.3390/molecules27031062] [PMID: 35164326]
[29]
Ju Y, Liao H, Richardson JJ, Guo J, Caruso F. Nanostructured particles assembled from natural building blocks for advanced therapies. Chem Soc Rev 2022; 51(11): 4287-336.
[http://dx.doi.org/10.1039/D1CS00343G] [PMID: 35471996]
[30]
Alquraini A, El Khoury J. Scavenger receptors. Curr Biol 2020; 30(14): R790-5.
[http://dx.doi.org/10.1016/j.cub.2020.05.051] [PMID: 32693066]
[31]
Yu C, Liu H, Guo C, et al. Dextran sulfate-based MMP-2 enzyme-sensitive SR-A receptor targeting nanomicelles for the treatment of rheumatoid arthritis. Drug Deliv 2022; 29(1): 454-65.
[http://dx.doi.org/10.1080/10717544.2022.2032482] [PMID: 35119317]
[32]
Parra-Izquierdo I, Sánchez-Bayuela T, López J, et al. Interferons are pro-inflammatory cytokines in sheared-stressed human aortic valve endothelial cells. Int J Mol Sci 2021; 22(19): 10605.
[http://dx.doi.org/10.3390/ijms221910605] [PMID: 34638942]
[33]
Yang B, Yin S, Zhou Z, Huang L, Xi M. Inflammation Control and Tumor Growth Inhibition of Ovarian Cancer by Targeting Adhesion Molecules of E-Selectin. Cancers (Basel) 2023; 15(7): 2136.
[http://dx.doi.org/10.3390/cancers15072136] [PMID: 37046797]
[34]
Wang Q, Qin X, Fang J, Sun X. Nanomedicines for the treatment of rheumatoid arthritis: State of art and potential therapeutic strategies. Acta Pharm Sin B 2021; 11(5): 1158-74.
[http://dx.doi.org/10.1016/j.apsb.2021.03.013] [PMID: 34094826]
[35]
Shen Q, Du Y. A comprehensive review of advanced drug delivery systems for the treatment of rheumatoid arthritis. Int J Pharm 2023; 635: 122698.
[http://dx.doi.org/10.1016/j.ijpharm.2023.122698] [PMID: 36754181]
[36]
de Smit MJ, Westra J, Posthumus MD, et al. Effect of anti-rheumatic treatment on the periodontal condition of rheumatoid arthritis patients. Int J Environ Res Public Health 2021; 18(5): 2529.
[http://dx.doi.org/10.3390/ijerph18052529] [PMID: 33806304]
[37]
Chang M, Dong C, Huang H, Ding L, Feng W, Chen Y. Nanobiomimetic Medicine. Adv Funct Mater 2022; 32(32): 2204791.
[http://dx.doi.org/10.1002/adfm.202204791]
[38]
Zhao H, Wu L, Yan G, et al. Inflammation and tumor progression: Signaling pathways and targeted intervention. Signal Transduct Target Ther 2021; 6(1): 263.
[http://dx.doi.org/10.1038/s41392-021-00658-5] [PMID: 34248142]
[39]
Wang Z, Peng H, Shi W, et al. Application of photodynamic therapy in cancer: Challenges and advancements. Biocell 2021; 45(3): 489-500.
[http://dx.doi.org/10.32604/biocell.2021.014439]
[40]
Tekade M, Pingale P, Gupta R, Pawar B, Tekade RK, Sharma MC. Recent Advances in Polymer-Based Nanomaterials for Non-Invasive Photothermal Therapy of Arthritis. Pharmaceutics 2023; 15(3): 735.
[http://dx.doi.org/10.3390/pharmaceutics15030735] [PMID: 36986596]
[41]
Shang H, Gu H, Zhang N. From traditional to novel treatment of arthritis: A review of recent advances in nanotechnology-based thermal therapy. Nanomedicine (Lond) 2021; 16(23): 2117-32.
[http://dx.doi.org/10.2217/nnm-2021-0182] [PMID: 34525845]
[42]
Radu AF, Bungau SG. Management of rheumatoid arthritis: An overview. Cells 2021; 10(11): 2857.
[http://dx.doi.org/10.3390/cells10112857] [PMID: 34831081]
[43]
Hosseinikhah SM, Barani M, Rahdar A, et al. Nanomaterials for the diagnosis and treatment of inflammatory arthritis. Int J Mol Sci 2021; 22(6): 3092.
[http://dx.doi.org/10.3390/ijms22063092] [PMID: 33803502]
[44]
Versace AG, Aragona CO, La Rosa D, et al. The Efficacy of Sequential Biologic Agents in Refractory Rheumatoid Arthritis after Failure of Initial DMARD and anti-Tumor Necrosis Factor Therapy. Rheumato 2021; 1(1): 22-30.
[http://dx.doi.org/10.3390/rheumato1010005]
[45]
Mariotti EB, Corrà A, Lemmi E, et al. Multicentric Reticulohistiocytosis Associated with an Early Form of Systemic Lupus Erythematosus: A case report of a rare disease, with mini review of the literature. J Clin Med 2022; 11(21): 6529.
[http://dx.doi.org/10.3390/jcm11216529] [PMID: 36362761]
[46]
da Rosa Franchi Santos LF, Costa NT, Maes M, Simão ANC, Dichi I. Influence of treatments on cell adhesion molecules in patients with systemic lupus erythematosus and rheumatoid arthritis: A review. Inflammopharmacology 2020; 28(2): 363-84.
[http://dx.doi.org/10.1007/s10787-019-00674-6] [PMID: 31820195]
[47]
Tripathy A, Swain N, Gupta B. Understanding the role and uses of alternative therapies for the management of rheumatoid arthritis. Curr Rheumatol Rev 2022; 18(2): 89-100.
[http://dx.doi.org/10.2174/1573397117666211116102454] [PMID: 34784872]
[48]
Rashid G, Khan NA, Elsori D, et al. Non-steroidal anti-inflammatory drugs and biomarkers: A new paradigm in colorectal cancer. Front Med (Lausanne) 2023; 10: 1130710.
[http://dx.doi.org/10.3389/fmed.2023.1130710] [PMID: 36950511]
[49]
Li P, Yang X, Yang Y, et al. Synergistic effect of all-trans-retinal and triptolide encapsulated in an inflammation-targeted nanoparticle on collagen-induced arthritis in mice. J Control Release 2020; 319: 87-103.
[http://dx.doi.org/10.1016/j.jconrel.2019.12.025] [PMID: 31862360]
[50]
Chandrakala V, Aruna V, Angajala G. Review on metal nanoparticles as nanocarriers: Current challenges and perspectives in drug delivery systemsce. Emer Mater 2022; 5: 1593-615.
[51]
Elazab NT, Younis SA, Abdelgalil SA. Biogenic Synthesis of Nanoparticles Mediated by FungiPlant Mycobiome Diversity, Interactions and Uses. Cham: Springer 2023; pp. 241-65.
[http://dx.doi.org/10.1007/978-3-031-28307-9_10]
[52]
Sun W, Gao X, Lei H, Wang W, Cao Y. Biophysical approaches for applying and measuring biological forces. Adv Sci (Weinh) 2022; 9(5): 2105254.
[http://dx.doi.org/10.1002/advs.202105254] [PMID: 34923777]
[53]
Aziz T, Ullah A, Ali A, et al. Manufactures of bio‐degradable and bio‐based polymers for bio‐materials in the pharmaceutical field. J Appl Polym Sci 2022; 139(29): e52624.
[http://dx.doi.org/10.1002/app.52624]
[54]
Haleem A, Javaid M, Singh RP, Rab S, Suman R. Applications of Nanotechnology in Medical field. Global Health Journal 2023.
[55]
Sonanwane DB, Shah AM, Jaiswal N. Review on application of nanoparticles and classification, synthesis. Research Journal of Pharmacology and Pharmacodynamics 2022; 14: 117-24.
[http://dx.doi.org/10.52711/2321-5836.2022.00020]
[56]
Zheng M, Jia H, Wang H, et al. Application of nanomaterials in the treatment of rheumatoid arthritis. RSC Advances 2021; 11(13): 7129-37.
[http://dx.doi.org/10.1039/D1RA00328C] [PMID: 35423287]
[57]
Singh AP, Biswas A, Shukla A, Maiti P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct Target Ther 2019; 4(1): 33.
[http://dx.doi.org/10.1038/s41392-019-0068-3] [PMID: 31637012]
[58]
Yamamoto K, Imaoka T, Tanabe M, Kambe T. New horizon of nanoparticle and cluster catalysis with dendrimers. Chem Rev 2020; 120(2): 1397-437.
[http://dx.doi.org/10.1021/acs.chemrev.9b00188] [PMID: 31549817]
[59]
Guo S, Xu C, Yin H, Hill J, Pi F, Guo P. Tuning the size, shape and structure of RNA nanoparticles for favorable cancer targeting and immunostimulation. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020; 12(1): e1582.
[http://dx.doi.org/10.1002/wnan.1582] [PMID: 31456362]
[60]
Huang R, Shen YW, Guan YY, et al. Mesoporous silica nanoparticles: Facile surface functionalization and versatile biomedical applications in oncology. Acta Biomater 2020; 116: 1-15.
[http://dx.doi.org/10.1016/j.actbio.2020.09.009] [PMID: 32911102]
[61]
Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O. Therapeutic nanoparticles and their targeted delivery applications. Molecules 2020; 25(9): 2193.
[http://dx.doi.org/10.3390/molecules25092193] [PMID: 32397080]
[62]
Gorantla S, Singhvi G, Rapalli VK, Waghule T, Dubey SK, Saha RN. Targeted drug-delivery systems in the treatment of rheumatoid arthritis: Recent advancement and clinical status. Ther Deliv 2020; 11(4): 269-84.
[http://dx.doi.org/10.4155/tde-2020-0029] [PMID: 32434463]
[63]
Awasthi G, Shivgotra S, Nikhar S, Sundarrajan S, Ramakrishna S, Kumar P. Progressive Trends on the Biomedical Applications of Metal Organic Frameworks. Polymers (Basel) 2022; 14(21): 4710.
[http://dx.doi.org/10.3390/polym14214710] [PMID: 36365701]
[64]
Barabadi H, Najafi M, Samadian H, et al. A systematic review of the genotoxicity and antigenotoxicity of biologically synthesized metallic nanomaterials: Are green nanoparticles safe enough for clinical marketing? Medicina (Kaunas) 2019; 55(8): 439.
[http://dx.doi.org/10.3390/medicina55080439] [PMID: 31387257]
[65]
De Leo V, Maurelli AM, Giotta L, Catucci L. Liposomes containing nanoparticles: Preparation and applications. Colloids Surf B Biointerfaces 2022; 218: 112737.
[http://dx.doi.org/10.1016/j.colsurfb.2022.112737] [PMID: 35933888]
[66]
Cao Y, Dong X, Chen X. Polymer-modified liposomes for drug delivery: From fundamentals to applications. Pharmaceutics 2022; 14(4): 778.
[http://dx.doi.org/10.3390/pharmaceutics14040778] [PMID: 35456613]
[67]
Deshpande PK, Gothalwal R. Review on drug delivery system for phytomedicine through mechanism of encapsulation. World JBio Pharmd Health Sci 2021; 6(1): 010-8.
[68]
Wang Q, He L, Fan D, Liang W, Fang J. Improving the anti-inflammatory efficacy of dexamethasone in the treatment of rheumatoid arthritis with polymerized stealth liposomes as a delivery vehicle. J Mater Chem B Mater Biol Med 2020; 8(9): 1841-51.
[http://dx.doi.org/10.1039/C9TB02538C] [PMID: 32016224]
[69]
Wu H, He Y, Wu H, et al. Near-infrared fluorescence imaging-guided focused ultrasound-mediated therapy against Rheumatoid Arthritis by MTX-ICG-loaded iRGD-modified echogenic liposomes. Theranostics 2020; 10(22): 10092-105.
[http://dx.doi.org/10.7150/thno.44865] [PMID: 32929336]
[70]
Meka RR, Venkatesha SH, Acharya B, Moudgil KD. Peptide-targeted liposomal delivery of dexamethasone for arthritis therapy. Nanomedicine (Lond) 2019; 14(11): 1455-69.
[http://dx.doi.org/10.2217/nnm-2018-0501] [PMID: 30938236]
[71]
Ren H, He Y, Liang J, et al. Role of liposome size, surface charge, and PEGylation on rheumatoid arthritis targeting therapy. ACS Appl Mater Interfaces 2019; 11(22): 20304-15.
[http://dx.doi.org/10.1021/acsami.8b22693] [PMID: 31056910]
[72]
Wang P, Jiang Q. Orthopedical NanotechnologyNanomedicine. Singapore: Springer 2023; pp. 501-23.
[73]
Lee SM, Kim HJ, Ha YJ, et al. Targeted chemo-photothermal treatments of rheumatoid arthritis using gold half-shell multifunctional nanoparticles.ACS Nano 2013; Jan 22; 7(1): 50-7.
[74]
Lee H, Lee MY, Bhang SH, et al. Hyaluronate–gold nanoparticle/tocilizumab complex for the treatment of rheumatoid arthritis. ACS Nano 2014; May 27; 8(5): 4790-8.
[75]
Kim J, Kim HY, Song SY, et al. Synergistic oxygen generation and reactive oxygen species scavenging by manganese ferrite/ceria co-decorated nanoparticles for rheumatoid arthritis treatment. ACS Nano 2019; 13(3): 3206-17.
[http://dx.doi.org/10.1021/acsnano.8b08785] [PMID: 30830763]
[76]
Kim HJ, Lee SM, Park KH, Mun CH, Park YB, Yoo KH. Drug-loaded gold/iron/gold plasmonic nanoparticles for magnetic targeted chemo-photothermal treatment of rheumatoid arthritis. Biomaterials 2015; Aug 1; 61: 95-102.
[77]
Kalashnikova I, Chung SJ, Nafiujjaman M, et al. Ceria-based nanotheranostic agent for rheumatoid arthritis. Theranostics 2020; 10(26): 11863-80.
[http://dx.doi.org/10.7150/thno.49069] [PMID: 33204316]
[78]
Wang Q, Jiang J, Chen W, Jiang H, Zhang Z, Sun X. Targeted delivery of low-dose dexamethasone using PCL–PEG micelles for effective treatment of rheumatoid arthritis. Journal of Controlled Release 2016; May 28; 230: 64-72.
[79]
Jain S, Tran TH, Amiji M. Macrophage repolarization with targeted alginate nanoparticles containing IL-10 plasmid DNA for the treatment of experimental arthritis. Biomaterials 2015; 61: Pages: 162-177.
[80]
Qindeel M, Khan D, Ahmed N, Khan S. Surfactant-free, self-assembled nanomicelles-based transdermal hydrogel for safe and targeted delivery of methotrexate against rheumatoid arthritis. ACS Nano 2020; 14(4): 4662-81.
[http://dx.doi.org/10.1021/acsnano.0c00364] [PMID: 32207921]
[81]
Leng Q, Chen L, Lv Y. RNA-based scaffolds for bone regeneration: Application and mechanisms of mRNA, miRNA and siRNA. Theranostics 2020; 10(7): 3190-205.
[http://dx.doi.org/10.7150/thno.42640] [PMID: 32194862]
[82]
Momin T, Gulbake A. 2020 Development And Characterization Of Doxorubicin And Sirna Encapsulated Chitosan Nanoparticles. Int J Appl Pharmacuet 12(4)
[http://dx.doi.org/10.22159/ijap.2020.v12s4.40105]
[83]
Park JS, Yang HN, Jeon SY, Woo DG, Kim MS, Park KH. The use of anti-COX2 siRNA coated onto PLGA nanoparticles loading dexamethasone in the treatment of rheumatoid arthritis. Biomaterials 2012; Nov 1; 33(33): 8600-12.
[84]
Lee SJ, Lee A, Hwang SR, et al. TNF-α gene silencing using polymerized siRNA/thiolated glycol chitosan nanoparticles for rheumatoid arthritis. Molecular Therapy 2014; Feb 1; 22(2): 397-408.
[85]
Kim SH, Kim JH, You DG, et al. Self-assembled dextran sulphate nanoparticles for targeting rheumatoid arthritis. Chemical Communications 2013; 49(88): 10349-51.
[86]
Heo R, You DG, Um W, et al. Dextran sulfate nanoparticles as a theranostic nanomedicine for rheumatoid arthritis. Biomaterials 2017; Jul 1; 131: 15-26.
[87]
Monirul Islam M, Hemmanahalli Ramesh V, Durga Bhavani P, et al. Optimization of process parameters for fabrication of electrospun nanofibers containing neomycin sulfate and Malva sylvestris extract for a better diabetic wound healing. Drug Deliv 2022; 29(1): 3370-83.
[http://dx.doi.org/10.1080/10717544.2022.2144963] [PMID: 36404771]
[88]
Jain AK, Thareja S. Heidelberg: Springer 2020; pp Solid lipid nanoparticlesNanomaterials and Environmental Biotechnology. Heidelberg: Springer 2022; p. 221-49.
[http://dx.doi.org/10.1007/978-3-030-34544-0_13]
[89]
Al-maghrabi. Gad S, Khafagy E, Ghorab M. Solid lipid nanoparticles: A prospective approach for topical drug delivery. Rec Pharmaceut Biomed Sci 2020; 4(2): 8-16.
[http://dx.doi.org/10.21608/rpbs.2019.18556.1045]
[90]
Prabhu A, Jose J, Kumar L, Salwa S, Vijay Kumar M, Nabavi SM. Transdermal delivery of curcumin-loaded solid lipid nanoparticles as microneedle patch: An in vitro and in vivo study. AAPS PharmSciTech 2022; 23(1): 49.
[http://dx.doi.org/10.1208/s12249-021-02186-5] [PMID: 34988698]
[91]
Krishnatreyya H, Dey S, Pal P, Das PJ, Sharma VK, Mazumder B. Piroxicam Loaded Solid Lipid Nanoparticles (SLNs): Potential for Topical Delivery. Indian J Pharmaceut Edu Res 2019; 53(2s): s82-92.
[http://dx.doi.org/10.5530/ijper.53.2s.52]
[92]
Peng LH, Wei W, Shan YH, Chong YS, Yu L, Gao JQ. Sustained release of piroxicam from solid lipid nanoparticle as an effective anti-inflammatory therapeutics in vivo. Drug Dev Ind Pharm 2017; Jan; 43(1): 55-66.
[93]
Garg NK, Tandel N, Bhadada SK, Tyagi RK. Nanostructured lipid carrier–mediated transdermal delivery of aceclofenac hydrogel present an effective therapeutic approach for inflammatory diseases. Front Pharmacol 2021; 12: 713616.
[http://dx.doi.org/10.3389/fphar.2021.713616] [PMID: 34616297]
[94]
Mehandole A, Walke N, Mahajan S, et al. Core–shell type lipidic and polymeric nanocapsules: The transformative multifaceted delivery systems. AAPS PharmSciTech 2023; 24(1): 50.
[http://dx.doi.org/10.1208/s12249-023-02504-z] [PMID: 36703085]
[95]
Patel J, Patel A, Patel M, Vyas G. Introduction to Nanoparticulate Drug Delivery Systems InPharmacokinetics and Pharmacodynamics of Nanoparticulate Drug Delivery Systems. Cham: Springer International Publishing 2022; pp. 3-23.
[http://dx.doi.org/10.1007/978-3-030-83395-4_1]
[96]
Iravani S, Varma RS. Advanced Drug Delivery Micro- and Nanosystems for Cardiovascular Diseases. Molecules 2022; 27(18): 5843.
[http://dx.doi.org/10.3390/molecules27185843] [PMID: 36144581]
[97]
Liu R, Luo C, Pang Z, et al. Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. Chin Chem Lett Volume 34(Issue 2)February 2023.
[98]
Ganesh MB, Mali Shubhangi R. A systematic review on nanocapsulE: A novel drug delivery system. Int J Res Pub Rev 2022; 3: 760-7.
[99]
Scheuer Gomes G, Frank L, Raffin Pohlmann A, Stanisçuaki Guterres S. Lipid core nanocapsules-loaded tacrolimus: Development and evaluation of quality parameters. Drug Analytical Research 2022; 6(1): 46-57.
[http://dx.doi.org/10.22456/2527-2616.125229]
[100]
Boechat AL, de Oliveira CP, Tarragô AM, et al. Methotrexate-loaded lipid-core nanocapsules are highly effective in the control of inflammation in synovial cells and a chronic arthritis model. International journal of nanomedicine 2015; Oct 22: 6603-14.
[101]
Coradini K, Friedrich RB, Fonseca FN, et al. A novel approach to arthritis treatment based on resveratrol and curcumin co-encapsulated in lipid-core nanocapsules: In vivo studies. European Journal of Pharmaceutical Sciences 2015; Oct 12; 78: 163-70.
[102]
Rollett A, Reiter T, Nogueira P, et al. Folic acid-functionalized human serum albumin nanocapsules for targeted drug delivery to chronically activated macrophages. International journal of pharmaceutics 2012; May 10; 427(2): 460-6.
[103]
Verma RK, Singh R, Jadhav K, Vaghasiya K, Ray E, Shukla R. New generation smart drug delivery systems for Rheumatoid Arthritis. Curr Pharm Des 2023; 29(13): 984-1001.
[http://dx.doi.org/10.2174/1381612829666230406102935] [PMID: 37038685]
[104]
Arora V, Bhandari DD, Puri R, Khatri N, Dureja H. Synthesis, Self-Assembly, and Functional Chemistry of Amphiphilic Block Copolymers.Polymeric Micelles: Principles. Perspectives and Practices 2023; 1-25.
[105]
Wilson DR, Zhang N, Silvers AL, Forstner MB, Bader RA. Synthesis and evaluation of cyclosporine A-loaded polysialic acid–polycaprolactone micelles for rheumatoid arthritis. European Journal of Pharmaceutical Sciences 2014; Jan 23; 51: 146-56.
[106]
Crielaard B J, et al. "Glucocorticoid-loaded core-crosslinked polymeric micelles with tailorable release kinetics for targeted rheumatoid arthritis therapy." TargeTed nanomedicines for The TreaTmenT of inflammaTory disorders and cancer: 69.
[107]
Zhang Jian Xiang, et al. "Local delivery of indomethacin to arthritis-bearing rats through polymeric micelles based on amphiphilic polyphosphazenes." Pharmaceutical research 24(2007): 1944-1953.
[108]
Wang Q, Jiang J, Chen W, Jiang H, Zhang Z, Sun X. Targeted delivery of low-dose dexamethasone using PCL–PEG micelles for effective treatment of rheumatoid arthritis. Journal of Controlled Release 2016; May 28; 230: 64-72.
[109]
Helmy HS, El-Sahar AE, Sayed RH, Shamma RN, Salama AH, Elbaz EM. Therapeutic effects of lornoxicam-loaded nanomicellar formula in experimental models of rheumatoid arthritis. International journal of nanomedicine 2017; Sep 22: 7015-23.
[110]
Yu H, Yang Z, Li F, Xu L, Sun Y. Cell-mediated targeting drugs delivery systems. Drug Deliv 2020; 27(1): 1425-37.
[http://dx.doi.org/10.1080/10717544.2020.1831103] [PMID: 33096949]
[111]
Mohale S, Kunde SS, Wairkar S. Biomimetic fabrication of nanotherapeutics by leukocyte membrane cloaking for targeted therapy. Colloids Surf B Biointerfaces 2022; 219: 112803.
[http://dx.doi.org/10.1016/j.colsurfb.2022.112803] [PMID: 36084510]
[112]
Li H, Feng Y, Zheng X, et al. M2-type exosomes nanoparticles for rheumatoid arthritis therapy via macrophage re-polarization. J Control Release 2022; 341: 16-30.
[http://dx.doi.org/10.1016/j.jconrel.2021.11.019] [PMID: 34793917]
[113]
Hu B, Gao F, Li C, et al. Rhein laden pH-responsive polymeric nanoparticles for treatment of osteoarthritis. AMB Express 2020; Dec; 10: 1-0.
[114]
Tavasolian F, Moghaddam AS, Rohani F, et al. Exosomes: Effectual players in rheumatoid arthritis. Autoimmun Rev 2020; 19(6): 102511.
[http://dx.doi.org/10.1016/j.autrev.2020.102511] [PMID: 32171920]
[115]
Tang TT, Lv LL, Wang B, et al. Employing macrophage-derived microvesicle for kidney-targeted delivery of dexamethasone: An efficient therapeutic strategy against renal inflammation and fibrosis. Theranostics 2019; 9(16): 4740-55.
[http://dx.doi.org/10.7150/thno.33520] [PMID: 31367254]
[116]
Yan F, Zhong Z, Wang Y, et al. Exosome-based biomimetic nanoparticles targeted to inflamed joints for enhanced treatment of rheumatoid arthritis. J Nanobiotechnology 2020; 18(1): 115.
[http://dx.doi.org/10.1186/s12951-020-00675-6] [PMID: 32819405]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy