Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Short Communication

One-pot Synthesis of 2,3-disubstituted-4(3H)-quinazolinone from o-aminobenzoic Acid and DMF Derivatives using Imidazole Hydrochloride as a Promoter

Author(s): Yin Wang, Xiuyu Zhang, Suzhen Li, Mengyi Guo, Wanqian Ma and Jianyong Yuan*

Volume 21, Issue 7, 2024

Published on: 26 September, 2023

Page: [957 - 963] Pages: 7

DOI: 10.2174/1570179421666230815151540

Price: $65

Open Access Journals Promotions 2
Abstract

As a novel and environmentally friendly Brönsted acid, imidazole hydrochloride was used to promote the synthesis of 2,3-disubstituted-4(3H)-quinazolinone from o-aminobenzoic acid and DMF derivatives. The essence of this reaction is a multicomponent reaction, which constructs multiple chemical bonds between different components through the transamidation of imidazole hydrochloride. This protocol showed a wide range of functional group tolerance, and a series of quinazolinones were synthesized in low to moderate yields without metal catalysts, oxidants or other additives.

Keywords: Imidazole hydrochloride, 2, 3-disubstituted-4(3H)-quinazolinone, DMF derivatives, multicomponent reaction, Brönsted acid, transamidation.

« Previous
Graphical Abstract
[1]
Jalani, H.B.; Pandya, A.N.; Pandya, D.H.; Sharma, J.A.; Sudarsanam, V.; Vasu, K.K. An efficient, greener, and solvent-free one-pot multicomponent synthesis of 3-substituted quinazolin-4(3H)ones and thienopyrimidin-4(3H)ones. Tetrahedron Lett., 2012, 53(32), 4062-4064.
[http://dx.doi.org/10.1016/j.tetlet.2012.05.104]
[2]
Chawla, A.; Batra, C. Recent advances of quinazolinone derivatives as marker for various biological activities. Int. Res. J. Pharm., 2013, 4(3), 49-58.
[http://dx.doi.org/10.7897/2230-8407.04309]
[3]
Braun, C.; Schlaweck, S.; Daecke, S.N.; Brossart, P.; Heine, A. The PI3Kδ inhibitor idelalisib impairs the function of human dendritic cells. Cancer Immunol. Immunother., 2021, 70(12), 3693-3700.
[http://dx.doi.org/10.1007/s00262-021-02988-3] [PMID: 34173009]
[4]
Palazzuoli, A.; Ruocco, G.; Severino, P.; Gennari, L.; Pirrotta, F.; Stefanini, A.; Tramonte, F.; Feola, M.; Mancone, M.; Fedele, F. Effects of metolazone administration on congestion, diuretic response and renal function in patients with advanced heart failure. J. Clin. Med., 2021, 10(18), 4207.
[http://dx.doi.org/10.3390/jcm10184207] [PMID: 34575318]
[5]
Back, H.; Pradhan, S.; Yoon, Y.; Kang, W.; Chae, J.; Han, N.; Miki, N.; Kwon, K.; Kim, S.; Yun, H. Population pharmacokinetic modeling and simulation of afloqualone to predict steady-state exposure levels. Int. J. Pharmacol., 2018, 14(2), 276-284.
[http://dx.doi.org/10.3923/ijp.2018.276.284]
[6]
Rewcastle, G.W.; Denny, W.A.; Bridges, A.J.; Zhou, H.; Cody, D.R.; McMichael, A.; Fry, D.W. Tyrosine kinase inhibitors. 5. Synthesis and structure-activity relationships for 4-[(phenylmethyl)amino]- and 4-(phenylamino)quinazolines as potent adenosine 5′-triphosphate binding site inhibitors of the tyrosine kinase domain of the epidermal growth factor receptor. J. Med. Chem., 1995, 38(18), 3482-3487.
[http://dx.doi.org/10.1021/jm00018a008] [PMID: 7658435]
[7]
Rosowsky, A.; Mota, C.E.; Wright, J.E.; Queener, S.F. 2,4-Diamino-5-chloroquinazoline analogues of trimetrexate and piritrexim: synthesis and antifolate activity. J. Med. Chem., 1994, 37(26), 4522-4528.
[http://dx.doi.org/10.1021/jm00052a011] [PMID: 7799402]
[8]
Jiang, J.B.; Hesson, D.P.; Dusak, B.A.; Dexter, D.L.; Kang, G.J.; Hamel, E. Synthesis and biological evaluation of 2-styrylquinazolin-4(3H)-ones, a new class of antimitotic anticancer agents which inhibit tubulin polymerization. J. Med. Chem., 1990, 33(6), 1721-1728.
[http://dx.doi.org/10.1021/jm00168a029] [PMID: 2088342]
[9]
Sugimori, T.; Okawa, T.; Eguchi, S.; Kakehi, A.; Yashima, E.; Okamoto, Y. The first total synthesis of (−)-benzomalvin A and benzomalvin B via the intramolecular aza-Wittig reactions. Tetrahedron, 1998, 54(28), 7997-8008.
[http://dx.doi.org/10.1016/S0040-4020(98)00437-2]
[10]
Kathiravan, M.K.; Jalnapurkar, R.R.; Chitre, T.S.; Tamboli, R.S.; Srinivasan, K.V.; Srinivasan, K.V. The synergy of combined use of DMSO and bronsted acid (Ionic Liquid) as a catalyst part I: Efficient niementowski synthesis of modified quinazolinones. Green sustain. chem, 2011, 1(1), 12-8.
[http://dx.doi.org/10.4236/gsc.2011.11003]
[11]
Wang, M.; Song, Z.G.; Zhang, T.T. Efficient iodine-catalyzed synthesis of 3-Aryl 4(3 H)-quinazolinones. Org. Prep. Proced. Int., 2010, 42(2), 169-173.
[http://dx.doi.org/10.1080/00304941003697669]
[12]
Mukhopadhyay, S.; Barak, D.S.; Batra, S. TBHP as methyl source under metal-free aerobic conditions to synthesize quinazolin-4(3 H)-ones and quinazolines by oxidative amination of C(sp 3)-H Bond. Eur. J. Org. Chem., 2018, 2018(22), 2784-2794.
[http://dx.doi.org/10.1002/ejoc.201800495]
[13]
Wang, M.; Song, Z.; Zhang, T. Aluminium nitrate–catalyzed one-pot synthesis of 4(3 H)-Quinazolinones by a three-component coupling of anthranilic acid, amines, and ortho esters. Synth. Commun., 2011, 41(3), 385-391.
[http://dx.doi.org/10.1080/00397910903576636]
[14]
Larksarp, C.; Alper, H. Palladium-catalyzed cyclocarbonylation of o-iodoanilines with heterocumulenes: Regioselective preparation of 4(3H)-quinazolinone derivatives. J. Org. Chem., 2000, 65(9), 2773-2777.
[http://dx.doi.org/10.1021/jo991922r] [PMID: 10808454]
[15]
Akazome, M.; Kondo, T.; Watanabe, Y. Transition-metal complex-catalyzed reductive N-heterocyclization: Synthesis of 4(3H)-quinazolinone derivatives from N-(2-nitrobenzoyl)amides. J. Org. Chem., 1993, 58(2), 310-312.
[http://dx.doi.org/10.1021/jo00054a008]
[16]
Kamal, A.; Vijaya Bharathi, E.; Janaki Ramaiah, M.; Dastagiri, D.; Surendranadha Reddy, J.; Viswanath, A.; Sultana, F.; Pushpavalli, S.N.C.V.L.; Pal-Bhadra, M.; Srivastava, H.K.; Narahari Sastry, G.; Juvekar, A.; Sen, S.; Zingde, S. Quinazolinone linked pyrrolo[2,1-c][1,4]benzodiazepine (PBD) conjugates: Design, synthesis and biological evaluation as potential anticancer agents. Bioorg. Med. Chem., 2010, 18(2), 526-542.
[http://dx.doi.org/10.1016/j.bmc.2009.12.015] [PMID: 20031423]
[17]
O’Mahony, D.J.R.; Krchňák, V. Traceless synthesis of 3H-quinazolin-4-ones via a combination of solid-phase and solution methodologies. Tetrahedron Lett., 2002, 43(6), 939-942.
[http://dx.doi.org/10.1016/S0040-4039(01)02268-7]
[18]
Li, J.; Wang, Z.B.; Xu, Y.; Lu, X.C.; Zhu, S.R.; Liu, L. Catalyst-free cyclization of anthranils and cyclic amines: One-step synthesis of rutaecarpine. Chem. Commun., 2019, 55(80), 12072-12075.
[http://dx.doi.org/10.1039/C9CC06160F] [PMID: 31536093]
[19]
Wang, Q.; Hu, X.; Kuang, Q.; Li, D.; Wu, H.; Yuan, J. A series of new polycyclic carbamoyl pyridone analogues were synthesized by using chloroacetaldehyde as a substrate. Tetrahedron, 2021, 88, 132156.
[http://dx.doi.org/10.1016/j.tet.2021.132156]
[20]
Tian, Q.; Gan, Z.; Wang, X.; Li, D.; Luo, W.; Wang, H.; Dai, Z.; Yuan, J. Imidazolium chloride: An efficient catalyst for transamidation of primary amines. Molecules, 2018, 23(9), 2234.
[http://dx.doi.org/10.3390/molecules23092234] [PMID: 30200533]
[21]
Gan, Z.; Tian, Q.; Shang, S.; Luo, W.; Dai, Z.; Wang, H.; Li, D.; Wang, X.; Yuan, J. Imidazolium chloride-catalyzed synthesis of benzimidazoles and 2-substituted benzimidazoles from o-phenylenediamines and DMF derivatives. Tetrahedron, 2018, 74(52), 7450-7456.
[http://dx.doi.org/10.1016/j.tet.2018.11.014]
[22]
Tian, Q.; Luo, W.; Gan, Z.; Li, D.; Dai, Z.; Wang, H.; Wang, X.; Yuan, J. Eco-friendly syntheses of 2-substituted benzoxazoles and 2-substituted benzothiazoles from 2-aminophenols, 2-aminothiophenols and DMF derivatives in the presence of imidazolium chloride. Molecules, 2019, 24(1), 174.
[http://dx.doi.org/10.3390/molecules24010174] [PMID: 30621218]
[23]
Suchý, M.; Elmehriki, A.A.H.; Hudson, R.H.E. A remarkably simple protocol for the N-formylation of amino acid esters and primary amines. Org. Lett., 2011, 13(15), 3952-3955.
[http://dx.doi.org/10.1021/ol201475j] [PMID: 21707118]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy