Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Mini-Review Article

Cancer Stem Cells in Carcinogenesis and Potential Role in Pancreatic Cancer

Author(s): Rishav Sharma and Rishabha Malviya*

Volume 19, Issue 9, 2024

Published on: 17 October, 2023

Page: [1185 - 1194] Pages: 10

DOI: 10.2174/1574888X19666230914103420

Price: $65

Abstract

A poor prognosis is associated with pancreatic cancer because of resistance during treatment and early distant metastases. The discovery of cancer stem cells has opened up novel avenues for research into the biology and treatment of cancer. Many investigations have pointed out the role of these types of stem cells in the oncogenesis and progression of hematologic and solid malignancies, specifically. Due to the existence of cancer stem cells in the proliferation and preservation of pancreatic tumors, such malignancies could be difficult to eradicate using conventional treatment techniques like chemotherapy and radiotherapy. It is hypothesized that pancreatic malignancies originate from a limited population of aberrant cancer stem cells to promote carcinogenesis, tumour metastasis, and therapeutic resistance. This review examines the role of pancreatic cancer stem cells in this disease and their significance in carcinogenesis, as well as the signals which modulate them, and also examines the ongoing clinical studies that are now being conducted with pancreatic stem cells.

Keywords: Pancreatic cancer, stem cells, carcinogenesis, cancer management, cancer stem cells, therapeutic resistance.

Graphical Abstract
[1]
Philip PA, Mooney M, Jaffe D, et al. Consensus report of the national cancer institute clinical trials planning meeting on pancreas cancer treatment. J Clin Oncol 2009; 27(33): 5660-9.
[http://dx.doi.org/10.1200/JCO.2009.21.9022] [PMID: 19858397]
[2]
Ilic M, Ilic I. Epidemiology of pancreatic cancer. World J Gastroenterol 2016; 22(44): 9694-705.
[http://dx.doi.org/10.3748/wjg.v22.i44.9694] [PMID: 27956793]
[3]
Cao W, Chen HD, Yu YW, Li N, Chen WQ. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020. Chin Med J 2021; 134(7): 783-91.
[http://dx.doi.org/10.1097/CM9.0000000000001474] [PMID: 33734139]
[4]
Khalaf N, El-Serag HB, Abrams HR, Thrift AP. Burden of pancreatic cancer: From epidemiology to practice. Clin Gastroenterol Hepatol 2021; 19(5): 876-84.
[http://dx.doi.org/10.1016/j.cgh.2020.02.054] [PMID: 32147593]
[5]
Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin 2022; 72(1): 7-33.
[http://dx.doi.org/10.3322/caac.21708] [PMID: 35020204]
[6]
Vincent A, Herman J, Schulick R, Hruban RH, Goggins M. Pancreatic cancer. Lancet 2011; 378(9791): 607-20.
[http://dx.doi.org/10.1016/S0140-6736(10)62307-0] [PMID: 21620466]
[7]
Visvader JE, Lindeman GJ. Cancer stem cells: Current status and evolving complexities. Cell Stem Cell 2012; 10(6): 717-28.
[http://dx.doi.org/10.1016/j.stem.2012.05.007] [PMID: 22704512]
[8]
Fessler E, Dijkgraaf FE, De Sousa E Melo F, Medema JP. Cancer stem cell dynamics in tumor progression and metastasis: Is the microenvironment to blame? Cancer Lett 2013; 341(1): 97-104.
[http://dx.doi.org/10.1016/j.canlet.2012.10.015] [PMID: 23089245]
[9]
Wang X, Zhu Y, Ma Y, et al. The role of cancer stem cells in cancer metastasis: New perspective and progress. Cancer Epidemiol 2013; 37(1): 60-3.
[http://dx.doi.org/10.1016/j.canep.2012.07.007] [PMID: 22884170]
[10]
Li C, Heidt DG, Dalerba P, et al. Identification of pancreatic cancer stem cells. Cancer Res 2007; 67(3): 1030-7.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2030] [PMID: 17283135]
[11]
Castellanos JA, Merchant NB, Nagathihalli NS. Emerging targets in pancreatic cancer: Epithelial-mesenchymal transition and cancer stem cells. OncoTargets Ther 2013; 6: 1261-7.
[PMID: 24049451]
[12]
Xia J, Chen C, Chen Z, Miele L, Sarkar FH, Wang Z. Targeting pancreatic cancer stem cells for cancer therapy. Biochimica et BiophysicaActa (BBA)-. Rev Can 2012; 1826(2): 385-99.
[13]
Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. nature 2001; 414(6859): 105-11.
[14]
McCulloch EA, Till JE. Perspectives on the properties of stem cells. Nat Med 2005; 11(10): 1026-8.
[http://dx.doi.org/10.1038/nm1005-1026] [PMID: 16211027]
[15]
Gilbertson RJ, Graham TA. Resolving the stem-cell debate. Nature 2012; 488(7412): 462-3.
[http://dx.doi.org/10.1038/nature11480] [PMID: 22919708]
[16]
Garcia-Mayea Y, Mir C, Masson F, Paciucci R. Insights into new mechanisms and models of cancer stem cell multidrug resistance. Semin Cancer Biol 2020; 60: 166-80.
[17]
Marcu LG. Cancer stem cells as therapeutic targets of pancreatic cancer. Fundam Clin Pharmacol 2020; 34(2): 200-1.
[http://dx.doi.org/10.1111/fcp.12536] [PMID: 31944386]
[18]
Das PK, Pillai S, Rakib MA, et al. Plasticity of cancer stem cell: Origin and role in disease progression and therapy resistance. Stem Cell Rev Rep 2020; 16: 397-412.
[http://dx.doi.org/10.1007/s12015-019-09942-y]
[19]
Hsieh MJ, Chiu TJ, Lin YC, et al. Inactivation of APC Induces CD34 upregulation to promote epithelial-mesenchymal transition and cancer stem cell traits in pancreatic cancer. Int J Mol Sci 2020; 21(12): 4473.
[http://dx.doi.org/10.3390/ijms21124473] [PMID: 32586050]
[20]
Cioffi M, D’Alterio C, Camerlingo R, et al. Identification of a distinct population of CD133+CXCR4+ cancer stem cells in ovarian cancer. Sci Rep 2015; 5(1): 10357.
[http://dx.doi.org/10.1038/srep10357] [PMID: 26020117]
[21]
Bocci F, Gearhart-Serna L, Boareto M, et al. Toward understanding cancer stem cell heterogeneity in the tumor microenvironment. Proc Natl Acad Sci USA 2019; 116(1): 148-57.
[http://dx.doi.org/10.1073/pnas.1815345116] [PMID: 30587589]
[22]
Lonardo E, Hermann PC, Mueller MT, et al. Nodal/Activin signaling drives self-renewal and tumorigenicity of pancreatic cancer stem cells and provides a target for combined drug therapy. Cell Stem Cell 2011; 9(5): 433-46.
[http://dx.doi.org/10.1016/j.stem.2011.10.001] [PMID: 22056140]
[23]
Cohen MM Jr. The hedgehog signaling network. Am J Med Genet 2003; 123A(1): 5-28.
[http://dx.doi.org/10.1002/ajmg.a.20495] [PMID: 14556242]
[24]
Li K, Lv XX, Hua F, et al. Targeting acute myeloid leukemia with a proapoptotic peptide conjugated to a toll-like receptor 2-mediated cell-penetrating peptide. Int J Cancer 2014; 134(3): 692-702.
[http://dx.doi.org/10.1002/ijc.28382] [PMID: 23852533]
[25]
Tang SN, Fu J, Nall D, Rodova M, Shankar S, Srivastava RK. Inhibition of sonic hedgehog pathway and pluripotency maintaining factors regulate human pancreatic cancer stem cell characteristics. Int J Cancer 2012; 131(1): 30-40.
[http://dx.doi.org/10.1002/ijc.26323] [PMID: 21796625]
[26]
Chen YJ, Huang YC, Tsai TH, Liao HF. Effect of wasabi component 6-(methylsulfinyl) hexyl isothiocyanate and derivatives on human pancreatic cancer cells. Evid Based Complement Alternat Med 2014; 2014: 1-6.
[http://dx.doi.org/10.1155/2014/494739] [PMID: 24575144]
[27]
Apelqvist Å, Li H, Sommer L, et al. Notch signalling controls pancreatic cell differentiation. Nature 1999; 400(6747): 877-81.
[http://dx.doi.org/10.1038/23716] [PMID: 10476967]
[28]
Vaz AP. Multifunctional Role of Pancreatic Differentiation 2 (PD2) in Pancreatic Cancer. University of Nebraska Medical Center 2015.
[29]
Stemmer V, de Craene B, Berx G, Behrens J. Snail promotes Wnt target gene expression and interacts with β-catenin. Oncogene 2008; 27(37): 5075-80.
[http://dx.doi.org/10.1038/onc.2008.140] [PMID: 18469861]
[30]
Onishi H, Katano M. Hedgehog signaling pathway as a new therapeutic target in pancreatic cancer. World J Gastroenterol 2014; 20(9): 2335-42.
[http://dx.doi.org/10.3748/wjg.v20.i9.2335] [PMID: 24605030]
[31]
Xie J, Bartels CM, Gu D, Barton SW. Targeting hedgehog signaling in cancer: Research and clinical developments. OncoTargets Ther 2013; 6: 1425-35.
[http://dx.doi.org/10.2147/OTT.S34678] [PMID: 24143114]
[32]
Abel EV, Kim EJ, Wu J, et al. The Notch pathway is important in maintaining the cancer stem cell population in pancreatic cancer. PLoS One 2014; 9(3): e91983.
[http://dx.doi.org/10.1371/journal.pone.0091983] [PMID: 24647545]
[33]
Hage C, Rausch V, Giese N, et al. The novel c-Met inhibitor cabozantinib overcomes gemcitabine resistance and stem cell signaling in pancreatic cancer. Cell Death Dis 2013; 4(5): e627-7.
[http://dx.doi.org/10.1038/cddis.2013.158] [PMID: 23661005]
[34]
Jemal A, Murray T, Ward E, et al. Cancer statistics, 2005. CA Cancer J Clin 2005; 55(1): 10-30.
[35]
Matano E, Tagliaferri P, Libroia A, et al. Gemcitabine combined with continuous infusion 5-fluorouracil in advanced and symptomatic pancreatic cancer: A clinical benefit-oriented phase II study. Br J Cancer 2000; 82(11): 1772-5.
[http://dx.doi.org/10.1054/bjoc.1999.1139] [PMID: 10839289]
[36]
Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100(7): 3983-8.
[http://dx.doi.org/10.1073/pnas.0530291100] [PMID: 12629218]
[37]
Prince ME, Sivanandan R, Kaczorowski A, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 2007; 104(3): 973-8.
[http://dx.doi.org/10.1073/pnas.0610117104] [PMID: 17210912]
[38]
Rodrigues AC, Curi R, Genvigir FDV, Hirata MH, Hirata RDC. The expression of efflux and uptake transporters are regulated by statins in Caco-2 and HepG2 cells. Acta Pharmacol Sin 2009; 30(7): 956-64.
[http://dx.doi.org/10.1038/aps.2009.85] [PMID: 19543298]
[39]
Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. nature 2006; 444(7120): 756-60.
[40]
Jimeno A, Feldmann G, Suárez-Gauthier A, et al. A direct pancreatic cancer xenograft model as a platform for cancer stem cell therapeutic development. Mol Cancer Ther 2009; 8(2): 310-4.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0924] [PMID: 19174553]
[41]
Dubrovska A, Kim S, Salamone RJ, et al. The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc Natl Acad Sci USA 2009; 106(1): 268-73.
[http://dx.doi.org/10.1073/pnas.0810956106] [PMID: 19116269]
[42]
Lee JY, Nakada D, Yilmaz OH, et al. mTOR activation induces tumor suppressors that inhibit leukemogenesis and deplete hematopoietic stem cells after Pten deletion. Cell Stem Cell 2010; 7(5): 593-605.
[http://dx.doi.org/10.1016/j.stem.2010.09.015] [PMID: 21040901]
[43]
Mueller MT, Hermann PC, Witthauer J, et al. Combined targeted treatment to eliminate tumorigenic cancer stem cells in human pancreatic cancer. Gastroenterology 2009; 137(3): 1102-13.
[http://dx.doi.org/10.1053/j.gastro.2009.05.053] [PMID: 19501590]
[44]
Li C, Wu JJ, Hynes M, et al. c-Met is a marker of pancreatic cancer stem cells and therapeutic target. Gastroenterology 2011; 141(6): 2218-2227.e5.
[http://dx.doi.org/10.1053/j.gastro.2011.08.009] [PMID: 21864475]
[45]
Quan M, Wang P, Cui J, Gao Y, Xie K. The roles of FOXM1 in pancreatic stem cells and carcinogenesis. Mol Cancer 2013; 12(1): 159.
[http://dx.doi.org/10.1186/1476-4598-12-159] [PMID: 24325450]
[46]
Zhan H, Xu J, Wu D, Zhang T, Hu S. Pancreatic cancer stem cells: New insight into a stubborn disease. Cancer Lett 2015; 357(2): 429-37.
[http://dx.doi.org/10.1016/j.canlet.2014.12.004] [PMID: 25499079]
[47]
Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 2014; 74(11): 2913-21.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0155] [PMID: 24840647]
[48]
Kleeff J, Korc M, Apte M, et al. Pancreatic cancer. Nat Rev Dis Primers 2016; 2(1): 16022.
[http://dx.doi.org/10.1038/nrdp.2016.22] [PMID: 27158978]
[49]
Rebelo A, Molpeceres J, Rijo P, Pinto Reis C. Pancreatic cancer therapy review: From classic therapeutic agents to modern nanotechnologies. Curr Drug Metab 2017; 18(4): 346-59.
[http://dx.doi.org/10.2174/1389200218666170201151135] [PMID: 28155623]
[50]
Hruban RH, Maitra A, Kern SE, Goggins M. Precursors to pancreatic cancer. Gastroenterol Clin North Am 2007; 36(4): 831-849, vi.
[http://dx.doi.org/10.1016/j.gtc.2007.08.012] [PMID: 17996793]
[51]
Sousa CM, Biancur DE, Wang X, et al. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 2016; 536(7617): 479-83.
[http://dx.doi.org/10.1038/nature19084] [PMID: 27509858]
[52]
Hermann PC, Huber SL, Herrler T, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 2007; 1(3): 313-23.
[http://dx.doi.org/10.1016/j.stem.2007.06.002] [PMID: 18371365]
[53]
Hutcheson J, Balaji U, Porembka MR, et al. Immunologic and metabolic features of pancreatic ductal adenocarcinoma define prognostic subtypes of disease. Clin Cancer Res 2016; 22(14): 3606-17.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1883] [PMID: 26858311]
[54]
Rasheed ZA, Yang J, Wang Q, et al. Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma. J Natl Cancer Inst 2010; 102(5): 340-51.
[http://dx.doi.org/10.1093/jnci/djp535] [PMID: 20164446]
[55]
Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: Accumulating evidence and unresolved questions. Nat Rev Cancer 2008; 8(10): 755-68.
[http://dx.doi.org/10.1038/nrc2499] [PMID: 18784658]
[56]
Alison MR, Lim SML, Nicholson LJ. Cancer stem cells: Problems for therapy? J Pathol 2011; 223(2): 148-62.
[http://dx.doi.org/10.1002/path.2793] [PMID: 21125672]
[57]
Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer 2005; 5(4): 275-84.
[http://dx.doi.org/10.1038/nrc1590] [PMID: 15803154]
[58]
Shlush LI, Zandi S, Mitchell A, et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 2014; 506(7488): 328-33.
[http://dx.doi.org/10.1038/nature13038] [PMID: 24522528]
[59]
Auffinger B, Tobias AL, Han Y, et al. Conversion of differentiated cancer cells into cancer stem-like cells in a glioblastoma model after primary chemotherapy. Cell Death Differ 2014; 21(7): 1119-31.
[http://dx.doi.org/10.1038/cdd.2014.31] [PMID: 24608791]
[60]
Hamerlik P, Lathia JD, Rasmussen R, et al. Autocrine VEGF–VEGFR2–Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth. J Exp Med 2012; 209(3): 507-20.
[http://dx.doi.org/10.1084/jem.20111424] [PMID: 22393126]
[61]
Oskarsson T, Batlle E, Massagué J. Metastatic stem cells: Sources, niches, and vital pathways. Cell Stem Cell 2014; 14(3): 306-21.
[http://dx.doi.org/10.1016/j.stem.2014.02.002] [PMID: 24607405]
[62]
Puisieux A, Brabletz T, Caramel J. Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol 2014; 16(6): 488-94.
[http://dx.doi.org/10.1038/ncb2976] [PMID: 24875735]
[63]
Mani SA, Guo W, Liao MJ, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133(4): 704-15.
[http://dx.doi.org/10.1016/j.cell.2008.03.027] [PMID: 18485877]
[64]
Meidhof S, Brabletz S, Lehmann W, et al. ZEB 1‐associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat. EMBO Mol Med 2015; 7(6): 831-47.
[http://dx.doi.org/10.15252/emmm.201404396] [PMID: 25872941]
[65]
Uramoto H, Iwata T, Onitsuka T, Shimokawa H, Hanagiri T, Oyama T. Epithelial-mesenchymal transition in EGFR-TKI acquired resistant lung adenocarcinoma. Anticancer Res 2010; 30(7): 2513-7.
[PMID: 20682976]
[66]
Black PC, Brown GA, Inamoto T, et al. Sensitivity to epidermal growth factor receptor inhibitor requires E-cadherin expression in urothelial carcinoma cells. Clin Cancer Res 2008; 14(5): 1478-86.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1593] [PMID: 18316572]
[67]
Fuchs BC, Fujii T, Dorfman JD, et al. Epithelial-to-mesenchymal transition and integrin-linked kinase mediate sensitivity to epidermal growth factor receptor inhibition in human hepatoma cells. Cancer Res 2008; 68(7): 2391-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2460] [PMID: 18381447]
[68]
Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: Acquisition of malignant and stem cell traits. Nat Rev Cancer 2009; 9(4): 265-73.
[http://dx.doi.org/10.1038/nrc2620] [PMID: 19262571]
[69]
Hovinga KE, Shimizu F, Wang R, et al. Inhibition of notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate. Stem Cells 2010; 28(6): 1019-29.
[http://dx.doi.org/10.1002/stem.429] [PMID: 20506127]
[70]
Calabrese C, Poppleton H, Kocak M, et al. A perivascular niche for brain tumor stem cells. Cancer Cell 2007; 11(1): 69-82.
[http://dx.doi.org/10.1016/j.ccr.2006.11.020] [PMID: 17222791]
[71]
Krishnamurthy S, Dong Z, Vodopyanov D, et al. Endothelial cell-initiated signaling promotes the survival and self-renewal of cancer stem cells. Cancer Res 2010; 70(23): 9969-78.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1712] [PMID: 21098716]
[72]
Krishnamurthy S, Warner KA, Dong Z, et al. Endothelial interleukin-6 defines the tumorigenic potential of primary human cancer stem cells. Stem Cells 2014; 32(11): 2845-57.
[http://dx.doi.org/10.1002/stem.1793] [PMID: 25078284]
[73]
Zhang Z, Dong Z, Lauxen IS, Filho MSA, Nör JE. Endothelial cell-secreted EGF induces epithelial to mesenchymal transition and endows head and neck cancer cells with stem-like phenotype. Cancer Res 2014; 74(10): 2869-81.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-2032] [PMID: 24686166]
[74]
Kise K, Kinugasa-Katayama Y, Takakura N. Tumor microenvironment for cancer stem cells. Adv Drug Deliv Rev 2016; 99(Pt B): 197-205.
[http://dx.doi.org/10.1016/j.addr.2015.08.005] [PMID: 26362921]
[75]
Lau EYT, Ho NPY, Lee TKW. Cancer stem cells and their microenvironment: Biology and therapeutic implications. Stem Cells Int 2017; 2017: 1-11.
[http://dx.doi.org/10.1155/2017/3714190] [PMID: 28337221]
[76]
Turdo A, Todaro M, Stassi G. Targeting cancer stem cells and the tumor microenvironment. Cancer Stem Cells: Emerging Concepts and Future Perspectives in Translational Oncology. Cham: Springer 2015; pp. 445-76.
[77]
Lu J, Ye X, Fan F, et al. Endothelial cells promote the colorectal cancer stem cell phenotype through a soluble form of Jagged-1. Cancer Cell 2013; 23(2): 171-85.
[http://dx.doi.org/10.1016/j.ccr.2012.12.021] [PMID: 23375636]
[78]
Schwitalla S, Fingerle AA, Cammareri P, et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell- like properties. Cell 2013; 152(1-2): 25-38.
[http://dx.doi.org/10.1016/j.cell.2012.12.012] [PMID: 23273993]
[79]
Bao B, Azmi AS, Ali S, et al. The biological kinship of hypoxia with CSC and EMT and their relationship with deregulated expression of miRNAs and tumor aggressiveness. Biochim Biophys Acta 2012; 1826(2): 272-96.
[PMID: 22579961]
[80]
Bao B, Ali S, Ahmad A, et al. Hypoxia-induced aggressiveness of pancreatic cancer cells is due to increased expression of VEGF, IL-6 and miR-21, which can be attenuated by CDF treatment. PLoS One 2012; 7(12): e50165.
[http://dx.doi.org/10.1371/journal.pone.0050165] [PMID: 23272057]
[81]
Ng KP, Manjeri A, Lee KL, et al. Physiologic hypoxia promotes maintenance of CML stem cells despite effective BCR-ABL1 inhibition. Blood 2014; 123(21): 3316-26.
[http://dx.doi.org/10.1182/blood-2013-07-511907] [PMID: 24705490]
[82]
Murakami A, Takahashi F, Nurwidya F, et al. Hypoxia increases gefitinib-resistant lung cancer stem cells through the activation of insulin-like growth factor 1 receptor. PLoS One 2014; 9(1): e86459.
[http://dx.doi.org/10.1371/journal.pone.0086459] [PMID: 24489728]
[83]
Zheng Y, Cai Z, Wang S, et al. Macrophages are an abundant component of myeloma microenvironment and protect myeloma cells from chemotherapy drug–induced apoptosis. Blood 2009; 114(17): 3625-8.
[http://dx.doi.org/10.1182/blood-2009-05-220285] [PMID: 19710503]
[84]
Mitchem JB, Brennan DJ, Knolhoff BL, et al. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res 2013; 73(3): 1128-41.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2731] [PMID: 23221383]
[85]
Amit M, Gil Z. Macrophages increase the resistance of pancreatic adenocarcinoma cells to gemcitabine by upregulating cytidine deaminase. OncoImmunology 2013; 2(12): e27231.
[http://dx.doi.org/10.4161/onci.27231] [PMID: 24498570]
[86]
Sumbly V, Landry I. Understanding pancreatic cancer stem cells and their role in carcinogenesis: A narrative review. Stem Cell Investig 2022; 9: 1.
[http://dx.doi.org/10.21037/sci-2021-067] [PMID: 35242873]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy