Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Integrating Network Pharmacology and Experimental Validation to Decipher the Anti-Inflammatory Effects of Magnolol on LPS-induced RAW264.7 Cells

Author(s): Lei Hao, Xiaoying Zhong, Runjia Yu, Jiahui Chen, Wei Li, Yuzhong Chen, Weiqi Lu, Jianyu Wu and Peizong Wang*

Volume 27, Issue 3, 2024

Published on: 10 October, 2023

Page: [462 - 478] Pages: 17

DOI: 10.2174/0113862073255964230927105959

Price: $65

Open Access Journals Promotions 2
Abstract

Introduction: Magnolol is beneficial against inflammation-mediated damage. However, the underlying mechanisms by which magnolol exerts anti-inflammatory effects on macrophages remain unclear.

Objective: In this study, network pharmacology and experimental validation were used to assess the effect of magnolol on inflammation caused by lipopolysaccharide (LPS) in RAW264.7 cells.

Materials and Methods: Genes related to magnolol were identified in the PubChem and Swiss Target Prediction databases, and gene information about macrophage polarization was retrieved from the GeneCards, OMIM, and PharmGKB databases. Analysis of protein-protein interactions was performed with STRING, and Cytoscape was used to construct a component-target-disease network. GO and KEGG enrichment analyses were performed to ascertain significant molecular biological processes and signaling pathways. LPS was used to construct the inflammatory cell model. ELISA and qRTPCR were used to examine the expression levels of inflammationassociated factors, immunofluorescence was used to examine macrophage markers (CD86 and CD206), and western blotting was used to examine protein expression levels.

Results: The hub target genes of magnolol that act on macrophage polarization were MDM2, MMP9, IL-6, TNF, EGFR, AKT1, and ERBB2. The experimental validation results showed that magnolol treatment decreased the levels of proinflammatory factors (TNF-α, IL-1β, and IL-6). Moreover, the levels of anti-inflammatory factors (IL-10 and IL-4) were increased. In addition, magnolol upregulated the expression of M2 markers (Agr-1, Fizzl, and CD206) and downregulated M1 markers (CD86). The cell experiment results supported the network pharmacological results and demonstrated that magnolol alleviated inflammation by modulating the PI3k-Akt and P62/keap1/Nrf2 signaling pathways.

Conclusion: According to network pharmacology and experimental validation, magnolol attenuated inflammation in LPS-induced RAW264.7 cells mainly by inhibiting M1 polarization and enhancing M2 polarization by activating the PI3K/Akt and P62/keap1/Nrf2 signaling pathways.

Keywords: Magnolol, anti-inflammatory effects, macrophages, RAW264.7 cells, PI3K-Akt, network pharmacology.

Graphical Abstract
[1]
Yan, J.; Horng, T. Lipid metabolism in regulation of macrophage functions. Trends Cell Biol., 2020, 30(12), 979-989.
[http://dx.doi.org/10.1016/j.tcb.2020.09.006] [PMID: 33036870]
[2]
Funes, S.C.; Rios, M.; Escobar-Vera, J.; Kalergis, A.M. Implications of macrophage polarization in autoimmunity. Immunology, 2018, 154(2), 186-195.
[http://dx.doi.org/10.1111/imm.12910] [PMID: 29455468]
[3]
Shanley, L.C.; Mahon, O.R.; Kelly, D.J.; Dunne, A. Harnessing the innate and adaptive immune system for tissue repair and regeneration: Considering more than macrophages. Acta Biomater., 2021, 133, 208-221.
[http://dx.doi.org/10.1016/j.actbio.2021.02.023] [PMID: 33657453]
[4]
Kim, S.; Chang, H.J.; Volin, M.V.; Umar, S.; Van Raemdonck, K.; Chevalier, A.; Palasiewicz, K.; Christman, J.W.; Volkov, S.; Arami, S.; Maz, M.; Mehta, A.; Zomorrodi, R.K.; Fox, D.A.; Sweiss, N.; Shahrara, S. Macrophages are the primary effector cells in IL-7-induced arthritis. Cell. Mol. Immunol., 2020, 17(7), 728-740.
[http://dx.doi.org/10.1038/s41423-019-0235-z] [PMID: 31197255]
[5]
Shapouri-Moghaddam, A.; Mohammadian, S.; Vazini, H.; Taghadosi, M.; Esmaeili, S.A.; Mardani, F.; Seifi, B.; Mohammadi, A.; Afshari, J.T.; Sahebkar, A. Macrophage plasticity, polarization, and function in health and disease. J. Cell. Physiol., 2018, 233(9), 6425-6440.
[http://dx.doi.org/10.1002/jcp.26429] [PMID: 29319160]
[6]
Kim, S.Y.; Nair, M.G. Macrophages in wound healing: Activation and plasticity. Immunol. Cell Biol., 2019, 97(3), 258-267.
[http://dx.doi.org/10.1111/imcb.12236] [PMID: 30746824]
[7]
Li, S.; Qi, D.; Li, J.; Deng, X.; Wang, D. Vagus nerve stimulation enhances the cholinergic anti-inflammatory pathway to reduce lung injury in acute respiratory distress syndrome via STAT3. Cell Death Discov., 2021, 7(1), 63.
[http://dx.doi.org/10.1038/s41420-021-00431-1] [PMID: 33782389]
[8]
Li, Y.; Dong, M.; Wang, Q.; Kumar, S.; Zhang, R.; Cheng, W.; Xiang, J.; Wang, G.; Ouyang, K.; Zhou, R.; Xie, Y.; Lu, Y.; Yi, J.; Duan, H.; Liu, J. HIMF deletion ameliorates acute myocardial ischemic injury by promoting macrophage transformation to reparative subtype. Basic Res. Cardiol., 2021, 116(1), 30.
[http://dx.doi.org/10.1007/s00395-021-00867-7] [PMID: 33893593]
[9]
Notarte, K.I.R.; Quimque, M.T.J.; Macaranas, I.T.; Khan, A.; Pastrana, A.M.; Villaflores, O.B.; Arturo, H.C.P.; Pilapil, D.Y.H., IV; Tan, S.M.M.; Wei, D.Q.; Wenzel-Storjohann, A.; Tasdemir, D.; Yen, C.H.; Ji, S.Y.; Kim, G.Y.; Choi, Y.H.; Macabeo, A.P.G. Attenuation of lipopolysaccharide-induced inflammatory responses through inhibition of the NF-κB pathway and the increased NRF2 level by a flavonol-enriched n -butanol fraction from uvaria alba. ACS Omega, 2023, 8(6), 5377-5392.
[http://dx.doi.org/10.1021/acsomega.2c06451] [PMID: 36816691]
[10]
Quimque, M.T.; Notarte, K.I.; Letada, A.; Fernandez, R.A.; Pilapil, D.Y., IV; Pueblos, K.R.; Agbay, J.C.; Dahse, H.M.; Wenzel-Storjohann, A.; Tasdemir, D.; Khan, A.; Wei, D.Q.; Gose Macabeo, A.P. Potential cancer- and alzheimer’s disease-targeting phosphodiesterase inhibitors from uvaria alba: Insights from in vitro and consensus virtual screening. ACS Omega, 2021, 6(12), 8403-8417.
[http://dx.doi.org/10.1021/acsomega.1c00137] [PMID: 33817501]
[11]
Fernandez, R.A.; Quimque, M.T.; Notarte, K.I.; Manzano, J.A.; Pilapil, D.Y., IV; de Leon, V.N.; San Jose, J.J.; Villalobos, O.; Muralidharan, N.H.; Gromiha, M.M.; Brogi, S.; Macabeo, A.P.G. Myxobacterial depsipeptide chondramides interrupt SARS-CoV-2 entry by targeting its broad, cell tropic spike protein. J. Biomol. Struct. Dyn., 2022, 40(22), 12209-12220.
[http://dx.doi.org/10.1080/07391102.2021.1969281] [PMID: 34463219]
[12]
de Leon, V.N.O.; Manzano, J.A.H.; Pilapil, D.Y.H., IV; Fernandez, R.A.T.; Ching, J.K.A.R.; Quimque, M.T.J.; Agbay, J.C.M.; Notarte, K.I.R.; Macabeo, A.P.G. Anti-HIV reverse transcriptase plant polyphenolic natural products with in silico inhibitory properties on seven non-structural proteins vital in SARS-CoV-2 pathogenesis. J. Genet. Eng. Biotechnol., 2021, 19(1), 104.
[http://dx.doi.org/10.1186/s43141-021-00206-2] [PMID: 34272647]
[13]
Zhang, J.; Chen, Z.; Huang, X.; Shi, W.; Zhang, R.; Chen, M.; Huang, H.; Wu, L. Insights on the multifunctional activities of magnolol. BioMed Res. Int., 2019, 2019, 1-15.
[http://dx.doi.org/10.1155/2019/1847130] [PMID: 31240205]
[14]
Sarrica, A.; Kirika, N.; Romeo, M.; Salmona, M.; Diomede, L. Safety and toxicology of magnolol and honokiol. Planta Med., 2018, 84(16), 1151-1164.
[http://dx.doi.org/10.1055/a-0642-1966] [PMID: 29925102]
[15]
Liu, C.M.; Chen, S.H.; Liao, Y.W.; Yu, C.H.; Yu, C.C.; Hsieh, P.L. Magnolol ameliorates the accumulation of reactive oxidative stress and inflammation in diabetic periodontitis. J. Formos. Med. Assoc., 2021, 120(7), 1452-1458.
[http://dx.doi.org/10.1016/j.jfma.2021.01.010] [PMID: 33581965]
[16]
Mao, S.H.; Feng, D.D.; Wang, X.; Zhi, Y.H.; Lei, S.; Xing, X.; Jiang, R.L.; Wu, J.N. Magnolol protects against acute gastrointestinal injury in sepsis by down-regulating regulated on activation, normal T-cell expressed and secreted. World J. Clin. Cases, 2021, 9(34), 10451-10463.
[http://dx.doi.org/10.12998/wjcc.v9.i34.10451] [PMID: 35004977]
[17]
Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res., 2021, 49(D1), D1388-D1395.
[http://dx.doi.org/10.1093/nar/gkaa971] [PMID: 33151290]
[18]
Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y. The genecards suite: From gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinformatics., 2016, 54, 1.30.1-1.30.33.
[http://dx.doi.org/10.1002/cpbi.5]
[19]
Amberger, JS Hamosh, A Searching Online Mendelian Inheritance in Man (OMIM): A knowledgebase of human genes and genetic phenotypes. Curr. Protoc. Bioinformatics, 2017, 58, 1.2.1-1.2.12.
[http://dx.doi.org/10.1002/cpbi.27]
[20]
Barbarino, J.M.; Whirl-Carrillo, M.; Altman, R.B.; Klein, T.E. PharmGKB: A worldwide resource for pharmacogenomic information. Wiley Interdiscip. Rev. Syst. Biol. Med., 2018, 10(4), e1417.
[http://dx.doi.org/10.1002/wsbm.1417] [PMID: 29474005]
[21]
Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.; Roth, A.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2017: Quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res., 2017, 45(D1), D362-D368.
[http://dx.doi.org/10.1093/nar/gkw937] [PMID: 27924014]
[22]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[23]
Yu, G.; Wang, W.; Wang, X.; Xu, M.; Zhang, L.; Ding, L.; Guo, R.; Shi, Y. Network pharmacology-based strategy to investigate pharmacological mechanisms of Zuojinwan for treatment of gastritis. BMC Complement. Altern. Med., 2018, 18(1), 292.
[http://dx.doi.org/10.1186/s12906-018-2356-9] [PMID: 30382864]
[24]
Bindea, G.; Mlecnik, B.; Hackl, H.; Charoentong, P.; Tosolini, M.; Kirilovsky, A.; Fridman, W.H.; Pagès, F.; Trajanoski, Z.; Galon, J.; Clue, GO A cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics, 2009, 25(8), 1091-1093.
[http://dx.doi.org/10.1093/bioinformatics/btp101] [PMID: 19237447]
[25]
Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res., 2022, 50(W1), W216-W221.
[http://dx.doi.org/10.1093/nar/gkac194] [PMID: 35325185]
[26]
Rahman, M.M.; Rahaman, M.S.; Islam, M.R.; Rahman, F.; Mithi, F.M.; Alqahtani, T.; Almikhlafi, M.A.; Alghamdi, S.Q.; Alruwaili, A.S.; Hossain, M.S.; Ahmed, M.; Das, R.; Emran, T.B.; Uddin, M.S. Role of phenolic compounds in human disease: Current knowledge and future prospects. Molecules, 2021, 27(1), 233.
[http://dx.doi.org/10.3390/molecules27010233] [PMID: 35011465]
[27]
Rahman, M.M.; Bibi, S.; Rahaman, M.S.; Rahman, F.; Islam, F.; Khan, M.S.; Hasan, M.M.; Parvez, A.; Hossain, M.A.; Maeesa, S.K. Natural therapeutics and nutraceuticals for lung diseases: Traditional significance, phytochemistry, and pharmacology. Biomed. Pharmacother., 2022, 150, 113041.
[http://dx.doi.org/10.1016/j.biopha.2022.113041]
[28]
Rauf, A.; Abu-Izneid, T.; Khalil, A.A.; Imran, M.; Shah, Z.A.; Emran, T.B.; Mitra, S.; Khan, Z.; Alhumaydhi, F.A.; Aljohani, A.S.M.; Khan, I.; Rahman, M.M.; Jeandet, P.; Gondal, T.A. Berberine as a potential anticancer agent: A comprehensive review. Molecules, 2021, 26(23), 7368.
[http://dx.doi.org/10.3390/molecules26237368] [PMID: 34885950]
[29]
Rahman, M.M.; Islam, F. -Or-Rashid, M.H.; Mamun, A.A.; Rahaman, M.S.; Islam, M.M.; Meem, A.F.K.; Sutradhar, P.R.; Mitra, S.; Mimi, A.A.; Emran, T.B.; Fatimawali; Idroes, R.; Tallei, T.E.; Ahmed, M.; Cavalu, S. The gut microbiota (microbiome) in cardiovascular disease and its therapeutic regulation. Front. Cell. Infect. Microbiol., 2022, 12, 903570.
[http://dx.doi.org/10.3389/fcimb.2022.903570] [PMID: 35795187]
[30]
Peng, Y.; Chen, B.; Zhao, J.; Peng, Z.; Xu, W.; Yu, G. Effect of intravenous transplantation of hUCB-MSCs on M1/M2 subtype conversion in monocyte/macrophages of AMI mice. Biomed. Pharmacother., 2019, 111, 624-630.
[http://dx.doi.org/10.1016/j.biopha.2018.12.095]
[31]
Liu, Y.; Gao, X.; Miao, Y.; Wang, Y.; Wang, H.; Cheng, Z.; Wang, X.; Jing, X.; Jia, L.; Dai, L.; Liu, M.; An, L. NLRP3 regulates macrophage M2 polarization through up-regulation of IL-4 in asthma. Biochem. J., 2018, 475(12), 1995-2008.
[http://dx.doi.org/10.1042/BCJ20180086] [PMID: 29626160]
[32]
Wang, J.; Sun, Y.; Zhang, L.; Xu, W.; You, J.; Lu, H.; Song, Y.; Wei, J.; Li, L. Magnolol inhibits streptococcus suis-induced inflammation and ROS formation via TLR2/MAPK/NF-κB signaling in RAW264.7 cells. Pol. J. Vet. Sci., 2023, 21(1), 111-118.
[http://dx.doi.org/10.24425/119028] [PMID: 29624001]
[33]
Xu, L.; Cai, Z.; Yang, F.; Chen, M. Activation-induced upregulation of MMP9 in mast cells is a positive feedback mediator for mast cell activation. Mol. Med. Rep., 2017, 15(4), 1759-1764.
[http://dx.doi.org/10.3892/mmr.2017.6215] [PMID: 28259919]
[34]
Inoue, H.; Hattori, T.; Zhou, X.; Etling, E.B.; Modena, B.D.; Trudeau, J.B.; Holguin, F.; Wenzel, S.E. Dysfunctional ErbB2, an EGF receptor family member, hinders repair of airway epithelial cells from asthmatic patients. J. Allergy Clin. Immunol., 2019, 143(6), 2075-2085.e10.
[http://dx.doi.org/10.1016/j.jaci.2018.11.046] [PMID: 30639343]
[35]
London, M.; Gallo, E. Epidermal growth factor receptor (EGFR) involvement in epithelial‐derived cancers and its current antibody‐based immunotherapies. Cell Biol. Int., 2020, 44(6), 1267-1282.
[http://dx.doi.org/10.1002/cbin.11340] [PMID: 32162758]
[36]
Vergadi, E.; Ieronymaki, E.; Lyroni, K.; Vaporidi, K.; Tsatsanis, C. Akt signaling pathway in macrophage activation and M1/M2 polarization. J. Immunol., 2017, 198(3), 1006-1014.
[http://dx.doi.org/10.4049/jimmunol.1601515]
[37]
Arranz, A.; Doxaki, C.; Vergadi, E.; Martinez de la Torre, Y.; Vaporidi, K.; Lagoudaki, E.D.; Ieronymaki, E.; Androulidaki, A.; Venihaki, M.; Margioris, A.N.; Stathopoulos, E.N.; Tsichlis, P.N.; Tsatsanis, C. Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization. Proc. Natl. Acad. Sci., 2012, 109(24), 9517-9522.
[http://dx.doi.org/10.1073/pnas.1119038109] [PMID: 22647600]
[38]
Lee, J.O.; Choi, E.; Shin, K.K.; Hong, Y.H.; Kim, H.G.; Jeong, D.; Hossain, M.A.; Kim, H.S.; Yi, Y.S.; Kim, D.; Kim, E.; Cho, J.Y. Compound K, a ginsenoside metabolite, plays an antiinflammatory role in macrophages by targeting the AKT1-mediated signaling pathway. J. Ginseng Res., 2019, 43(1), 154-160.
[http://dx.doi.org/10.1016/j.jgr.2018.10.003] [PMID: 30662304]
[39]
Li, Y.; Zou, L.; Li, T.; Lai, D.; Wu, Y.; Qin, S. Mogroside V inhibits LPS-induced COX-2 expression/ROS production and overexpression of HO-1 by blocking phosphorylation of AKT1 in RAW264.7 cells. Acta Biochim. Biophys. Sin., 2019, 51(4), 365-374.
[http://dx.doi.org/10.1093/abbs/gmz014] [PMID: 30877761]
[40]
Odkhuu, E.; Mendjargal, A.; Koide, N.; Naiki, Y.; Komatsu, T.; Yokochi, T. Lipopolysaccharide downregulates the expression of p53 through activation of MDM2 and enhances activation of nuclear factor-kappa B. Immunobiology, 2015, 220(1), 136-141.
[http://dx.doi.org/10.1016/j.imbio.2014.08.010] [PMID: 25172547]
[41]
Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res., 2017, 45(D1), D353-D361.
[http://dx.doi.org/10.1093/nar/gkw1092] [PMID: 27899662]
[42]
Sun, X.; Chen, L.; He, Z. PI3K/Akt-Nrf2 and anti-inflammation effect of macrolides in chronic obstructive pulmonary disease. Curr. Drug Metab., 2019, 20(4), 301-304.
[http://dx.doi.org/10.2174/1389200220666190227224748] [PMID: 30827233]
[43]
Lian, G.; Chen, S.; Ouyang, M.; Li, F.; Chen, L.; Yang, J. Colon cancer cell secretes EGF to promote M2 polarization of TAM through EGFR/PI3K/AKT/mTOR pathway. Technol. Cancer Res. Treat., 2019, 18.
[http://dx.doi.org/10.1177/1533033819849068] [PMID: 31088266]
[44]
Zhao, S.J.; Kong, F.Q.; Jie, J.; Li, Q.; Liu, H.; Xu, A.D.; Yang, Y.Q.; Jiang, B.; Wang, D.D.; Zhou, Z.Q.; Tang, P.Y.; Chen, J.; Wang, Q.; Zhou, Z.; Chen, Q.; Yin, G.Y.; Zhang, H.W.; Fan, J. Macrophage MSR1 promotes BMSC osteogenic differentiation and M2-like polarization by activating PI3K/AKT/GSK3β/β-catenin pathway. Theranostics, 2020, 10(1), 17-35.
[http://dx.doi.org/10.7150/thno.36930] [PMID: 31903103]
[45]
Liu, L.; Zhu, X.; Zhao, T.; Yu, Y.; Xue, Y.; Zou, H. Sirt1 ameliorates monosodium urate crystal–induced inflammation by altering macrophage polarization via the PI3K/Akt/STAT6 pathway. Rheumatology, 2019, 58(9), 1674-1683.
[http://dx.doi.org/10.1093/rheumatology/kez165] [PMID: 31106362]
[46]
Wang, L.; He, C. Nrf2-mediated anti-inflammatory polarization of macrophages as therapeutic targets for osteoarthritis. Front. Immunol., 2022, 13, 967193.
[http://dx.doi.org/10.3389/fimmu.2022.967193] [PMID: 36032081]
[47]
Aki, T.; Funakoshi, T.; Noritake, K.; Unuma, K.; Uemura, K. Extracellular glucose is crucially involved in the fate decision of LPS-stimulated RAW264.7 murine macrophage cells. Sci. Rep., 2020, 10(1), 10581.
[http://dx.doi.org/10.1038/s41598-020-67396-6] [PMID: 32601294]
[48]
Kiani, A.A.; Elyasi, H.; Ghoreyshi, S.; Nouri, N.; Safarzadeh, A.; Nafari, A. Study on hypoxia-inducible factor and its roles in immune system. Immunol. Med., 2021, 44(4), 223-236.
[http://dx.doi.org/10.1080/25785826.2021.1910187] [PMID: 33896415]
[49]
Orecchioni, M.; Ghosheh, Y.; Pramod, A.B.; Ley, K. Macrophage polarization: Different gene signatures in M1(LPS+) vs. classically and M2(LPS–) vs. Alternatively activated macrophages. Front. Immunol., 2019, 10, 1084.
[http://dx.doi.org/10.3389/fimmu.2019.01084] [PMID: 31178859]
[50]
Li, S.; Dai, Q.; Zhang, S.; Liu, Y.; Yu, Q.; Tan, F.; Lu, S.; Wang, Q.; Chen, J.; Huang, H.; Liu, P.; Li, M. Ulinastatin attenuates LPS-induced inflammation in mouse macrophage RAW264.7 cells by inhibiting the JNK/NF-κB signaling pathway and activating the PI3K/Akt/Nrf2 pathway. Acta Pharmacol. Sin., 2018, 39(8), 1294-1304.
[http://dx.doi.org/10.1038/aps.2017.143] [PMID: 29323338]
[51]
Mata, A.; Cadenas, S. The antioxidant transcription factor Nrf2 in cardiac ischemia-reperfusion injury. Int. J. Mol. Sci., 2021, 22(21), 11939.
[http://dx.doi.org/10.3390/ijms222111939] [PMID: 34769371]
[52]
Kobayashi, E.H.; Suzuki, T.; Funayama, R.; Nagashima, T.; Hayashi, M.; Sekine, H.; Tanaka, N.; Moriguchi, T.; Motohashi, H.; Nakayama, K.; Yamamoto, M. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat. Commun., 2016, 7(1), 11624.
[http://dx.doi.org/10.1038/ncomms11624] [PMID: 27211851]
[53]
Zhuang, Y.; Wu, H.; Wang, X.; He, J.; He, S.; Yin, Y. Resveratrol attenuates oxidative stress-induced intestinal barrier injury through PI3K/Akt-mediated Nrf2 signaling pathway. Oxid. Med. Cell. Longev., 2019, 2019, 1-14.
[http://dx.doi.org/10.1155/2019/7591840] [PMID: 31885814]
[54]
Linton, M.F.; Moslehi, J.J.; Babaev, V.R. Akt signaling in macrophage polarization, survival, and atherosclerosis. Int. J. Mol. Sci., 2019, 20(11), 2703.
[http://dx.doi.org/10.3390/ijms20112703] [PMID: 31159424]
[55]
Zhang, W.; Feng, C.; Jiang, H. Novel target for treating Alzheimer’s Diseases: Crosstalk between the Nrf2 pathway and autophagy. Ageing Res. Rev., 2021, 65, 101207.
[http://dx.doi.org/10.1016/j.arr.2020.101207] [PMID: 33144123]
[56]
Ichimura, Y.; Komatsu, M. Activation of p62/SQSTM1-Keap1-nuclear factor erythroid 2-related factor 2 pathway in cancer. Front. Oncol., 2018, 8, 210.
[http://dx.doi.org/10.3389/fonc.2018.00210] [PMID: 29930914]
[57]
Tsai, T.F.; Chen, P.C.; Lin, Y.C.; Chou, K.Y.; Chen, H.E.; Ho, C.Y.; Lin, J.F.; Hwang, T.I.S. Miconazole contributes to NRF2 activation by noncanonical P62-KEAP1 pathway in bladder cancer cells. Drug Des. Devel. Ther., 2020, 14, 1209-1218.
[http://dx.doi.org/10.2147/DDDT.S227892] [PMID: 32273683]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy