Generic placeholder image

Cardiovascular & Hematological Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5257
ISSN (Online): 1875-6182

Review Article

Lipotoxicity, ER Stress, and Cardiovascular Disease: Current Understanding and Future Directions

Author(s): Smriti Shreya, Md. Jahangir Alam, Anupriya, Saumya Jaiswal, Vibha Rani and Buddhi Prakash Jain*

Volume 22, Issue 3, 2024

Published on: 06 October, 2023

Page: [319 - 335] Pages: 17

DOI: 10.2174/0118715257262366230928051902

Price: $65

Open Access Journals Promotions 2
Abstract

The endoplasmic reticulum (ER) is a sub-cellular organelle that is responsible for the correct folding of proteins, lipid biosynthesis, calcium storage, and various post-translational modifications. In the disturbance of ER functioning, unfolded or misfolded proteins accumulate inside the ER lumen and initiate downstream signaling called unfolded protein response (UPR). The UPR signaling pathway is involved in lipolysis, triacylglycerol synthesis, lipogenesis, the mevalonate pathway, and low-density lipoprotein receptor recycling. ER stress also affects lipid metabolism by changing the levels of enzymes that are involved in the synthesis or modifications of lipids and causing lipotoxicity. Lipid metabolism and cardiac diseases are in close association as the deregulation of lipid metabolism leads to the development of various cardiovascular diseases (CVDs). Several studies have suggested that lipotoxicity is one of the important factors for cardiovascular disorders. In this review, we will discuss how ER stress affects lipid metabolism and their interplay in the development of cardiovascular disorders. Further, the current therapeutics available to target ER stress and lipid metabolism in various CVDs will be summarized.

Keywords: Endoplasmic reticulum, UPR, lipotoxicity, ischemic heart disease, arrhythmias, hypertension and heart failure.

Graphical Abstract
[1]
Kim, J.Y.; Garcia-Carbonell, R.; Yamachika, S.; Zhao, P.; Dhar, D.; Loomba, R.; Kaufman, R.J.; Saltiel, A.R.; Karin, M. ER stress drives lipogenesis and steatohepatitis via caspase-2 activation of S1P. Cell, 2018, 175(1), 133-145.e15.
[http://dx.doi.org/10.1016/j.cell.2018.08.020] [PMID: 30220454]
[2]
Ron, D. Translational control in the endoplasmic reticulum stress response. J. Clin. Invest., 2002, 110(10), 1383-1388.
[3]
Cao, S.S.; Kaufman, RJ Unfolded protein response. Curr. Biol., 2012, 22(16), R622-R626.
[http://dx.doi.org/10.1016/j.cub.2012.07.004]
[4]
Borgese, N.; Francolini, M.; Snapp, E. Endoplasmic reticulum architecture: Structures in flux. Curr. Opin. Cell Biol., 2006, 18(4), 358-364.
[http://dx.doi.org/10.1016/j.ceb.2006.06.008]
[5]
Foufelle, F.; Ferré, P. [Unfolded protein response: its role in physiology and physiopathology]. Med Sci MS., 2007, 23(3), 291-296.
[6]
Mekahli, D.; Bultynck, G.; Parys, J.B.; De Smedt, H.; Missiaen, L. Endoplasmic-reticulum calcium depletion and disease. Cold Spring Harb. Perspect. Biol., 2011, 3(6), a004317.
[http://dx.doi.org/10.1101/cshperspect.a004317] [PMID: 21441595]
[7]
Hayashi, T.; Rizzuto, R.; Hajnoczky, G.; Su, T.P. MAM: more than just a housekeeper. Trends Cell Biol., 2009, 19(2), 81-88.
[http://dx.doi.org/10.1016/j.tcb.2008.12.002] [PMID: 19144519]
[8]
Merksamer, P.I.; Papa, F.R. The UPR and cell fate at a glance. J. Cell Sci., 2010, 123(7), 1003-1006.
[http://dx.doi.org/10.1242/jcs.035832] [PMID: 20332117]
[9]
Shen, X.; Zhang, K.; Kaufman, R.J. The unfolded protein response—a stress signaling pathway of the endoplasmic reticulum. J. Chem. Neuroanat., 2004, 28(1-2), 79-92.
[http://dx.doi.org/10.1016/j.jchemneu.2004.02.006] [PMID: 15363493]
[10]
Chakrabarti, A.; Chen, A.W.; Varner, J.D. A review of the mammalian unfolded protein response. Biotechnol. Bioeng., 2011, 108(12), 2777-2793.
[http://dx.doi.org/10.1002/bit.23282] [PMID: 21809331]
[11]
Schultz, A.M.; Oroszlan, S. Tunicamycin inhibits glycosylation of precursor polyprotein encoded by env gene of Rauscher murine leukemia virus. Biochem. Biophys. Res. Commun., 1979, 86(4), 1206-1213.
[http://dx.doi.org/10.1016/0006-291X(79)90245-6]
[12]
Mori, K. The unfolded protein response: The dawn of a new field. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2015, 91(9), 469-480.
[http://dx.doi.org/10.2183/pjab.91.469] [PMID: 26560836]
[13]
Credle, J.J.; Finer-moore, J.S.; Papa, F.R.; Stroud, R.M.; Walter, P. On the mechanism of sensing unfolded protein in the endoplasmic reticulum. Biochemistry, 2005, 102(52), 18773-18784.
[http://dx.doi.org/10.1073/pnas.0509487102]
[14]
Hetz, C.; Zhang, K.; Kaufman, R.J. Mechanisms, regulation and functions of the unfolded protein response. Nat. Rev. Mol. Cell Biol., 2020, 21(8), 421-438.
[http://dx.doi.org/10.1038/s41580-020-0250-z] [PMID: 32457508]
[15]
Harding, H.P.; Zhang, Y.; Scheuner, D.; Chen, J.J.; Kaufman, R.J.; Ron, D. Ppp1r15 gene knockout reveals an essential role for translation initiation factor 2 alpha (eIF2α) dephosphorylation in mammalian development. Proc. Natl. Acad. Sci., 2009, 106(6), 1832-1837.
[http://dx.doi.org/10.1073/pnas.0809632106] [PMID: 19181853]
[16]
Marciniak, S.J.; Yun, C.Y.; Oyadomari, S.; Novoa, I.; Zhang, Y.; Jungreis, R.; Nagata, K.; Harding, H.P.; Ron, D. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev., 2004, 18(24), 3066-3077.
[http://dx.doi.org/10.1101/gad.1250704] [PMID: 15601821]
[17]
Tabas, I.; Ron, D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat. Cell Biol., 2011, 13(3), 184-190.
[http://dx.doi.org/10.1038/ncb0311-184] [PMID: 21364565]
[18]
Walter, P.; Ron, D. The unfolded protein response: From stress pathway to homeostatic regulation. Science, 2011, 334(6059), 1081-1086.
[http://dx.doi.org/10.1126/science.1209038] [PMID: 22116877]
[19]
Mori, K. Signalling pathways in the unfolded protein response: Development from yeast to mammals. J. Biochem., 2009, 146(6), 743-750.
[http://dx.doi.org/10.1093/jb/mvp166] [PMID: 19861400]
[20]
Hetz, C.; Glimcher, L.H. Fine tuning of the unfolded protein response: Assembling the IRE1α interactome. Mol. Cell, 2009, 35(5), 551-561.
[21]
Ron, D.; Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol., 2007, 8(7), 519-529.
[http://dx.doi.org/10.1038/nrm2199] [PMID: 17565364]
[22]
Gomez, J.A.; Rutkowski, D.T. Experimental reconstitution of chronic ER stress in the liver reveals feedback suppression of BiP mRNA expression. eLife, 2016, 5, e20390.
[http://dx.doi.org/10.7554/eLife.20390] [PMID: 27938665]
[23]
Haze, K.; Yoshida, H.; Yanagi, H.; Yura, T.; Mori, K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol. Biol. Cell, 1999, 10(11), 3787-3799.
[http://dx.doi.org/10.1091/mbc.10.11.3787] [PMID: 10564271]
[24]
Lee, K.; Tirasophon, W.; Shen, X.; Michalak, M.; Prywes, R.; Okada, T.; Yoshida, H.; Mori, K.; Kaufman, R.J. IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev., 2002, 16(4), 452-466.
[http://dx.doi.org/10.1101/gad.964702] [PMID: 11850408]
[25]
Bechmann, L.P.; Hannivoort, R.A.; Gerken, G.; Hotamisligil, G.S.; Trauner, M.; Canbay, A. The interaction of hepatic lipid and glucose metabolism in liver diseases. J. Hepatol., 2012, 56(4), 952-964.
[http://dx.doi.org/10.1016/j.jhep.2011.08.025] [PMID: 22173168]
[26]
Jacquemyn, J.; Cascalho, A.; Goodchild, R.E. The ins and outs of endoplasmic reticulum‐controlled lipid biosynthesis. EMBO Rep., 2017, 18(11), 1905-1921.
[http://dx.doi.org/10.15252/embr.201643426] [PMID: 29074503]
[27]
Nishimura, T; Stefan, CJ Specialized ER membrane domains for lipid metabolism and transport. Biochim Biophys Acta BBA - Mol Cell Biol Lipids., 2020, 1865(1), 158492.
[http://dx.doi.org/10.1016/j.bbalip.2019.07.001]
[28]
Gill, S.; Stevenson, J.; Kristiana, I.; Brown, A.J. Cholesterol-dependent degradation of squalene monooxygenase, a control point in cholesterol synthesis beyond HMG-CoA reductase. Cell Metab., 2011, 13(3), 260-273.
[http://dx.doi.org/10.1016/j.cmet.2011.01.015] [PMID: 21356516]
[29]
Romani, P.; Brian, I.; Santinon, G.; Pocaterra, A.; Audano, M.; Pedretti, S.; Mathieu, S.; Forcato, M.; Bicciato, S.; Manneville, J.B.; Mitro, N.; Dupont, S. Extracellular matrix mechanical cues regulate lipid metabolism through Lipin-1 and SREBP. Nat. Cell Biol., 2019, 21(3), 338-347.
[http://dx.doi.org/10.1038/s41556-018-0270-5] [PMID: 30718857]
[30]
Sever, N.; Yang, T.; Brown, M.S.; Goldstein, J.L.; DeBose-Boyd, R.A. Accelerated degradation of HMG CoA reductase mediated by binding of insig-1 to its sterol-sensing domain. Mol. Cell, 2003, 11(1), 25-33.
[http://dx.doi.org/10.1016/S1097-2765(02)00822-5] [PMID: 12535518]
[31]
Brown, M.S.; Radhakrishnan, A.; Goldstein, J.L. Retrospective on cholesterol homeostasis: The central role of scap. Annu. Rev. Biochem., 2018, 87(1), 783-807.
[http://dx.doi.org/10.1146/annurev-biochem-062917-011852] [PMID: 28841344]
[32]
Widenmaier, S.B.; Snyder, N.A.; Nguyen, T.B.; Arduini, A.; Lee, G.Y.; Arruda, A.P.; Saksi, J.; Bartelt, A.; Hotamisligil, G.S. NRF1 is an ER membrane sensor that is central to cholesterol homeostasis. Cell, 2017, 171(5), 1094-1109.e15.
[http://dx.doi.org/10.1016/j.cell.2017.10.003] [PMID: 29149604]
[33]
Lauressergues, E.; Bert, E.; Duriez, P.; Hum, D.; Majd, Z.; Staels, B.; Cussac, D. Does endoplasmic reticulum stress participate in APD-induced hepatic metabolic dysregulation? Neuropharmacology, 2012, 62(2), 784-796.
[http://dx.doi.org/10.1016/j.neuropharm.2011.08.048] [PMID: 21924277]
[34]
Li, H.; Meng, Q.; Xiao, F.; Chen, S.; Du, Y.; Yu, J.; Wang, C.; Guo, F. ATF4 deficiency protects mice from high-carbohydrate-diet-induced liver steatosis. Biochem. J., 2011, 438(2), 283-289.
[http://dx.doi.org/10.1042/BJ20110263] [PMID: 21644928]
[35]
Rutkowski, D.T.; Wu, J.; Back, S.H.; Callaghan, M.U.; Ferris, S.P.; Iqbal, J.; Clark, R.; Miao, H.; Hassler, J.R.; Fornek, J.; Katze, M.G.; Hussain, M.M.; Song, B.; Swathirajan, J.; Wang, J.; Yau, G.D.Y.; Kaufman, R.J. UPR pathways combine to prevent hepatic steatosis caused by ER stress-mediated suppression of transcriptional master regulators. Dev. Cell, 2008, 15(6), 829-840.
[http://dx.doi.org/10.1016/j.devcel.2008.10.015] [PMID: 19081072]
[36]
Drosatos, K.; Schulze, P.C. Cardiac lipotoxicity: Molecular pathways and therapeutic implications. Curr. Heart Fail. Rep., 2013, 10(2), 109-121.
[http://dx.doi.org/10.1007/s11897-013-0133-0] [PMID: 23508767]
[37]
Lee, A.H.; Scapa, E.F.; Cohen, D.E.; Glimcher, L.H. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science, 2008, 320(5882), 1492-1496.
[http://dx.doi.org/10.1126/science.1158042] [PMID: 18556558]
[38]
Sha, H.; He, Y.; Chen, H.; Wang, C.; Zenno, A.; Shi, H.; Yang, X.; Zhang, X.; Qi, L. The IRE1α-XBP1 pathway of the unfolded protein response is required for adipogenesis. Cell Metab., 2009, 9(6), 556-564.
[http://dx.doi.org/10.1016/j.cmet.2009.04.009] [PMID: 19490910]
[39]
Imanikia, S.; Sheng, M.; Castro, C.; Griffin, J.L.; Taylor, R.C. XBP-1 Remodels Lipid Metabolism to Extend Longevity. Cell Rep., 2019, 28(3), 581-589.e4.
[http://dx.doi.org/10.1016/j.celrep.2019.06.057] [PMID: 31315038]
[40]
Zeng, L.; Lu, M.; Mori, K.; Luo, S.; Lee, A.S.; Zhu, Y.; Shyy, J.Y.J. ATF6 modulates SREBP2-mediated lipogenesis. EMBO J., 2004, 23(4), 950-958.
[http://dx.doi.org/10.1038/sj.emboj.7600106] [PMID: 14765107]
[41]
Keisuke, Y.; Kazuna, T.; Seiichi, O. Induction of liver steatosis and lipid droplet formation in ATF6alpha-knockout mice burdened with pharmacological endoplasmic reticulum stress. Mol. Biol. Cell, 2010, 21(17), 2975-2986.
[42]
Cinaroglu, A.; Gao, C.; Imrie, D.; Sadler, K.C. Atf6 plays protective and pathologic roles in fatty liver disease due to endoplasmic reticulum stress. Hepatology, 2011, 54(2), 495-508.
[http://dx.doi.org/10.1002/hep.24396] [PMID: 21538441]
[43]
Birse, R.T.; Bodmer, R. Lipotoxicity and cardiac dysfunction in mammals and Drosophila. Crit. Rev. Biochem. Mol. Biol., 2011, 46(5), 376-385.
[http://dx.doi.org/10.3109/10409238.2011.599830] [PMID: 21851295]
[44]
Chiu, H.C.; Kovacs, A.; Ford, D.A.; Hsu, F.F.; Garcia, R.; Herrero, P.; Saffitz, J.E.; Schaffer, J.E. A novel mouse model of lipotoxic cardiomyopathy. J. Clin. Invest., 2001, 107(7), 813-822.
[http://dx.doi.org/10.1172/JCI10947] [PMID: 11285300]
[45]
Gray, S.; Kim, J.K. New insights into insulin resistance in the diabetic heart. Trends Endocrinol. Metab., 2011, 22(10), 394-403.
[http://dx.doi.org/10.1016/j.tem.2011.05.001] [PMID: 21680199]
[46]
Goldberg, I.J.; Trent, C.M.; Schulze, P.C. Lipid metabolism and toxicity in the heart. Cell Metab., 2012, 15(6), 805-812.
[http://dx.doi.org/10.1016/j.cmet.2012.04.006] [PMID: 22682221]
[47]
Kolwicz, S.C., Jr; Purohit, S.; Tian, R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ. Res., 2013, 113(5), 603-616.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.302095] [PMID: 23948585]
[48]
McGavock, J.M.; Victor, R.G.; Unger, R.H.; Szczepaniak, L.S. Adiposity of the heart, revisited. Ann. Intern. Med., 2006, 144(7), 517-524.
[http://dx.doi.org/10.7326/0003-4819-144-7-200604040-00011] [PMID: 16585666]
[49]
Szczepaniak, L.S.; Victor, R.G.; Orci, L.; Unger, R.H. Forgotten but not gone: the rediscovery of fatty heart, the most common unrecognized disease in America. Circ. Res., 2007, 101(8), 759-767.
[http://dx.doi.org/10.1161/CIRCRESAHA.107.160457] [PMID: 17932333]
[50]
Heather, L.C.; Pates, K.M.; Atherton, H.J.; Cole, M.A.; Ball, D.R.; Evans, R.D.; Glatz, J.F.; Luiken, J.J.; Griffin, J.L.; Clarke, K. Differential translocation of the fatty acid transporter, FAT/CD36, and the glucose transporter, GLUT4, coordinates changes in cardiac substrate metabolism during ischemia and reperfusion. Circ. Heart Fail., 2013, 6(5), 1058-1066.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.112.000342] [PMID: 23940308]
[51]
Nagendran, J.; Pulinilkunnil, T.; Kienesberger, P.C.; Sung, M.M.; Fung, D.; Febbraio, M.; Dyck, J.R.B. Cardiomyocyte-specific ablation of CD36 improves post-ischemic functional recovery. J. Mol. Cell. Cardiol., 2013, 63, 180-188.
[http://dx.doi.org/10.1016/j.yjmcc.2013.07.020] [PMID: 23948483]
[52]
Coort, S.L.M.; Luiken, J.J.F.P.; van der Vusse, G.J.; Bonen, A.; Glatz, J.F.C. Increased FAT (fatty acid translocase)/CD36-mediated long-chain fatty acid uptake in cardiac myocytes from obese Zucker rats. Biochem. Soc. Trans., 2004, 32(1), 83-85.
[http://dx.doi.org/10.1042/bst0320083] [PMID: 14748718]
[53]
Luiken, J.J.F.P.; Arumugam, Y.; Dyck, D.J.; Bell, R.C.; Pelsers, M.M.L.; Turcotte, L.P.; Tandon, N.N.; Glatz, J.F.C.; Bonen, A. Increased rates of fatty acid uptake and plasmalemmal fatty acid transporters in obese Zucker rats. J. Biol. Chem., 2001, 276(44), 40567-40573.
[http://dx.doi.org/10.1074/jbc.M100052200] [PMID: 11504711]
[54]
Okada, K.; Minamino, T.; Tsukamoto, Y.; Liao, Y.; Tsukamoto, O.; Takashima, S. Prolonged endoplasmic reticulum stress in hypertrophic and failing heart after aortic constriction: Possible contribution of endoplasmic reticulum stress to cardiac myocyte apoptosis. Circulation, 2004, 110(6), 705-712.
[55]
Terai, K.; Hiramoto, Y.; Masaki, M.; Sugiyama, S.; Kuroda, T.; Hori, M.; Kawase, I.; Hirota, H. AMP-activated protein kinase protects cardiomyocytes against hypoxic injury through attenuation of endoplasmic reticulum stress. Mol. Cell. Biol., 2005, 25(21), 9554-9575.
[http://dx.doi.org/10.1128/MCB.25.21.9554-9575.2005] [PMID: 16227605]
[56]
Liu, M.; Chen, Z.; Chen, L. Endoplasmic reticulum stress: A novel mechanism and therapeutic target for cardiovascular diseases. Acta Pharmacol. Sin., 2016, 37(4), 425-443.
[http://dx.doi.org/10.1038/aps.2015.145] [PMID: 26838072]
[57]
Soares, R.O.S.; Losada, D.M.; Jordani, M.C.; Évora, P.; Castro-e-Silva, O. Ischemia/reperfusion injury revisited: An overview of the latest pharmacological strategies. Int. J. Mol. Sci., 2019, 20(20), 5034.
[http://dx.doi.org/10.3390/ijms20205034] [PMID: 31614478]
[58]
Yoshida, H. ER stress and diseases. FEBS J., 2007, 274(3), 630-658.
[http://dx.doi.org/10.1111/j.1742-4658.2007.05639.x] [PMID: 17288551]
[59]
Glembotski, C.C. The role of the unfolded protein response in the heart. J. Mol. Cell. Cardiol., 2008, 44(3), 453-459.
[http://dx.doi.org/10.1016/j.yjmcc.2007.10.017] [PMID: 18054039]
[60]
Gotoh, T.; Endo, M.; Oike, Y. Endoplasmic reticulum stress-related inflammation and cardiovascular diseases. Int. J. Inflamm., 2011, 2011, 1-8.
[http://dx.doi.org/10.4061/2011/259462] [PMID: 21755026]
[61]
Szegezdi, E.; Duffy, A.; O’Mahoney, M.E.; Logue, S.E.; Mylotte, L.A.; O’Brien, T.; Samali, A. ER stress contributes to ischemia-induced cardiomyocyte apoptosis. Biochem. Biophys. Res. Commun., 2006, 349(4), 1406-1411.
[http://dx.doi.org/10.1016/j.bbrc.2006.09.009] [PMID: 16979584]
[62]
Thuerauf, D.J.; Marcinko, M.; Gude, N.; Rubio, M.; Sussman, M.A.; Glembotski, C.C. Activation of the unfolded protein response in infarcted mouse heart and hypoxic cultured cardiac myocytes. Circ. Res., 2006, 99(3), 275-282.
[http://dx.doi.org/10.1161/01.RES.0000233317.70421.03] [PMID: 16794188]
[63]
Vitadello, M.; Penzo, D.; Petronilli, V.; Michieli, G.; Gomirato, S.; Menabò, R.; Di Lisa, F.; Gorza, L. Overexpression of the stress‐protein Grp94 reduces cardiomyocyte necrosis due to calcium overload and simulated ischemia. FASEB J., 2003, 17(8), 1-20.
[http://dx.doi.org/10.1096/fj.02-0644fje] [PMID: 12670879]
[64]
Sawada, T.; Minamino, T.; Fu, H.Y.; Asai, M.; Okuda, K.; Isomura, T.; Yamazaki, S.; Asano, Y.; Okada, K.; Tsukamoto, O.; Sanada, S.; Asanuma, H.; Asakura, M.; Takashima, S.; Kitakaze, M.; Komuro, I. X-box binding protein 1 regulates brain natriuretic peptide through a novel AP1/CRE-like element in cardiomyocytes. J. Mol. Cell. Cardiol., 2010, 48(6), 1280-1289.
[http://dx.doi.org/10.1016/j.yjmcc.2010.02.004] [PMID: 20170659]
[65]
Wang, Z.V.; Deng, Y.; Gao, N.; Pedrozo, Z.; Li, D.L.; Morales, C.R.; Criollo, A.; Luo, X.; Tan, W.; Jiang, N.; Lehrman, M.A.; Rothermel, B.A.; Lee, A.H.; Lavandero, S.; Mammen, P.P.A.; Ferdous, A.; Gillette, T.G.; Scherer, P.E.; Hill, J.A. Spliced X-box binding protein 1 couples the unfolded protein response to hexosamine biosynthetic pathway. Cell, 2014, 156(6), 1179-1192.
[http://dx.doi.org/10.1016/j.cell.2014.01.014] [PMID: 24630721]
[66]
Sozen, E.; Karademir, B.; Ozer, N.K. Basic mechanisms in endoplasmic reticulum stress and relation to cardiovascular diseases. Free Radic. Biol. Med., 2015, 78, 30-41.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.09.031] [PMID: 25452144]
[67]
Ren, J.; Bi, Y.; Sowers, J.R.; Hetz, C.; Zhang, Y. Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases. Nat. Rev. Cardiol., 2021, 18(7), 499-521.
[http://dx.doi.org/10.1038/s41569-021-00511-w] [PMID: 33619348]
[68]
Jian, L.; Lu, Y.; Lu, S.; Lu, C. Chemical chaperone 4-phenylbutyric acid reduces cardiac ischemia/reperfusion injury by alleviating endoplasmic reticulum stress and oxidative stress. Med. Sci. Monit., 2016, 22(22), 5218-5227.
[http://dx.doi.org/10.12659/MSM.898623] [PMID: 28036323]
[69]
Avery, J.; Etzion, S.; DeBosch, B.J.; Jin, X.; Lupu, T.S.; Beitinjaneh, B.; Grand, J.; Kovacs, A.; Sambandam, N.; Muslin, A.J. TRB3 function in cardiac endoplasmic reticulum stress. Circ. Res., 2010, 106(9), 1516-1523.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.211920] [PMID: 20360254]
[70]
Doroudgar, S.; Thuerauf, D.J.; Marcinko, M.C.; Belmont, P.J.; Glembotski, C.C. Ischemia activates the ATF6 branch of the endoplasmic reticulum stress response. J. Biol. Chem., 2009, 284(43), 29735-29745.
[http://dx.doi.org/10.1074/jbc.M109.018036] [PMID: 19622751]
[71]
Martindale, J.J.; Fernandez, R.; Thuerauf, D.; Whittaker, R.; Gude, N.; Sussman, M.A.; Glembotski, C.C. Endoplasmic reticulum stress gene induction and protection from ischemia/reperfusion injury in the hearts of transgenic mice with a tamoxifen-regulated form of ATF6. Circ. Res., 2006, 98(9), 1186-1193.
[http://dx.doi.org/10.1161/01.RES.0000220643.65941.8d] [PMID: 16601230]
[72]
Belmont, P.J.; Chen, W.J.; San Pedro, M.N.; Thuerauf, D.J.; Gellings Lowe, N.; Gude, N.; Hilton, B.; Wolkowicz, R.; Sussman, M.A.; Glembotski, C.C. Roles for endoplasmic reticulum-associated degradation and the novel endoplasmic reticulum stress response gene Derlin-3 in the ischemic heart. Circ. Res., 2010, 106(2), 307-316.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.203901] [PMID: 19940266]
[73]
Nickson, P.; Toth, A.; Erhardt, P. PUMA is critical for neonatal cardiomyocyte apoptosis induced by endoplasmic reticulum stress. Cardiovasc. Res., 2007, 73(1), 48-56.
[http://dx.doi.org/10.1016/j.cardiores.2006.10.001] [PMID: 17107669]
[74]
Gizurarson, S.; Ståhlman, M.; Jeppsson, A.; Shao, Y.; Redfors, B.; Bergfeldt, L.; Borén, J.; Omerovic, E. Atrial fibrillation in patients admitted to coronary care units in western Sweden – focus on obesity and lipotoxicity. J. Electrocardiol., 2015, 48(5), 853-860.
[http://dx.doi.org/10.1016/j.jelectrocard.2014.12.010] [PMID: 25666738]
[75]
Gellens, M.E.; George, A.L., Jr; Chen, L.Q.; Chahine, M.; Horn, R.; Barchi, R.L.; Kallen, R.G. Primary structure and functional expression of the human cardiac tetrodotoxin-insensitive voltage-dependent sodium channel. Proc. Natl. Acad. Sci., 1992, 89(2), 554-558.
[http://dx.doi.org/10.1073/pnas.89.2.554] [PMID: 1309946]
[76]
Huo, R.; Sheng, Y.; Guo, W.T.; Dong, D.L. The potential role of Kv4.3 K+ channel in heart hypertrophy. Channels, 2014, 8(3), 203-209.
[77]
Gao, G.; Xie, A.; Zhang, J.; Herman, A.M.; Jeong, E.M.; Gu, L.; Liu, M.; Yang, K.C.; Kamp, T.J.; Dudley, S.C. Unfolded protein response regulates cardiac sodium current in systolic human heart failure. Circ. Arrhythm. Electrophysiol., 2013, 6(5), 1018-1024.
[http://dx.doi.org/10.1161/CIRCEP.113.000274] [PMID: 24036084]
[78]
Liu, M.; Dudley, S., Jr Role for the unfolded protein response in heart disease and cardiac arrhythmias. Int. J. Mol. Sci., 2015, 17(1), 52.
[http://dx.doi.org/10.3390/ijms17010052] [PMID: 26729106]
[79]
Sano, R.; Reed, J.C. ER stress-induced cell death mechanisms. Biochim Biophys Acta BBA - Mol. Cell Res., 2013, 1833(12), 3460-3470.
[80]
Hamilton, S.; Veress, R.; Belevych, A.; Terentyev, D. The role of calcium homeostasis remodeling in inherited cardiac arrhythmia syndromes. Pflugers Arch., 2021, 473(3), 377-387.
[http://dx.doi.org/10.1007/s00424-020-02505-y] [PMID: 33404893]
[81]
Hamilton, S.; Terentyeva, R.; Martin, B.; Perger, F.; Li, J.; Stepanov, A.; Bonilla, I.M.; Knollmann, B.C.; Radwański, P.B.; Györke, S.; Belevych, A.E.; Terentyev, D. Increased RyR2 activity is exacerbated by calcium leak-induced mitochondrial ROS. Basic Res. Cardiol., 2020, 115(4), 38.
[http://dx.doi.org/10.1007/s00395-020-0797-z] [PMID: 32444920]
[82]
Liu, X.H.; Zhang, Z.Y.; Andersson, K.B.; Husberg, C.; Enger, U.H.; Ræder, M.G.; Christensen, G.; Louch, W.E. Cardiomyocyte-specific disruption of Serca2 in adult mice causes sarco(endo)plasmic reticulum stress and apoptosis. Cell Calcium, 2011, 49(4), 201-207.
[http://dx.doi.org/10.1016/j.ceca.2010.09.009] [PMID: 20965565]
[83]
Isodono, K.; Takahashi, T.; Imoto, H.; Nakanishi, N.; Ogata, T.; Asada, S.; Adachi, A.; Ueyama, T.; Oh, H.; Matsubara, H. PARM-1 is an endoplasmic reticulum molecule involved in endoplasmic reticulum stress-induced apoptosis in rat cardiac myocytes. PLoS One, 2010, 5(3), e9746.
[http://dx.doi.org/10.1371/journal.pone.0009746] [PMID: 20305782]
[84]
Dally, S.; Monceau, V.; Corvazier, E.; Bredoux, R.; Raies, A.; Bobe, R.; del Monte, F.; Enouf, J. Compartmentalized expression of three novel sarco/endoplasmic reticulum Ca2+ ATPase 3 isoforms including the switch to ER stress, SERCA3f, in non-failing and failing human heart. Cell Calcium, 2009, 45(2), 144-154.
[http://dx.doi.org/10.1016/j.ceca.2008.08.002] [PMID: 18947868]
[85]
Schunkert, H.; Sadoshima, J.; Cornelius, T.; Kagaya, Y.; Weinberg, E.O.; Izumo, S.; Riegger, G.; Lorell, B.H. Angiotensin II-induced growth responses in isolated adult rat hearts. Evidence for load-independent induction of cardiac protein synthesis by angiotensin II. Circ. Res., 1995, 76(3), 489-497.
[http://dx.doi.org/10.1161/01.RES.76.3.489] [PMID: 7859394]
[86]
Ross, R. Atherosclerosis--an inflammatory disease. N. Engl. J. Med., 1999, 34(2), 115-126.
[87]
Zhang, C.; Syed, T.W.; Liu, R.; Yu, J. Role of endoplasmic reticulum stress, autophagy, and inflammation in cardiovascular disease. Front. Cardiovasc. Med., 2017, 4, 29.
[88]
Berliner, J.A.; Watson, A.D. A role for oxidized phospholipids in atherosclerosis. N. Engl. J. Med., 2005, 353(1), 9-11.
[http://dx.doi.org/10.1056/NEJMp058118]
[89]
Civelek, M.; Manduchi, E.; Riley, R.J.; Stoeckert, C.J., Jr; Davies, P.F. Chronic endoplasmic reticulum stress activates unfolded protein response in arterial endothelium in regions of susceptibility to atherosclerosis. Circ. Res., 2009, 105(5), 453-461.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.203711] [PMID: 19661457]
[90]
Dong, Y.; Zhang, M.; Liang, B.; Xie, Z.; Zhao, Z.; Asfa, S.; Choi, H.C.; Zou, M.H. Reduction of AMP-activated protein kinase α2 increases endoplasmic reticulum stress and atherosclerosis in vivo. Circulation, 2010, 121(6), 792-803.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.900928] [PMID: 20124121]
[91]
Tabas, I.; Seimon, T.; Timmins, J.; Li, G.; Lim, W. Macrophage apoptosis in advanced atherosclerosis. Ann. N. Y. Acad. Sci., 2009, 1173(S1), E40-E45.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04957.x] [PMID: 19751413]
[92]
Feng, B.; Yao, P.M.; Li, Y.; Devlin, C.M.; Zhang, D.; Harding, H.P.; Sweeney, M.; Rong, J.X.; Kuriakose, G.; Fisher, E.A.; Marks, A.R.; Ron, D.; Tabas, I. The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat. Cell Biol., 2003, 5(9), 781-792.
[http://dx.doi.org/10.1038/ncb1035] [PMID: 12907943]
[93]
Uysal, K.T.; Scheja, L.; Wiesbrock, S.M.; Bonner-Weir, S.; Hotamisligil, G.K.S. Improved glucose and lipid metabolism in genetically obese mice lacking aP2. Endocrinology, 2000, 141(9), 3388-3396.
[http://dx.doi.org/10.1210/endo.141.9.7637]
[94]
Erbay, E.; Babaev, V.R.; Mayers, J.R.; Makowski, L.; Charles, K.N.; Snitow, M.E.; Fazio, S.; Wiest, M.M.; Watkins, S.M.; Linton, M.F.; Hotamisligil, G.S. Reducing endoplasmic reticulum stress through a macrophage lipid chaperone alleviates atherosclerosis. Nat. Med., 2009, 15(12), 1383-1391.
[http://dx.doi.org/10.1038/nm.2067] [PMID: 19966778]
[95]
Montezano, A.C.; Touyz, R.M. Reactive oxygen species, vascular Noxs, and hypertension: focus on translational and clinical research. Antioxid. Redox Signal., 2014, 20(1), 164-182.
[http://dx.doi.org/10.1089/ars.2013.5302] [PMID: 23600794]
[96]
Ochoa, C.D.; Wu, R.F.; Terada, L.S. ROS signaling and ER stress in cardiovascular disease. Mol. Aspects Med., 2018, 63, 18-29.
[http://dx.doi.org/10.1016/j.mam.2018.03.002] [PMID: 29559224]
[97]
Re, C.; Ke, W. Endoplasmic reticulum stress inhibition reduces hypertension through the preservation of resistance blood vessel structure and function. J. Hypertens., 2016, 34(8)
[98]
Young, C.N.; Cao, X.; Guruju, M.R.; Pierce, J.P.; Morgan, D.A.; Wang, G.; Iadecola, C.; Mark, A.L.; Davisson, R.L. ER stress in the brain subfornical organ mediates angiotensin-dependent hypertension. J. Clin. Invest., 2012, 122(11), 3960-3964.
[http://dx.doi.org/10.1172/JCI64583] [PMID: 23064361]
[99]
Tomé-Carneiro, J.; Visioli, F. Polyphenol-based nutraceuticals for the prevention and treatment of cardiovascular disease: Review of human evidence. Phytomedicine Int J Phytother Phytopharm., 2016, 23(11), 1145-1174.
[100]
Aguilar-Ballester, M.; Hurtado-Genovés, G.; Taberner-Cortés, A.; Herrero-Cervera, A.; Martínez-Hervás, S.; González-Navarro, H. Therapies for the treatment of cardiovascular disease associated with type 2 diabetes and dyslipidemia. Int. J. Mol. Sci., 2021, 22(2), 660.
[http://dx.doi.org/10.3390/ijms22020660] [PMID: 33440821]
[101]
Chrysant, S.G.; Chrysant, G.S. New and emerging cardiovascular and antihypertensive drugs. Expert Opin. Drug Saf., 2020, 19(10), 1315-1327.
[http://dx.doi.org/10.1080/14740338.2020.1810232] [PMID: 32799574]
[102]
Kolattukudy, P.E.; Niu, J. Inflammation, endoplasmic reticulum stress, autophagy, and the monocyte chemoattractant protein-1/CCR2 pathway. Circ. Res., 2012, 110(1), 174-189.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.243212] [PMID: 22223213]
[103]
Amen, O.M.; Sarker, S.D.; Ghildyal, R.; Arya, A. Endoplasmic reticulum stress activates unfolded protein response signaling and mediates inflammation, obesity, and cardiac dysfunction: Therapeutic and molecular approach. Front. Pharmacol., 2019, 10, 977.
[http://dx.doi.org/10.3389/fphar.2019.00977] [PMID: 31551782]
[104]
Tam, A.B.; Roberts, L.S.; Chandra, V.; Rivera, I.G.; Nomura, D.K.; Forbes, D.J.; Niwa, M. The UPR activator ATF6 responds to proteotoxic and lipotoxic stress by distinct mechanisms. Dev. Cell, 2018, 46(3), 327-343.e7.
[http://dx.doi.org/10.1016/j.devcel.2018.04.023] [PMID: 30086303]
[105]
Fu, S.; Yang, L.; Li, P.; Hofmann, O.; Dicker, L.; Hide, W.; Lin, X.; Watkins, S.M.; Ivanov, A.R.; Hotamisligil, G.S. Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature, 2011, 473(7348), 528-531.
[http://dx.doi.org/10.1038/nature09968] [PMID: 21532591]
[106]
McMahon, H.T.; Gallop, J.L. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature, 2005, 438(7068), 590-596.
[http://dx.doi.org/10.1038/nature04396] [PMID: 16319878]
[107]
Niebergall, L.J.; Jacobs, R.L.; Chaba, T.; Vance, D.E. Phosphatidylcholine protects against steatosis in mice but not non-alcoholic steatohepatitis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2011, 1811(12), 1177-1185.
[http://dx.doi.org/10.1016/j.bbalip.2011.06.021] [PMID: 21745592]
[108]
Promlek, T.; Ishiwata-Kimata, Y.; Shido, M.; Sakuramoto, M.; Kohno, K.; Kimata, Y. Membrane aberrancy and unfolded proteins activate the endoplasmic reticulum stress sensor Ire1 in different ways. Mol. Biol. Cell, 2011, 22(18), 3520-3532.
[http://dx.doi.org/10.1091/mbc.e11-04-0295] [PMID: 21775630]
[109]
Ho, N.; Yap, W.S.; Xu, J.; Wu, H.; Koh, J.H.; Goh, W.W.B.; George, B.; Chong, S.C.; Taubert, S.; Thibault, G. Stress sensor Ire1 deploys a divergent transcriptional program in response to lipid bilayer stress. J. Cell Biol., 2020, 219(7), e201909165.
[http://dx.doi.org/10.1083/jcb.201909165] [PMID: 32349127]
[110]
Akazawa, Y.; Cazanave, S.; Mott, J.L.; Elmi, N.; Bronk, S.F.; Kohno, S.; Charlton, M.R.; Gores, G.J. Palmitoleate attenuates palmitate-induced Bim and PUMA up-regulation and hepatocyte lipoapoptosis. J. Hepatol., 2010, 52(4), 586-593.
[http://dx.doi.org/10.1016/j.jhep.2010.01.003] [PMID: 20206402]
[111]
Malhi, H.; Barreyro, F.J.; Isomoto, H.; Bronk, S.F.; Gores, G.J. Free fatty acids sensitise hepatocytes to TRAIL mediated cytotoxicity. Gut, 2007, 56(8), 1124-1131.
[http://dx.doi.org/10.1136/gut.2006.118059] [PMID: 17470478]
[112]
Malhi, H.; Bronk, S.F.; Werneburg, N.W.; Gores, G.J. Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis. J. Biol. Chem., 2006, 281(17), 12093-12101.
[http://dx.doi.org/10.1074/jbc.M510660200] [PMID: 16505490]
[113]
Peoples, J.N.; Saraf, A.; Ghazal, N.; Pham, T.T.; Kwong, J.Q. Mitochondrial dysfunction and oxidative stress in heart disease. Exp. Mol. Med., 2019, 51(12), 1-13.
[http://dx.doi.org/10.1038/s12276-019-0355-7] [PMID: 31857574]
[114]
Chen, T.; Zhu, J.; Wang, Y.H.; Hang, C.H. ROS-mediated mitochondrial dysfunction and ER stress contribute to compression-induced neuronal injury. Neuroscience, 2019, 416, 268-280.
[http://dx.doi.org/10.1016/j.neuroscience.2019.08.007] [PMID: 31425734]
[115]
Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J., 2009, 417(1), 1-13.
[http://dx.doi.org/10.1042/BJ20081386] [PMID: 19061483]
[116]
Santos, C.X.C.; Nabeebaccus, A.A.; Shah, A.M.; Camargo, L.L.; Filho, S.V.; Lopes, L.R. Endoplasmic reticulum stress and Nox-mediated reactive oxygen species signaling in the peripheral vasculature: Potential role in hypertension. Antioxid. Redox Signal., 2014, 20(1), 121-134.
[http://dx.doi.org/10.1089/ars.2013.5262] [PMID: 23472786]
[117]
Thoma, A.; Lyon, M.; Al-Shanti, N.; Nye, G.A.; Cooper, R.G.; Lightfoot, A.P. Eukarion-134 attenuates endoplasmic reticulum stress-induced mitochondrial dysfunction in human skeletal muscle cells. Antioxidants, 2020, 9(8), 710.
[http://dx.doi.org/10.3390/antiox9080710] [PMID: 32764412]
[118]
Win, S.; Than, T.A.; Fernandez-Checa, J.C.; Kaplowitz, N. JNK interaction with Sab mediates ER stress induced inhibition of mitochondrial respiration and cell death. Cell Death Dis., 2014, 5(1), e989.
[http://dx.doi.org/10.1038/cddis.2013.522] [PMID: 24407242]
[119]
Xiong, W.; Fei, M.; Wu, C.; Wang, W.; Luo, R.; Shen, L.; Zhang, Z. Atorvastatin inhibits endoplasmic reticulum stress through AMPK signaling pathway in atherosclerosis in mice. Exp. Ther. Med., 2020, 19(3), 2266-2272.
[http://dx.doi.org/10.3892/etm.2019.8379] [PMID: 32104293]
[120]
Homocysteine activates T cells by enhancing endoplasmic reticulum-mitochondria coupling and increasing mitochondrial respiration. Protein Cell, 2016, 7(6)
[121]
Hua, L.; Wu, N.; Zhao, R.; He, X.; Liu, Q.; Li, X.; He, Z.; Yu, L.; Yan, N. Sphingomyelin synthase 2 promotes endothelial dysfunction by inducing endoplasmic reticulum stress. Int. J. Mol. Sci., 2019, 20(12), 2861.
[http://dx.doi.org/10.3390/ijms20122861] [PMID: 31212751]
[122]
Zhang, G.Q.; Tao, Y.K.; Bai, Y.P.; Yan, S.T.; Zhao, S.P. Inhibitory effects of simvastatin on oxidized low-density lipoprotein-induced endoplasmic reticulum stress and apoptosis in vascular endothelial cells. Chin. Med. J., 2018, 131(8), 950-955.
[http://dx.doi.org/10.4103/0366-6999.229891]
[123]
Engin, F.; Hotamisligil, G.S. Restoring endoplasmic reticulum function by chemical chaperones: an emerging therapeutic approach for metabolic diseases. Diabetes Obes. Metab., 2010, 12(Suppl. 2), 108-115.
[http://dx.doi.org/10.1111/j.1463-1326.2010.01282.x] [PMID: 21029307]
[124]
Rani, S.; Sreenivasaiah, P.K.; Kim, J.O.; Lee, M.Y.; Kang, W.S.; Kim, Y.S.; Ahn, Y.; Park, W.J.; Cho, C.; Kim, D.H. Tauroursodeoxycholic acid (TUDCA) attenuates pressure overload-induced cardiac remodeling by reducing endoplasmic reticulum stress. PLoS One, 2017, 12(4), e0176071.
[http://dx.doi.org/10.1371/journal.pone.0176071] [PMID: 28426781]
[125]
Groenendyk, J.; Lee, D.; Jung, J.; Dyck, J.R.B.; Lopaschuk, G.D.; Agellon, L.B.; Michalak, M. Inhibition of the Unfolded Protein Response Mechanism Prevents Cardiac Fibrosis. PLoS One, 2016, 11(7), e0159682.
[http://dx.doi.org/10.1371/journal.pone.0159682] [PMID: 27441395]
[126]
Radwan, E.; Bakr, M.H.; Taha, S.; Sayed, S.A.; Farrag, A.A.; Ali, M. Inhibition of endoplasmic reticulum stress ameliorates cardiovascular injury in a rat model of metabolic syndrome. J. Mol. Cell. Cardiol., 2020, 143, 15-25.
[http://dx.doi.org/10.1016/j.yjmcc.2020.04.020] [PMID: 32311415]
[127]
Sun, W.; Zhou, Y.; Xue, H.; Hou, H.; He, G.; Yang, Q. Endoplasmic reticulum stress mediates homocysteine-induced hypertrophy of cardiac cells through activation of cyclic nucleotide phosphodiesterase 1C. Acta Biochim. Biophys. Sin., 2022, 54(3), 388-399.
[http://dx.doi.org/10.3724/abbs.2022009] [PMID: 35538034]
[128]
Sun, Y.; Zhang, D.; Liu, X.; Li, X.; Liu, F.; Yu, Y.; Jia, S.; Zhou, Y.; Zhao, Y. Endoplasmic reticulum stress affects lipid metabolism in atherosclerosis via CHOP activation and over-expression of miR-33. Cell. Physiol. Biochem., 2018, 48(5), 1995-2010.
[http://dx.doi.org/10.1159/000492522] [PMID: 30092598]
[129]
Qin, Y.; Wang, Y.; Liu, O.; Jia, L.; Fang, W.; Du, J.; Wei, Y. Tauroursodeoxycholic acid attenuates angiotensin II induced abdominal aortic aneurysm formation in apolipoprotein e-deficient mice by inhibiting endoplasmic reticulum stress. Eur. J. Vasc. Endovasc. Surg., 2017, 53(3), 337-345.
[http://dx.doi.org/10.1016/j.ejvs.2016.10.026] [PMID: 27889204]
[130]
Spitler, K.M.; Matsumoto, T.; Webb, R.C. Suppression of endoplasmic reticulum stress improves endothelium-dependent contractile responses in aorta of the spontaneously hypertensive rat. Am. J. Physiol. Heart Circ. Physiol., 2013, 305(3), H344-H353.
[http://dx.doi.org/10.1152/ajpheart.00952.2012] [PMID: 23709602]
[131]
Xie, Y.; He, Y.; Cai, Z.; Cai, J.; Xi, M.; Zhang, Y.; Xi, J. Tauroursodeoxycholic acid inhibits endoplasmic reticulum stress, blocks mitochondrial permeability transition pore opening, and suppresses reperfusion injury through GSK-3ß in cardiac H9c2 cells. Am. J. Transl. Res., 2016, 8(11), 4586-4597.
[PMID: 27904664]
[132]
Zhu, Q.; Zhong, J.J.; Jin, J.F.; Yin, X.M.; Miao, H. Tauroursodeoxycholate, a chemical chaperone, prevents palmitate-induced apoptosis in pancreatic β-cells by reducing ER stress. Exp Clin Endocrinol Diabetes Off J Ger Soc Endocrinol Ger Diabetes Assoc., 2013, 121(1), 43-47.
[PMID: 22972029]
[133]
Ceylan-Isik, A.F.; Sreejayan, N.; Ren, J. Endoplasmic reticulum chaperon tauroursodeoxycholic acid alleviates obesity-induced myocardial contractile dysfunction. J. Mol. Cell. Cardiol., 2011, 50(1), 107-116.
[http://dx.doi.org/10.1016/j.yjmcc.2010.10.023] [PMID: 21035453]
[134]
Chung, J.; Kim, K.H.; Lee, S.C.; An, S.H.; Kwon, K. Ursodeoxycholic Acid (UDCA) exerts anti-atherogenic effects by inhibiting endoplasmic reticulum (ER) stress induced by disturbed flow. Mol. Cells, 2015, 38(10), 851-858.
[http://dx.doi.org/10.14348/molcells.2015.0094] [PMID: 26442866]
[135]
Lenin, R.; Maria, M.S.; Agrawal, M.; Balasubramanyam, J.; Mohan, V.; Balasubramanyam, M. Amelioration of glucolipotoxicity-induced endoplasmic reticulum stress by a “chemical chaperone” in human THP-1 monocytes. Exp. Diabetes Res., 2012, 2012, 1-10.
[http://dx.doi.org/10.1155/2012/356487] [PMID: 22550476]
[136]
Hang, L.; Peng, Y.; Xiang, R.; Li, X.; Li, Z. Ox-LDL causes endothelial cell injury through ASK1/NLRP3-mediated inflammasome activation via endoplasmic reticulum stress. Drug Des. Devel. Ther., 2020, 14, 731-744.
[http://dx.doi.org/10.2147/DDDT.S231916] [PMID: 32158192]
[137]
Wu, H.; Chen, Z.; Chen, J.Z.; Pei, L.G.; Xie, J.; Wei, Z.H.; Kang, L.N.; Wang, L.; Xu, B. High mobility group B-1 (HMGB-1) promotes apoptosis of macrophage-derived foam cells by inducing endoplasmic reticulum stress. Cell. Physiol. Biochem., 2018, 48(3), 1019-1029.
[http://dx.doi.org/10.1159/000491970] [PMID: 30041247]
[138]
Yao, S.; Miao, C.; Tian, H.; Sang, H.; Yang, N.; Jiao, P.; Han, J.; Zong, C.; Qin, S. Endoplasmic reticulum stress promotes macrophage-derived foam cell formation by up-regulating cluster of differentiation 36 (CD36) expression. J. Biol. Chem., 2014, 289(7), 4032-4042.
[http://dx.doi.org/10.1074/jbc.M113.524512] [PMID: 24366867]
[139]
Boyce, M.; Bryant, K.F.; Jousse, C.; Long, K.; Harding, H.P.; Scheuner, D.; Kaufman, R.J.; Ma, D.; Coen, D.M.; Ron, D.; Yuan, J. A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science, 2005, 307(5711), 935-939.
[http://dx.doi.org/10.1126/science.1101902] [PMID: 15705855]
[140]
Kuo, T.F.; Tatsukawa, H.; Matsuura, T.; Nagatsuma, K.; Hirose, S.; Kojima, S. Free fatty acids induce transglutaminase 2-dependent apoptosis in hepatocytes via ER stress-stimulated PERK pathways. J. Cell. Physiol., 2012, 227(3), 1130-1137.
[http://dx.doi.org/10.1002/jcp.22833] [PMID: 21567402]
[141]
Axten, J.M.; Medina, J.R.; Feng, Y.; Shu, A.; Romeril, S.P.; Grant, S.W. Discovery of 7-methyl-5-(1-{[3-(trifluoromethyl)phenyl] acetyl}-2,3-dihydro-1H-indol-5-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (GSK2606414), a potent and selective first-in-class inhibitor of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK). J. Med. Chem., 2012, 55(16), 7193-7207.
[http://dx.doi.org/10.1021/jm300713s] [PMID: 22827572]
[142]
Win, S.; Than, T.A.; Le, B.H.A.; García-Ruiz, C.; Fernandez-Checa, J.C.; Kaplowitz, N. Sab (Sh3bp5) dependence of JNK mediated inhibition of mitochondrial respiration in palmitic acid induced hepatocyte lipotoxicity. J. Hepatol., 2015, 62(6), 1367-1374.
[http://dx.doi.org/10.1016/j.jhep.2015.01.032] [PMID: 25666017]
[143]
Jiang, S. Yan, C Fibroblast growth factor 21 is regulated by the IRE1α-XBP1 branch of the unfolded protein response and counteracts endoplasmic reticulum stress-induced hepatic steatosis. J. Biol. Chem., 2014, 289(43), 29751-29765.
[144]
Shimizu, M.; Morimoto, H.; Maruyama, R.; Inoue, J.; Sato, R. Selective Regulation of FGF19 and FGF21 Expression by Cellular and Nutritional Stress. J. Nutr. Sci. Vitaminol., 2015, 61(2), 154-160.
[http://dx.doi.org/10.3177/jnsv.61.154] [PMID: 26052146]
[145]
Tsaytler, P.; Harding, H.P.; Ron, D.; Bertolotti, A. Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Science, 2011, 332(6025), 91-94.
[http://dx.doi.org/10.1126/science.1201396] [PMID: 21385720]
[146]
Zhou, L.; Yang, D.; Wu, D.F.; Guo, Z.M.; Okoro, E.; Yang, H. Inhibition of endoplasmic reticulum stress and atherosclerosis by 2-aminopurine in apolipoprotein e-deficient mice. ISRN Pharmacol., 2013, 2013, 1-8.
[http://dx.doi.org/10.1155/2013/847310] [PMID: 23984090]
[147]
Haas, M.J.; Raheja, P.; Jaimungal, S.; Sheikh-Ali, M.; Mooradian, A.D. Estrogen-dependent inhibition of dextrose-induced endoplasmic reticulum stress and superoxide generation in endothelial cells. Free Radic. Biol. Med., 2012, 52(11-12), 2161-2167.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.04.009] [PMID: 22569410]
[148]
Prola, A.; Pires Da Silva, J.; Guilbert, A.; Lecru, L.; Piquereau, J.; Ribeiro, M.; Mateo, P.; Gressette, M.; Fortin, D.; Boursier, C.; Gallerne, C.; Caillard, A.; Samuel, J.L.; François, H.; Sinclair, D.A.; Eid, P.; Ventura-Clapier, R.; Garnier, A.; Lemaire, C. SIRT1 protects the heart from ER stress-induced cell death through eIF2α deacetylation. Cell Death Differ., 2017, 24(2), 343-356.
[http://dx.doi.org/10.1038/cdd.2016.138] [PMID: 27911441]
[149]
Su, Q.; Wang, Y.; Yang, X.; Li, X.D.; Qi, Y.F.; He, X.J.; Wang, Y.J. Inhibition of endoplasmic reticulum stress apoptosis by estrogen protects human umbilical vein endothelial cells through the pi3 kinase–akt signaling pathway. J. Cell. Biochem., 2017, 118(12), 4568-4574.
[http://dx.doi.org/10.1002/jcb.26120] [PMID: 28485890]
[150]
Zheng, G.; Li, H.; Zhang, T.; Yang, L.; Yao, S.; Chen, S.; Zheng, M.; Zhao, Q.; Tian, H. Irisin protects macrophages from oxidized low density lipoprotein-induced apoptosis by inhibiting the endoplasmic reticulum stress pathway. Saudi J. Biol. Sci., 2018, 25(5), 849-857.
[http://dx.doi.org/10.1016/j.sjbs.2017.08.018] [PMID: 30108431]
[151]
Tufanli, O.; Telkoparan Akillilar, P.; Acosta-Alvear, D.; Kocaturk, B.; Onat, U.I.; Hamid, S.M.; Çimen, I.; Walter, P.; Weber, C.; Erbay, E. Targeting IRE1 with small molecules counteracts progression of atherosclerosis. Proc. Natl. Acad. Sci., 2017, 114(8), E1395-E1404.
[http://dx.doi.org/10.1073/pnas.1621188114] [PMID: 28137856]
[152]
Ri, M.; Tashiro, E.; Oikawa, D.; Shinjo, S.; Tokuda, M.; Yokouchi, Y.; Narita, T.; Masaki, A.; Ito, A.; Ding, J.; Kusumoto, S.; Ishida, T.; Komatsu, H.; Shiotsu, Y.; Ueda, R.; Iwawaki, T.; Imoto, M.; Iida, S. Identification of Toyocamycin, an agent cytotoxic for multiple myeloma cells, as a potent inhibitor of ER stress-induced XBP1 mRNA splicing. Blood Cancer J., 2012, 2(7), e79.
[http://dx.doi.org/10.1038/bcj.2012.26] [PMID: 22852048]
[153]
Takahara, I.; Akazawa, Y.; Tabuchi, M.; Matsuda, K.; Miyaaki, H.; Kido, Y.; Kanda, Y.; Taura, N.; Ohnita, K.; Takeshima, F.; Sakai, Y.; Eguchi, S.; Nakashima, M.; Nakao, K. Toyocamycin attenuates free fatty acid-induced hepatic steatosis and apoptosis in cultured hepatocytes and ameliorates nonalcoholic fatty liver disease in mice. PLoS One, 2017, 12(3), e0170591.
[http://dx.doi.org/10.1371/journal.pone.0170591] [PMID: 28278289]
[154]
Idari, G.; Karimi, P.; Ghaffari, S.; Hashemy, S.I.; Mashkani, B. Protective effects of BiP inducer X (BIX) against diabetic cardiomyopathy in rats. Can. J. Physiol. Pharmacol., 2021, 99(6), 644-653.
[http://dx.doi.org/10.1139/cjpp-2020-0419] [PMID: 33096003]
[155]
Palomer, X.; Capdevila-Busquets, E.; Garreta, G.; Davidson, M.M.; Vázquez-Carrera, M. PPARα atenúa el estrés del retículo endoplasmático inducido por palmitato en células cardíacas humanas por medio de la inducción de la actividad AMPK. Clin. Investig. Arterioscler., 2014, 26(6), 255-267.
[http://dx.doi.org/10.1016/j.arteri.2014.02.003]
[156]
Luo, H.; Lan, C.; Fan, C.; Gong, X.; Chen, C.; Yu, C.; Wang, J.; Luo, X.; Hu, C.; Jose, P.A.; Xu, Z.; Zeng, C. Down-regulation of AMPK/PPARδ signalling promotes endoplasmic reticulum stress-induced endothelial dysfunction in adult rat offspring exposed to maternal diabetes. Cardiovasc. Res., 2022, 118(10), 2304-2316.
[http://dx.doi.org/10.1093/cvr/cvab280] [PMID: 34415333]
[157]
Honigberg, M.C.; Chang, L.S.; McGuire, D.K.; Plutzky, J.; Aroda, V.R.; Vaduganathan, M. Use of glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes and cardiovascular disease. JAMA Cardiol., 2020, 5(10), 1182-1190.
[http://dx.doi.org/10.1001/jamacardio.2020.1966] [PMID: 32584928]
[158]
Kreiner, F.F.; Hovingh, G.K.K.; von Scholten, B.J. The potential of glucagon-like peptide-1 receptor agonists in heart failure. Front. Physiol., 2022, 13, 983961.
[http://dx.doi.org/10.3389/fphys.2022.983961] [PMID: 36203939]
[159]
Saraceni, C.; Broderick, T.L. Effects of glucagon-like peptide-1 and long-acting analogues on cardiovascular and metabolic function. Drugs R D., 2007, 8(3), 145-153.
[http://dx.doi.org/10.2165/00126839-200708030-00002] [PMID: 17472410]
[160]
Guan, G.; Zhang, J.; Liu, S.; Huang, W.; Gong, Y.; Gu, X. Glucagon-like peptide-1 attenuates endoplasmic reticulum stress–induced apoptosis in H9c2 cardiomyocytes during hypoxia/reoxygenation through the GLP-1R/PI3K/Akt pathways. Naunyn Schmiedebergs Arch. Pharmacol., 2019, 392(6), 715-722.
[http://dx.doi.org/10.1007/s00210-019-01625-2] [PMID: 30762075]
[161]
Younce, C.W.; Burmeister, M.A.; Ayala, J.E. Exendin-4 attenuates high glucose-induced cardiomyocyte apoptosis via inhibition of endoplasmic reticulum stress and activation of SERCA2a. Am. J. Physiol. Cell Physiol., 2013, 304(6), C508-C518.
[http://dx.doi.org/10.1152/ajpcell.00248.2012] [PMID: 23302777]
[162]
Cheng, C.K.; Luo, J.Y.; Lau, C.W.; Cho, W.C.; Ng, C.F.; Ma, R.C.W.; Tian, X.Y.; Huang, Y.A. GLP-1 analog lowers ER stress and enhances protein folding to ameliorate homocysteine-induced endothelial dysfunction. Acta Pharmacol. Sin., 2021, 42(10), 1598-1609.
[http://dx.doi.org/10.1038/s41401-020-00589-x] [PMID: 33495519]
[163]
Ji, Y.; Zhao, Z.; Cai, T.; Yang, P.; Cheng, M. Liraglutide alleviates diabetic cardiomyopathy by blocking CHOP-triggered apoptosis via the inhibition of the IRE-α pathway. Mol. Med. Rep., 2014, 9(4), 1254-1258.
[http://dx.doi.org/10.3892/mmr.2014.1956] [PMID: 24535553]
[164]
Feinberg, M.W.; Moore, K.J. MicroRNA regulation of atherosclerosis. Circ. Res., 2016, 118(4), 703-720.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306300] [PMID: 26892968]
[165]
Omidkhoda, N.; Wallace Hayes, A.; Reiter, R.J.; Karimi, G. The role of MicroRNAs on endoplasmic reticulum stress in myocardial ischemia and cardiac hypertrophy. Pharmacol. Res., 2019, 150, 104516.
[http://dx.doi.org/10.1016/j.phrs.2019.104516] [PMID: 31698066]
[166]
Gao, Z.F.; Ji, X.L.; Gu, J.; Wang, X.Y.; Ding, L.; Zhang, H. microRNA‐ 107 protects against inflammation and endoplasmic reticulum stress of vascular endothelial cells via KRT1‐dependent Notch signaling pathway in a mouse model of coronary atherosclerosis. J. Cell. Physiol., 2019, 234(7), 12029-12041.
[http://dx.doi.org/10.1002/jcp.27864] [PMID: 30548623]
[167]
Jiang, L.; Qiao, Y.; Wang, Z.; Ma, X.; Wang, H.; Li, J. Inhibition of microRNA‐103 attenuates inflammation and endoplasmic reticulum stress in atherosclerosis through disrupting the PTEN‐mediated MAPK signaling. J. Cell. Physiol., 2020, 235(1), 380-393.
[http://dx.doi.org/10.1002/jcp.28979] [PMID: 31232476]
[168]
Chen, M.; Ma, G.; Yue, Y.; Wei, Y.; Li, Q.; Tong, Z.; Zhang, L.; Miao, G.; Zhang, J. Downregulation of the miR-30 family microRNAs contributes to endoplasmic reticulum stress in cardiac muscle and vascular smooth muscle cells. Int. J. Cardiol., 2014, 173(1), 65-73.
[http://dx.doi.org/10.1016/j.ijcard.2014.02.007] [PMID: 24612558]
[169]
Fa, H.; Xiao, D.; Chang, W.; Ding, L.; Yang, L.; Wang, Y.; Wang, M.; Wang, J. MicroRNA-194-5p attenuates doxorubicin-induced cardiomyocyte apoptosis and endoplasmic reticulum stress by targeting p21-activated kinase 2. Front. Cardiovasc. Med., 2022, 9, 815916.
[http://dx.doi.org/10.3389/fcvm.2022.815916] [PMID: 35321102]
[170]
Kim, J.O.; Kwon, E.J.; Song, D.W.; Lee, J.S.; Kim, D.H. miR-185 inhibits endoplasmic reticulum stress-induced apoptosis by targeting Na +/H + exchanger-1 in the heart. BMB Rep., 2016, 49(4), 208-213.
[http://dx.doi.org/10.5483/BMBRep.2016.49.4.193] [PMID: 26521941]
[171]
Lin, H.; Pan, S.; Meng, L.; Zhou, C.; Jiang, C.; Ji, Z.; Chi, J.; Guo, H. MicroRNA-384-mediated Herpud1 upregulation promotes angiotensin II-induced endothelial cell apoptosis. Biochem. Biophys. Res. Commun., 2017, 488(3), 453-460.
[http://dx.doi.org/10.1016/j.bbrc.2017.05.035] [PMID: 28483519]
[172]
Ren, L.; Wang, Q.; Chen, Y.; Ma, Y.; Wang, D. Involvement of MicroRNA-133a in the protective effect of hydrogen sulfide against ischemia/reperfusion-induced endoplasmic reticulum stress and cardiomyocyte apoptosis. Pharmacology, 2019, 103(1-2), 1-9.
[http://dx.doi.org/10.1159/000492969] [PMID: 30326468]
[173]
Hu, J.; Huang, C.X.; Rao, P.P.; Cao, G.Q.; Zhang, Y.; Zhou, J.P.; Zhu, L.Y.; Liu, M.X.; Zhang, G.G. MicroRNA-155 inhibition attenuates endoplasmic reticulum stress-induced cardiomyocyte apoptosis following myocardial infarction via reducing macrophage inflammation. Eur. J. Pharmacol., 2019, 857, 172449.
[http://dx.doi.org/10.1016/j.ejphar.2019.172449] [PMID: 31207208]
[174]
Toro, R.; Pérez-Serra, A.; Mangas, A.; Campuzano, O.; Sarquella-Brugada, G.; Quezada-Feijoo, M.; Ramos, M.; Alcalá, M.; Carrera, E.; García-Padilla, C.; Franco, D.; Bonet, F. miR-16-5p suppression protects human cardiomyocytes against endoplasmic reticulum and oxidative stress-induced injury. Int. J. Mol. Sci., 2022, 23(3), 1036.
[http://dx.doi.org/10.3390/ijms23031036] [PMID: 35162959]
[175]
Zhao, L.; Jiang, S.; Wu, N.; Shi, E.; Yang, L.; Li, Q. MiR-17-5p-mediated endoplasmic reticulum stress promotes acute myocardial ischemia injury through targeting Tsg101. Cell Stress Chaperones, 2021, 26(1), 77-90.
[http://dx.doi.org/10.1007/s12192-020-01157-2] [PMID: 32895884]
[176]
Zhao, N.; Mi, L.; Zhang, X.; Xu, M.; Yu, H.; Liu, Z.; Liu, X.; Guan, G.; Gao, W.; Wang, J. Enhanced MiR-711 transcription by PPARγ induces endoplasmic reticulum stress-mediated apoptosis targeting calnexin in rat cardiomyocytes after myocardial infarction. J. Mol. Cell. Cardiol., 2018, 118, 36-45.
[http://dx.doi.org/10.1016/j.yjmcc.2018.03.006] [PMID: 29522763]
[177]
Zhou, Y.; Jia, W.K.; Jian, Z.; Zhao, L.; Liu, C.C.; Wang, Y.; Xiao, Y.B. Downregulation of microRNA-199a-5p protects cardiomyocytes in cyanotic congenital heart disease by attenuating endoplasmic reticulum stress. Mol. Med. Rep., 2017, 16(3), 2992-3000.
[http://dx.doi.org/10.3892/mmr.2017.6934] [PMID: 28713984]
[178]
Keylani, K.; Arbab Mojeni, F.; Khalaji, A.; Rasouli, A.; Aminzade, D.; Karimi, M.A. Endoplasmic reticulum as a target in cardiovascular diseases: Is there a role for flavonoids? Front. Pharmacol., 2023, 13, 1027633.
[179]
Kim, D.S.; Ha, K.C.; Kwon, D.Y.; Kim, M.S.; Kim, H.R.; Chae, S.W.; Chae, H.J. Kaempferol protects ischemia/reperfusion-induced cardiac damage through the regulation of endoplasmic reticulum stress. Immunopharmacol. Immunotoxicol., 2008, 30(2), 257-270.
[http://dx.doi.org/10.1080/08923970701812530] [PMID: 18569083]
[180]
Binder, P.; Wang, S.; Radu, M.; Zin, M.; Collins, L.; Khan, S.; Li, Y.; Sekeres, K.; Humphreys, N.; Swanton, E.; Reid, A.; Pu, F.; Oceandy, D.; Guan, K.; Hille, S.S.; Frey, N.; Müller, O.J.; Cartwright, E.J.; Chernoff, J.; Wang, X.; Liu, W. Pak2 as a novel therapeutic target for cardioprotective endoplasmic reticulum stress response. Circ. Res., 2019, 124(5), 696-711.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.312829] [PMID: 30620686]
[181]
Chang, X.; Zhang, T.; Meng, Q. ShiyuanWang; Yan, P.; Wang, X.; Luo, D.; Zhou, X.; Ji, R. Quercetin improves cardiomyocyte vulnerability to hypoxia by regulating SIRT1/TMBIM6-related mitophagy and endoplasmic reticulum stress. Oxid. Med. Cell. Longev., 2021, 2021, 1-14.
[http://dx.doi.org/10.1155/2021/5529913] [PMID: 33859776]
[182]
Bal, N.B.; Bostanci, A.; Sadi, G.; Dönmez, M.O.; Uludag, M.O.; Demirel-Yilmaz, E. Resveratrol and regular exercise may attenuate hypertension-induced cardiac dysfunction through modulation of cellular stress responses. Life Sci., 2022, 296, 120424.
[http://dx.doi.org/10.1016/j.lfs.2022.120424] [PMID: 35196531]
[183]
Lin, Y.; Zhu, J.; Zhang, X.; Wang, J.; Xiao, W.; Li, B.; Jin, L.; Lian, J.; Zhou, L.; Liu, J. Inhibition of cardiomyocytes hypertrophy by resveratrol is associated with amelioration of endoplasmic reticulum stress. Cell. Physiol. Biochem., 2016, 39(2), 780-789.
[http://dx.doi.org/10.1159/000447788] [PMID: 27467279]
[184]
Lou, Y.; Wang, Z.; Xu, Y.; Zhou, P.; Cao, J.; Li, Y.; Chen, Y.; Sun, J.; Fu, L. Resveratrol prevents doxorubicin-induced cardiotoxicity in H9c2 cells through the inhibition of endoplasmic reticulum stress and the activation of the Sirt1 pathway. Int. J. Mol. Med., 2015, 36(3), 873-880.
[http://dx.doi.org/10.3892/ijmm.2015.2291] [PMID: 26202177]
[185]
Shen, M.; Wang, L.; Yang, G.; Gao, L.; Wang, B.; Guo, X.; Zeng, C.; Xu, Y.; Shen, L.; Cheng, K.; Xia, Y.; Li, X.; Wang, H.; Fan, L.; Wang, X. Baicalin protects the cardiomyocytes from ER stress-induced apoptosis: Inhibition of CHOP through induction of endothelial nitric oxide synthase. PLoS One, 2014, 9(2), e88389.
[http://dx.doi.org/10.1371/journal.pone.0088389] [PMID: 24520378]
[186]
Hu, H.; Wang, C.; Jin, Y.; Meng, Q.; Liu, Q.; Liu, Z.; Liu, K.; Liu, X.; Sun, H. Catalpol inhibits homocysteine-induced oxidation and inflammation via inhibiting Nox4/NF-κB and GRP78/PERK pathways in human aorta endothelial cells. Inflammation, 2019, 42(1), 64-80.
[http://dx.doi.org/10.1007/s10753-018-0873-9] [PMID: 30315526]
[187]
Zhu, L.; Jia, F.; Wei, J.; Yu, Y.; Yu, T.; Wang, Y.; Sun, J.; Luo, G. Salidroside protects against homocysteine-induced injury in human umbilical vein endothelial cells via the regulation of endoplasmic reticulum stress. Cardiovasc. Ther., 2017, 35(1), 33-39.
[http://dx.doi.org/10.1111/1755-5922.12234] [PMID: 27809414]
[188]
Sun, M.Y.; Ma, D.S.; Zhao, S.; Wang, L.; Ma, C.Y.; Bai, Y. Salidroside mitigates hypoxia/reoxygenation injury by alleviating endoplasmic reticulum stress induced apoptosis in H9c2 cardiomyocytes. Mol. Med. Rep., 2018, 18(4), 3760-3768.
[http://dx.doi.org/10.3892/mmr.2018.9403] [PMID: 30132527]
[189]
Tian, X.; Huang, Y.; Zhang, X.; Fang, R.; Feng, Y.; Zhang, W.; Li, L.; Li, T. Salidroside attenuates myocardial ischemia/reperfusion injury via AMPK-induced suppression of endoplasmic reticulum stress and mitochondrial fission. Toxicol. Appl. Pharmacol., 2022, 448, 116093.
[http://dx.doi.org/10.1016/j.taap.2022.116093] [PMID: 35659894]
[190]
Zhao, G.L.; Yu, L.M.; Gao, W.L.; Duan, W.x. xun, W.; Jiang, B.; Liu, XD Berberine protects rat heart from ischemia/reperfusion injury via activating JAK2/STAT3 signaling and attenuating endoplasmic reticulum stress. Acta Pharmacol. Sin., 2016, 37(3), 354-367.
[191]
Li, L.; Zheng, G.; Cao, C.; Cao, W.; Yan, H.; Chen, S.; Ding, C.; Gan, D.; Yuan, J.; Che, D.; Zhu, F. The ameliorative effect of berberine on vascular calcification by inhibiting endoplasmic reticulum stress. J. Cardiovasc. Pharmacol., 2022, 80(2), 294-304.
[http://dx.doi.org/10.1097/FJC.0000000000001303] [PMID: 35580317]
[192]
Li, M.H.; Zhang, Y.J.; Yu, Y.H.; Yang, S.H.; Iqbal, J.; Mi, Q.Y.; Li, B.; Wang, Z.M.; Mao, W.X.; Xie, H.G.; Chen, S.L. Berberine improves pressure overload-induced cardiac hypertrophy and dysfunction through enhanced autophagy. Eur. J. Pharmacol., 2014, 728, 67-76.
[http://dx.doi.org/10.1016/j.ejphar.2014.01.061] [PMID: 24508518]
[193]
Liao, Y.; Chen, K.; Dong, X.; Li, W.; Li, G.; Huang, G.; Song, W.; Chen, L.; Fang, Y. Berberine inhibits cardiac remodeling of heart failure after myocardial infarction by reducing myocardial cell apoptosis in rats. Exp. Ther. Med., 2018, 16(3), 2499-2505.
[http://dx.doi.org/10.3892/etm.2018.6438] [PMID: 30186485]
[194]
Li, X.P.; Peng, Y.; Wang, S.L. lin, L.b.; Tang, L.; Kuang, L.; Ren, R.; Wang, X.B. Sulforaphane prevents rat cardiomyocytes from hypoxia/reoxygenation injury in vitrovia activating SIRT1 and subsequently inhibiting ER stress. Acta Pharmacol. Sin., 2016, 37(3), 344-353.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy