Review Article

MicroRNAs and Diet-induced Weight Loss: What’s the Link?

Author(s): Roberto Cannataro, Diana M. Abrego-Guandique, Maria C. Caroleo, Diego A. Bonilla and Erika Cione*

Volume 12, Issue 3, 2023

Published on: 05 October, 2023

Page: [205 - 209] Pages: 5

DOI: 10.2174/0122115366257950230921095548

Price: $65

Open Access Journals Promotions 2
Abstract

It is now well established that lifestyle, particularly eating habits, modulates the synthesis and action of microRNAs (miRNAs). In particular, several nutritional schemes have proven effective in improving body composition, but molecular mechanisms still need to be fully understood. Within the complex physiological network of food intake regulation, it is essential to understand the changes in endocrine activity after the reduction of adipose tissue during a weight loss program. This could be the key to identifying the optimal endocrine profile in high responders, the assessment of musculoskeletal status, and long-term management. In this review, we summarize the state of the art regarding miRNAs as a function of weight loss and as a mechanistic regulator of the effectiveness of the nutritional program.

Keywords: microRNAs, adipose tissue, food intake, antagomiRs, ketogenic diet, sarcopenia.

Graphical Abstract
[1]
Hruby A, Hu FB. The Epidemiology of Obesity: A Big Picture. PharmacoEconomics 2015; 33(7): 673-89.
[http://dx.doi.org/10.1007/s40273-014-0243-x] [PMID: 25471927]
[2]
Flowers E, Won GY, Fukuoka Y. MicroRNAs associated with exercise and diet: A systematic review. Physiol Genomics 2015; 47(1): 1-11.
[http://dx.doi.org/10.1152/physiolgenomics.00095.2014] [PMID: 25465031]
[3]
Raber M, Liao Y, Rara A, et al. A systematic review of the use of dietary self-monitoring in behavioural weight loss interventions: Delivery, intensity and effectiveness. Public Health Nutr 2021; 24(17): 5885-913.
[http://dx.doi.org/10.1017/S136898002100358X] [PMID: 34412727]
[4]
Parr EB, Camera DM, Burke LM, Phillips SM, Coffey VG, Hawley JA. Circulating MicroRNA Responses between ‘High’ and ‘Low’ Responders to a 16-Wk diet and exercise weight loss intervention. PLoS One 2016; 11(4): e0152545.
[http://dx.doi.org/10.1371/journal.pone.0152545] [PMID: 27101373]
[5]
Cannataro R, Cione E. miRNA as drug: Antagomir and beyond. Curr Pharm Des 2023; 29(6): 462-5.
[http://dx.doi.org/10.2174/1381612829666230220123150] [PMID: 36803763]
[6]
Cannataro R, Cione E. Diet and miRNA: Epigenetic regulator or a new class of supplements? MicroRNA 2022; 11(2): 89-90.
[http://dx.doi.org/10.2174/2211536611666220510111711] [PMID: 35538814]
[7]
Parra-Peralbo E, Talamillo A, Barrio R. Origin and development of the adipose tissue, a key organ in physiology and disease. Front Cell Dev Biol 2021; 9: 786129.
[http://dx.doi.org/10.3389/fcell.2021.786129] [PMID: 34993199]
[8]
Heo Y, Kim H, Lim J, Choi SS. Adipocyte differentiation between obese and lean conditions depends on changes in miRNA expression. Sci Rep 2022; 12(1): 11543.
[http://dx.doi.org/10.1038/s41598-022-15331-2] [PMID: 35798800]
[9]
Deiuliis JA, Syed R, Duggineni D, et al. Visceral adipose MicroRNA 223 Is upregulated in human and murine obesity and modulates the inflammatory phenotype of macrophages. PLoS One 2016; 11(11): e0165962.
[http://dx.doi.org/10.1371/journal.pone.0165962] [PMID: 27812198]
[10]
Liao CH, Wang CY, Liu KH, Liu YY, Wen MS, Yeh TS. MiR-122 marks the differences between subcutaneous and visceral adipose tissues and associates with the outcome of bariatric surgery. Obes Res Clin Pract 2018; 12(6): 570-7.
[http://dx.doi.org/10.1016/j.orcp.2018.06.005] [PMID: 29960868]
[11]
Kim YJ, Hwang SJ, Bae YC, Jung JS. MiR-21 regulates adipogenic differentiation through the modulation of TGF-beta signaling in mesenchymal stem cells derived from human adipose tissue. Stem Cells 2009; 27(12): 3093-102.
[http://dx.doi.org/10.1002/stem.235] [PMID: 19816956]
[12]
Gharanei S, Shabir K, Brown JE, et al. Regulatory microRNAs in brown, brite and white adipose tissue. Cells 2020; 9(11): 2489.
[13]
Ma L, Gilani A, Yi Q, Tang L. MicroRNAs as mediators of adipose thermogenesis and potential therapeutic targets for obesity. Biology 2022; 11: 11111657.
[http://dx.doi.org/10.3390/biology11111657]
[14]
Giardina S, Hernández-Alonso P, Díaz-López A, Salas-Huetos A, Salas-Salvadó J, Bulló M. Changes in circulating miRNAs in healthy overweight and obese subjects: Effect of diet composition and weight loss. Clin Nutr 2019; 38(1): 438-43.
[http://dx.doi.org/10.1016/j.clnu.2017.11.014] [PMID: 29233588]
[15]
Kristensen MM, Davidsen PK, Vigelsø A, et al. miRNAs in human subcutaneous adipose tissue: Effects of weight loss induced by hypocaloric diet and exercise. Obesity 2017; 25(3): 572-80.
[http://dx.doi.org/10.1002/oby.21765] [PMID: 28158925]
[16]
Cannataro R, Perri M, Gallelli L, Caroleo MC, De Sarro G, Cione E. Ketogenic diet acts on body remodeling and micrornas expression profile. MicroRNA 2019; 8(2): 116-26.
[http://dx.doi.org/10.2174/2211536608666181126093903] [PMID: 30474543]
[17]
Garcia-Lacarte M, Martinez JA, Zulet MA, Milagro FI. Implication of miR-612 and miR-1976 in the regulation of TP53 and CD40 and their relationship in the response to specific weight-loss diets. PLoS One 2018; 13(8): e0201217.
[http://dx.doi.org/10.1371/journal.pone.0201217] [PMID: 30089130]
[18]
Garcia-Lacarte M, Mansego ML, Zulet MA, Martinez JA, Milagro FI. miR-1185-1 and miR-548q are biomarkers of response to weight loss and regulate the expression of GSK3B. Cells 2019; 8(12): 1548.
[http://dx.doi.org/10.3390/cells8121548] [PMID: 31801236]
[19]
Manning P, Munasinghe PE, Bellae Papannarao J, Gray AR, Sutherland W, Katare R. Acute weight loss restores dysregulated circulating MicroRNAs in individuals who are obese. J Clin Endocrinol Metab 2019; 104(4): 1239-48.
[http://dx.doi.org/10.1210/jc.2018-00684] [PMID: 30383229]
[20]
Cannataro R, Caroleo MC, Fazio A, et al. Ketogenic diet and microRNAs linked to antioxidant biochemical homeostasis. Antioxidants 2019; 8(8): 269.
[http://dx.doi.org/10.3390/antiox8080269] [PMID: 31382449]
[21]
Assmann TS, Riezu-Boj JI, Milagro FI, Martínez JA. Circulating adiposity‐related microRNAs as predictors of the response to a low‐fat diet in subjects with obesity. J Cell Mol Med 2020; 24(5): 2956-67.
[http://dx.doi.org/10.1111/jcmm.14920] [PMID: 31968396]
[22]
Ojeda-Rodríguez A, Assmann TS, Alonso-Pedrero L, Azcona-Sanjulian MC, Milagro FI, Marti A. Circulating miRNAs in girls with abdominal obesity: miR ‐221‐3p as a biomarker of response to weight loss interventions. Pediatr Obes 2022; 17(8): e12910.
[http://dx.doi.org/10.1111/ijpo.12910] [PMID: 35289984]
[23]
Heianza Y, Krohn K, Xue Q, et al. Changes in circulating microRNAs-99/100 and reductions of visceral and ectopic fat depots in response to lifestyle interventions: The central trial. Am J Clin Nutr 2022; 116(1): 165-72.
[http://dx.doi.org/10.1093/ajcn/nqac070] [PMID: 35348584]
[24]
Duggan C, Tapsoba JD, Scheel J, Wang CY, McTiernan A. Weight loss reduces circulating micro-RNA related to obesity and breast cancer in postmenopausal women. Epigenetics 2022; 17(13): 2082-95.
[http://dx.doi.org/10.1080/15592294.2022.2107841] [PMID: 35938852]
[25]
Cione E, Abrego Guandique DM, Caroleo MC, Luciani F, Colosimo M, Cannataro R. Liver Damage and microRNAs: An Update. Curr Issues Mol Biol 2022; 45(1): 78-91.
[http://dx.doi.org/10.3390/cimb45010006] [PMID: 36661492]
[26]
Vargas-Molina S, Bonilla DA, Petro JL, et al. Efficacy of progressive versus severe energy restriction on body composition and strength in concurrent trained women. Eur J Appl Physiol 2023; 123(6): 1311-21.
[http://dx.doi.org/10.1007/s00421-023-05158-8] [PMID: 36802029]
[27]
Cannataro R, Fazio A, La Torre C, Caroleo MC, Cione E. Polyphenols in the mediterranean diet: From dietary sources to microrna modulation. Antioxidants 2021; 10(2): 328.
[http://dx.doi.org/10.3390/antiox10020328] [PMID: 33672251]
[28]
Bonilla DA, Moreno Y, Rawson ES, et al. A convergent functional genomics analysis to identify biological regulators mediating effects of creatine supplementation. Nutrients 2021; 13(8): 2521.
[http://dx.doi.org/10.3390/nu13082521] [PMID: 34444681]
[29]
Srivastava S. Sanchita, Singh R, Srivastava G, Sharma A. Comparative study of withanolide biosynthesis-related mirnas in root and leaf tissues of withania somnifera. Appl Biochem Biotechnol 2018; 185(4): 1145-59.
[http://dx.doi.org/10.1007/s12010-018-2702-x] [PMID: 29476318]
[30]
Vargas S, Petro JL, Romance R, et al. Comparison of changes in lean body mass with a strength- versus muscle endurance-based resistance training program. Eur J Appl Physiol 2019; 119(4): 933-40.
[http://dx.doi.org/10.1007/s00421-019-04082-0] [PMID: 30680448]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy