Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Recent Advancement in Bioactive Chalcone Hybrids as Potential Antimicrobial Agents in Medicinal Chemistry

Author(s): Anand Maurya and Alka Agrawal*

Volume 24, Issue 2, 2024

Published on: 31 August, 2023

Page: [176 - 195] Pages: 20

DOI: 10.2174/1389557523666230727102606

Price: $65

Open Access Journals Promotions 2
Abstract

Chalcones are flavonoid-related aromatic ketones and enones generated from plants. The chalcones have a wide range of biological activities, such as anti-tumor, calming, and antimicrobial activities. In the present review, we have focused on the recently published original research articles on chalcones as a unique antibacterial framework in medicinal chemistry.

Chalcones are structurally diverse moieties and can be split into simple and hybrid chalcones, with both having core pharmacophore 1,3-diaryl-2-propen-1-one. Chalcones are isolated from natural sources and also synthesized by using various methods. Their structure-activity relationship, mechanisms, and list of patents are also summarized in this paper. This review article outlines the currently published antimicrobial chalcone hybrids and suggests that chalcone derivatives may be potential antimicrobial agents in the future.

Keywords: Natural chalcones, synthetic chalcones, hybrid chalcones, antimicrobial activity, antibacterial mechanism, patents, structure-activity relationship.

Graphical Abstract
[1]
Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev., 2017, 117(12), 7762-7810.
[http://dx.doi.org/10.1021/acs.chemrev.7b00020] [PMID: 28488435]
[2]
Aslan, H.E.; Demir, Y.; Özaslan, M.S.; Türkan, F.; Beydemir, Ş.; Küfrevioğlu, Ö.I. The behavior of some chalcones on acetylcholinesterase and carbonic anhydrase activity. Drug Chem. Toxicol., 2019, 42(6), 634-640.
[http://dx.doi.org/10.1080/01480545.2018.1463242] [PMID: 29860891]
[3]
Özaslan, M.S.; Demir, Y.; Aslan, H.E.; Beydemir, Ş.; Küfrevioğlu, Ö.İ. Evaluation of chalcones as inhibitors of glutathione Stransferase. J. Biochem. Mol. Toxicol., 2018, 32(5), e22047.
[http://dx.doi.org/10.1002/jbt.22047] [PMID: 29473699]
[4]
Jayashree, B.S.; Venkatachalam, H.; Mallik, S.B. Flavones and their analogues as bioactive compounds–an overview. Mini Rev. Org. Chem., 2019, 16(4), 377-391.
[http://dx.doi.org/10.2174/1570193X15666180418154510]
[5]
Yamali, C.; Gul, H.I.; Cakir, T.; Demir, Y.; Gulcin, I. Aminoalkylated phenolic chalcones: Investigation of biological effects on acetylcholinesterase and carbonic anhydrase I and II as potential lead enzyme inhibitors. Lett. Drug Des. Discov., 2020, 17(10), 1283-1292.
[http://dx.doi.org/10.2174/1570180817999200520123510]
[6]
ur Rashid, H.; Xu, Y.; Ahmad, N.; Muhammad, Y.; Wang, L. Promising anti-inflammatory effects of chalcones via inhibition of cyclooxygenase, prostaglandin E2, inducible NO synthase and nuclear factor κb activities. Bioorg. Chem., 2019, 87, 335-365.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.033] [PMID: 30921740]
[7]
Singh, P.; Anand, A.; Kumar, V. Recent developments in biological activities of chalcones: A mini review. Eur. J. Med. Chem., 2014, 85, 758-777.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.033] [PMID: 25137491]
[8]
Mahapatra, D.K.; Asati, V.; Bharti, S.K. Chalcones and their therapeutic targets for the management of diabetes: Structural and pharmacological perspectives. Eur. J. Med. Chem., 2015, 92, 839-865.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.051] [PMID: 25638569]
[9]
Mahapatra, D.K.; Bharti, S.K.; Asati, V. Anti-cancer chalcones: Structural and molecular target perspectives. Eur. J. Med. Chem., 2015, 98, 69-114.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.004] [PMID: 26005917]
[10]
Mahapatra, D.K.; Bharti, S.K.; Asati, V.; Singh, S.K. Perspectives of medicinally privileged chalcone based metal coordination compounds for biomedical applications. Eur. J. Med. Chem., 2019, 174, 142-158.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.032] [PMID: 31035237]
[11]
Matos, M.J.; Vazquez-Rodriguez, S.; Uriarte, E.; Santana, L. Potential pharmacological uses of chalcones: A patent review (from June 2011 – 2014). Expert Opin. Ther. Pat., 2015, 25(3), 351-366.
[http://dx.doi.org/10.1517/13543776.2014.995627] [PMID: 25598152]
[12]
Özaslan, M.S.; Sağlamtaş, R.; Demir, Y.; Genç, Y.; Saraçoğlu, İ.; Gülçin, İ. Isolation of some phenolic compounds from Plantago subulata L. and determination of their antidiabetic, anticholinesterase, antiepileptic and antioxidant activity. Chem. Biodivers., 2022, 19(8), e202200280.
[http://dx.doi.org/10.1002/cbdv.202200280] [PMID: 35796520]
[13]
Türkeş, C.; Demir, Y.; Beydemir, Ş. In Vitro inhibitory activity and molecular docking study of selected natural phenolic compounds as AR and SDH inhibitors**. ChemistrySelect, 2022, 7(48), e202204050.
[http://dx.doi.org/10.1002/slct.202204050]
[14]
Türkeş, C.; Demir, Y.; Beydemir, Ş. Infection medications: Assessment in‐vitro glutathione S‐Transferase inhibition and molecular docking study. ChemistrySelect, 2021, 6(43), 11915-11924.
[http://dx.doi.org/10.1002/slct.202103197]
[15]
Türkan, F.; Huyut, Z.; Demir, Y.; Ertaş, F.; Beydemir, Ş. The effects of some cephalosporins on acetylcholinesterase and glutathione S-transferase: An in Vivo and in Vitro study. Arch. Physiol. Biochem., 2019, 125(3), 235-243.
[http://dx.doi.org/10.1080/13813455.2018.1452037] [PMID: 29564935]
[16]
Levy, S.B.; Marshall, B. Antibacterial resistance worldwide: Causes, challenges and responses. Nat. Med., 2004, 10(S12), S122-S129.
[http://dx.doi.org/10.1038/nm1145] [PMID: 15577930]
[17]
Ghosh, C.; Haldar, J. Membrane‐active small molecules: Designs inspired by antimicrobial peptides. ChemMedChem, 2015, 10(10), 1606-1624.
[http://dx.doi.org/10.1002/cmdc.201500299] [PMID: 26386345]
[18]
Lim, S.M.; Webb, S.A.R. Nosocomial bacterial infections in Intensive Care Units. I: Organisms and mechanisms of antibiotic resistance. Anaesthesia, 2005, 60(9), 887-902.
[http://dx.doi.org/10.1111/j.1365-2044.2005.04220.x] [PMID: 16115251]
[19]
Boucher, H.W.; Talbot, G.H.; Benjamin, D.K., Jr; Bradley, J.; Guidos, R.J.; Jones, R.N.; Murray, B.E.; Bonomo, R.A.; Gilbert, D. 10 x ’20 Progress--development of new drugs active against gram-negative bacilli: An update from the infectious diseases society of America. Clin. Infect. Dis., 2013, 56(12), 1685-1694.
[http://dx.doi.org/10.1093/cid/cit152] [PMID: 23599308]
[20]
Grundmann, H.; Aires-de-Sousa, M.; Boyce, J.; Tiemersma, E. Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat. Lancet, 2006, 368(9538), 874-885.
[http://dx.doi.org/10.1016/S0140-6736(06)68853-3] [PMID: 16950365]
[21]
Bayrak, S.; Öztürk, C.; Demir, Y.; Alım, Z.; Küfrevioglu, Ö.İ. Purification of polyphenol oxidase from potato and investigation of the inhibitory effects of phenolic acids on enzyme activity. Protein Pept. Lett., 2020, 27(3), 187-192.
[http://dx.doi.org/10.2174/0929866526666191002142301] [PMID: 31577197]
[22]
Demir, Y.; Özaslan, M.S.; Duran, H.E.; Küfrevioğlu, Ö.İ.; Beydemir, Ş. Inhibition effects of quinones on aldose reductase: Antidiabetic properties. Environ. Toxicol. Pharmacol., 2019, 70, 103195.
[http://dx.doi.org/10.1016/j.etap.2019.103195] [PMID: 31125830]
[23]
Cui, Y.; Taniguchi, S.; Kuroda, T.; Hatano, T. Constituents of Psoralea corylifolia fruits and their effects on methicillin-resistant Staphylococcus aureus. Molecules, 2015, 20(7), 12500-12511.
[http://dx.doi.org/10.3390/molecules200712500] [PMID: 26184136]
[24]
Muharini, R.; Díaz, A.; Ebrahim, W.; Mándi, A.; Kurtán, T.; Rehberg, N.; Kalscheuer, R.; Hartmann, R.; Orfali, R.S.; Lin, W.; Liu, Z.; Proksch, P. Antibacterial and cytotoxic phenolic metabolites from the fruits of Amorpha fruticosa. J. Nat. Prod., 2017, 80(1), 169-180.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00809] [PMID: 28075580]
[25]
Li, Yuanyuan; Bingxia, Sun; Jiadai, Zhai; Lin, Fu; Shuxin, Zhang; Jing, Zhang; Hongliang, Liu Synthesis and antibacterial activity of four natural chalcones and their derivatives. Tetrahedron Letters, 60( no. 43)2019, , 151165.
[http://dx.doi.org/10.1016/j.tetlet.2019.151165]
[26]
Eddarir, S.; Cotelle, N.; Bakkour, Y.; Rolando, C. An efficient synthesis of chalcones based on the Suzuki reaction. Tetrahedron Lett., 2003, 44(28), 5359-5363.
[http://dx.doi.org/10.1016/S0040-4039(03)01140-7]
[27]
Kumar, A.; Sharma, S.; Tripathi, V.D.; Srivastava, S. Synthesis of chalcones and flavanones using Julia–Kocienski olefination. Tetrahedron, 2010, 66(48), 9445-9449.
[http://dx.doi.org/10.1016/j.tet.2010.09.089]
[28]
Gaur, R.; Gupta, V.K.; Pal, A.; Darokar, M.P.; Bhakuni, R.S.; Kumar, B. In Vitro and in Vivo synergistic interaction of substituted chalcone derivatives with norfloxacin against methicillin resistant Staphylococcus aureus. RSC Adv., 2015, 5(8), 5830-5845.
[http://dx.doi.org/10.1039/C4RA10842F]
[29]
Prasad, S.; Radhakrishna, V.; Ravi, T.K. Synthesis, spectroscopic and antibacterial studies of some schiff bases of 4-(4-bromophenyl)-6-(4-chlorophenyl)-2-aminopyrimidine. Arab. J. Chem., 2019, 12(8), 3943-3947.
[http://dx.doi.org/10.1016/j.arabjc.2016.03.003]
[30]
Zhang, M.; Prior, A.M.; Maddox, M.M.; Shen, W.J.; Hevener, K.E.; Bruhn, D.F.; Lee, R.B.; Singh, A.P.; Reinicke, J.; Simmons, C.J.; Hurdle, J.G.; Lee, R.E.; Sun, D. Pharmacophore modeling, synthesis, and antibacterial evaluation of chalcones and derivatives. ACS Omega, 2018, 3(12), 18343-18360.
[http://dx.doi.org/10.1021/acsomega.8b03174] [PMID: 30613820]
[31]
Vazquez-Rodriguez, S.; Lama López, R.; Matos, M.J.; Armesto-Quintas, G.; Serra, S.; Uriarte, E.; Santana, L.; Borges, F.; Muñoz Crego, A.; Santos, Y. Design, synthesis and antibacterial study of new potent and selective coumarin–chalcone derivatives for the treatment of tenacibaculosis. Bioorg. Med. Chem., 2015, 23(21), 7045-7052.
[http://dx.doi.org/10.1016/j.bmc.2015.09.028] [PMID: 26433630]
[32]
Sashidhara, K.V.; Rao, K.B.; Kushwaha, P.; Modukuri, R.K.; Singh, P.; Soni, I.; Shukla, P.K.; Chopra, S.; Pasupuleti, M. Novel chalcone–thiazole hybrids as potent inhibitors of drug resistant Staphylococcus aureus. ACS Med. Chem. Lett., 2015, 6(7), 809-813.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00169] [PMID: 26191371]
[33]
Wei, Z.Y.; Chi, K.Q.; Yu, Z.K.; Liu, H.Y.; Sun, L.P.; Zheng, C.J.; Piao, H.R. Synthesis and biological evaluation of chalcone derivatives containing aminoguanidine or acylhydrazone moieties. Bioorg. Med. Chem. Lett., 2016, 26(24), 5920-5925.
[http://dx.doi.org/10.1016/j.bmcl.2016.11.001] [PMID: 27843112]
[34]
Kant, R.; Kumar, D.; Agarwal, D.; Gupta, R.D.; Tilak, R.; Awasthi, S.K.; Agarwal, A. Synthesis of newer 1,2,3-triazole linked chalcone and flavone hybrid compounds and evaluation of their antimicrobial and cytotoxic activities. Eur. J. Med. Chem., 2016, 113, 34-49.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.041] [PMID: 26922227]
[35]
Kucerova-Chlupacova, M.; Vyskovska-Tyllova, V.; Richterova-Finkova, L.; Kunes, J.; Buchta, V.; Vejsova, M.; Paterova, P.; Semelkova, L.; Jandourek, O.; Opletalova, V. Novel halogenated pyrazine-based chalcones as potential antimicrobial drugs. Molecules, 2016, 21(11), 1421.
[http://dx.doi.org/10.3390/molecules21111421] [PMID: 27801810]
[36]
Bhat, M.; Nagaraja, G.K.; Divyaraj, P.; Harikrishna, N.; Biswas, S.; Peethamber, S.K. Design, synthesis, characterization of some new 1, 2, 3-triazolyl chalcone derivatives as potential anti-microbial, anti-oxidant and anti-cancer agents via a Claisen–Schmidt reaction approach. RSC Adv., 2016, 6(102), 99794-99808.
[http://dx.doi.org/10.1039/C6RA22705H]
[37]
Joshi, S.D.; Dixit, S.R.; Kirankumar, M.N.; Aminabhavi, T.M.; Raju, K.V.S.N.; Narayan, R.; Lherbet, C.; Yang, K.S. Synthesis, antimycobacterial screening and ligand-based molecular docking studies on novel pyrrole derivatives bearing pyrazoline, isoxazole and phenyl thiourea moieties. Eur. J. Med. Chem., 2016, 107, 133-152.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.047] [PMID: 26580979]
[38]
Khan, S.A.; Asiri, A.M. Green synthesis, characterization and biological evaluation of novel chalcones as anti bacterial agents. Arab. J. Chem., 2017, 10, S2890-S2895.
[http://dx.doi.org/10.1016/j.arabjc.2013.11.018]
[39]
Desai, V.; Desai, S.; Gaonkar, S.N.; Palyekar, U.; Joshi, S.D.; Dixit, S.K. Novel quinoxalinyl chalcone hybrid scaffolds as enoyl ACP reductase inhibitors: Synthesis, molecular docking and biological evaluation. Bioorg. Med. Chem. Lett., 2017, 27(10), 2174-2180.
[http://dx.doi.org/10.1016/j.bmcl.2017.03.059] [PMID: 28372908]
[40]
Zhang, T.Y.; Yu, Z.K.; Jin, X.J.; Li, M.Y.; Sun, L.P.; Zheng, C.J.; Piao, H.R. Synthesis and evaluation of the antibacterial activities of aryl substituted dihydrotriazine derivatives. Bioorg. Med. Chem. Lett., 2018, 28(9), 1657-1662.
[http://dx.doi.org/10.1016/j.bmcl.2018.03.037] [PMID: 29588213]
[41]
Chu, W.C.; Bai, P.Y.; Yang, Z.Q.; Cui, D.Y.; Hua, Y.G.; Yang, Y.; Yang, Q.Q.; Zhang, E.; Qin, S. Synthesis and antibacterial evaluation of novel cationic chalcone derivatives possessing broad spectrum antibacterial activity. Eur. J. Med. Chem., 2018, 143, 905-921.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.009] [PMID: 29227931]
[42]
Yadav, P.; Lal, K.; Kumar, L.; Kumar, A.; Kumar, A.; Paul, A.K.; Kumar, R. Synthesis, crystal structure and antimicrobial potential of some fluorinated chalcone-1,2,3-triazole conjugates. Eur. J. Med. Chem., 2018, 155, 263-274.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.055] [PMID: 29890388]
[43]
Ayman, M.; El-Messery, S.M.; Habib, E.E.; Al-Rashood, S.T.; Almehizia, A.A.; Alkahtani, H.M.; Hassan, G.S. Targeting microbial resistance: Synthesis, antibacterial evaluation, DNA binding and modeling study of new chalcone-based dithiocarbamate derivatives. Bioorg. Chem., 2019, 85, 282-292.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.001] [PMID: 30641322]
[44]
Burmaoglu, S.; Akin Kazancioglu, E.; Kazancioglu, M.Z.; Alagoz, M.A.; Dogen, A.; Algul, O. Synthesis, in Vitro biological evaluation, and molecular docking studies of novel biphenyl chalcone derivatives as antimicrobial agents. Polycycl. Aromat. Compd., 2022, 42(9), 5948-5961.
[http://dx.doi.org/10.1080/10406638.2021.1962925]
[45]
Narwal, S.; Kumar, S.; Verma, P.K. Synthesis and biological activity of new chalcone scaffolds as prospective antimicrobial agents. Res. Chem. Intermed., 2021, 47(4), 1625-1641.
[http://dx.doi.org/10.1007/s11164-020-04359-6]
[46]
Siqueira, M.M.R.; Freire, P.T.C.; Cruz, B.G.; de Freitas, T.S.; Bandeira, P.N.; Silva dos Santos, H.; Nogueira, C.E.S.; Teixeira, A.M.R.; Pereira, R.L.S.; Xavier, J.C.; Campina, F.F.; dos Santos Barbosa, C.R.; Neto, J.B.A.; da Silva, M.M.C.; Siqueira-Júnior, J.P.; Douglas Melo Coutinho, H. Aminophenyl chalcones potentiating antibiotic activity and inhibiting bacterial efflux pump. Eur. J. Pharm. Sci., 2021, 158, 105695.
[http://dx.doi.org/10.1016/j.ejps.2020.105695] [PMID: 33383131]
[47]
Durairaju, P.; Umarani, C.; Periyasami, G.; Vivekanand, P.A.; Rahaman, M. Synthesis and in Vitro antimicrobial evaluation of photoactive multi—block chalcone conjugate phthalimide and 1,8-naphthalimide novolacs. Polymers, 2021, 13(11), 1859.
[http://dx.doi.org/10.3390/polym13111859] [PMID: 34205041]
[48]
Sharma, M.K.; Parashar, S.; Chahal, M.; Lal, K.; Pandya, N.U.; Om, H. Antimicrobial and in-silico evaluation of novel chalcone and amide-linked 1,4-disubstituted 1,2,3 triazoles. J. Mol. Struct., 2022, 1257, 132632.
[http://dx.doi.org/10.1016/j.molstruc.2022.132632]
[49]
Moreira, J.; Durães, F.; Freitas-Silva, J.; Szemerédi, N.; Resende, D.I.S.P.; Pinto, E.; da Costa, P.M.; Pinto, M.; Spengler, G.; Cidade, H.; Sousa, E. New diarylpentanoids and chalcones as potential antimicrobial adjuvants. Bioorg. Med. Chem. Lett., 2022, 67, 128743.
[http://dx.doi.org/10.1016/j.bmcl.2022.128743] [PMID: 35447343]
[50]
Bala, D.; Jinga, L.I.; Popa, M.; Hanganu, A.; Voicescu, M.; Bleotu, C.; Tarko, L.; Nica, S. Design, synthesis, and biological evaluation of new azulene-containing chalcones. Materials, 2022, 15(5), 1629.
[http://dx.doi.org/10.3390/ma15051629] [PMID: 35268860]
[51]
Kamel, M.G.; Sroor, F.M.; Othman, A.M.; Mahrous, K.F.; Saleh, F.M.; Hassaneen, H.M.; Abdallah, T.A.; Abdelhamid, I.A.; Teleb, M.A.M. Structure-based design of novel pyrazolyl–chalcones as anti-cancer and antimicrobial agents: Synthesis and in Vitro studies. Monatsh. Chem., 2022, 153(2), 211-221.
[http://dx.doi.org/10.1007/s00706-021-02886-5]
[52]
Ibarra-Hernández, J.A.; Gómez-Balderas, R.; Nivón-Ramírez, D.; García-Estrada, J.G.; Mendoza-Jiménez, D.A.; Martínez-Zaldívar, A.; Cruz-Sánchez, T.A.; Tovar-Betancourt, N.; Luna-Mora, R.A.; Penieres-Carrillo, J.G. Novel compounds based on chalcone- and pyrazoline-DIM hybrids as inhibitors of Staphylococcus aureus, synthesis, DFT studies, biological evaluation and docking studies. J. Mol. Struct., 2022, 1249, 131499.
[http://dx.doi.org/10.1016/j.molstruc.2021.131499]
[53]
Yadav, M.; Kumar, A.; Lal, K.; Singh, M.B.; Kumari, K. Facile synthesis, antimicrobial screening and docking studies of pyrrole-triazole hybrids as potential antimicrobial agents. Res. Chem. Intermed., 2023, 49(4), 1311-1326.
[http://dx.doi.org/10.1007/s11164-022-04948-7]
[54]
Yadav, M.; Lal, K.; Kumar, A.; Singh, P.; Vishvakarma, V.K.; Chandra, R. Click reaction inspired synthesis, antimicrobial evaluation and in silico docking of some pyrrole-chalcone linked 1,2,3-triazole hybrids. J. Mol. Struct., 2023, 1273, 134321.
[http://dx.doi.org/10.1016/j.molstruc.2022.134321]
[55]
Selvakumaran, M.; Predhanekar, M.I.; Kubaib, A.; Visagaperumal, D. Novel Benzimidazole linked piperidine derivatives screened for antibacterial and antioxidant properties with density functional and molecular mechanic tools. Results Chem., 2023, 5, 100765.
[http://dx.doi.org/10.1016/j.rechem.2023.100765]
[56]
Dan, W.; Dai, J. Recent developments of chalcones as potential antibacterial agents in medicinal chemistry. Eur. J. Med. Chem., 2020, 187, 111980.
[http://dx.doi.org/10.1016/j.ejmech.2019.111980] [PMID: 31877539]
[57]
Dai, J.; Dan, W.; Ren, S.; Shang, C.; Wang, J. Design, synthesis and biological evaluations of quaternization harman analogues as potential antibacterial agents. Eur. J. Med. Chem., 2018, 160, 23-36.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.012] [PMID: 30317023]
[58]
Dai, J.; Dan, W.; Li, N.; Wang, R.; Zhang, Y.; Li, N.; Wang, R.; Wang, J. Synthesis and antibacterial activity of C2 or C5 modified and D ring rejiggered canthin-6-one analogues. Food Chem., 2018, 253, 211-220.
[http://dx.doi.org/10.1016/j.foodchem.2018.01.166] [PMID: 29502823]
[59]
Wallace, M.D.; Waraich, N.F.; Debowski, A.W.; Corral, M.G.; Maxwell, A.; Mylne, J.S.; Stubbs, K.A. Developing ciprofloxacin analogues against plant DNA gyrase: A novel herbicide mode of action. Chem. Commun., 2018, 54(15), 1869-1872.
[http://dx.doi.org/10.1039/C7CC09518J] [PMID: 29388638]
[60]
Webber, M.A.; Piddock, L.J. The importance of efflux pumps in bacterial antibiotic resistance. J. Antimicrob. Chemother., 2003, 51(1), 9-11.
[http://dx.doi.org/10.1093/jac/dkg050] [PMID: 12493781]
[61]
Holler, J.G.; Christensen, S.B.; Slotved, H.C.; Rasmussen, H.B.; Gúzman, A.; Olsen, C.E.; Petersen, B.; Mølgaard, P. Novel inhibitory activity of the Staphylococcus aureus NorA efflux pump by a kaempferol rhamnoside isolated from Persea lingue Nees. J. Antimicrob. Chemother., 2012, 67(5), 1138-1144.
[http://dx.doi.org/10.1093/jac/dks005] [PMID: 22311936]
[62]
Gupta, V.K.; Gaur, R.; Sharma, A.; Akther, J.; Saini, M.; Bhakuni, R.S.; Pathania, R. A novel bi-functional chalcone inhibits multi-drug resistant Staphylococcus aureus and potentiates the activity of fluoroquinolones. Bioorg. Chem., 2019, 83, 214-225.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.024] [PMID: 30380450]
[63]
Worthington, R.J.; Melander, C. Combination approaches to combat multidrug-resistant bacteria. Trends Biotechnol., 2013, 31(3), 177-184.
[http://dx.doi.org/10.1016/j.tibtech.2012.12.006] [PMID: 23333434]
[64]
Baldry, M.; Nielsen, A.; Bojer, M.S.; Zhao, Y.; Friberg, C.; Ifrah, D.; Glasser Heede, N.; Larsen, T.O.; Frøkiær, H.; Frees, D.; Zhang, L.; Dai, H.; Ingmer, H. Norlichexanthone reduces virulence gene expression and biofilm formation in Staphylococcus aureus. PLoS One, 2016, 11(12), e0168305.
[http://dx.doi.org/10.1371/journal.pone.0168305] [PMID: 28005941]
[65]
Kim, D.W.; Curtis-Long, M.J.; Yuk, H.J.; Wang, Y.; Song, Y.H.; Jeong, S.H.; Park, K.H. Quantitative analysis of phenolic metabolites from different parts of Angelica keiskei by HPLC–ESI MS/MS and their xanthine oxidase inhibition. Food Chem., 2014, 153, 20-27.
[http://dx.doi.org/10.1016/j.foodchem.2013.12.026] [PMID: 24491695]
[66]
Mizar, P.; Arya, R.; Kim, T.; Cha, S.; Ryu, K.S.; Yeo, W.; Bae, T.; Kim, D.W.; Park, K.H.; Kim, K.K.; Lee, S.S. Total synthesis of xanthoangelol B and its various fragments: Toward inhibition of virulence factor production of Staphylococcus aureus. J. Med. Chem., 2018, 61(23), 10473-10487.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01012] [PMID: 30388007]
[67]
Bi, F.; Song, D.; Qin, Y.; Liu, X.; Teng, Y.; Zhang, N.; Zhang, P.; Zhang, N.; Ma, S. Discovery of 1,3,4-oxadiazol-2-one-containing benzamide derivatives targeting FtsZ as highly potent agents of killing a variety of MDR bacteria strains. Bioorg. Med. Chem., 2019, 27(14), 3179-3193.
[http://dx.doi.org/10.1016/j.bmc.2019.06.010] [PMID: 31200986]
[68]
Liu, J.; Ma, R.; Bi, F.; Zhang, F.; Hu, C.; Venter, H.; Semple, S.J.; Ma, S. Novel 5-methyl-2-phenylphenanthridium derivatives as FtsZ-targeting antibacterial agents from structural simplification of natural product sanguinarine. Bioorg. Med. Chem. Lett., 2018, 28(10), 1825-1831.
[http://dx.doi.org/10.1016/j.bmcl.2018.04.015] [PMID: 29657101]
[69]
Li, X.; Sheng, J.; Huang, G.; Ma, R.; Yin, F.; Song, D.; Zhao, C.; Ma, S. Design, synthesis and antibacterial activity of cinnamaldehyde derivatives as inhibitors of the bacterial cell division protein FtsZ. Eur. J. Med. Chem., 2015, 97, 32-41.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.048] [PMID: 25938986]
[70]
Hunter, T. Protein kinases and phosphatases: The Yin and Yang of protein phosphorylation and signaling. Cell, 1995, 80(2), 225-236.
[http://dx.doi.org/10.1016/0092-8674(95)90405-0] [PMID: 7834742]
[71]
Cole, S.T.; Brosch, R.; Parkhill, J.; Garnier, T.; Churcher, C.; Harris, D.; Gordon, S.V.; Eiglmeier, K.; Gas, S.; Barry, C.E., III; Tekaia, F.; Badcock, K.; Basham, D.; Brown, D.; Chillingworth, T.; Connor, R.; Davies, R.; Devlin, K.; Feltwell, T.; Gentles, S.; Hamlin, N.; Holroyd, S.; Hornsby, T.; Jagels, K.; Krogh, A.; McLean, J.; Moule, S.; Murphy, L.; Oliver, K.; Osborne, J.; Quail, M.A.; Rajandream, M.A.; Rogers, J.; Rutter, S.; Seeger, K.; Skelton, J.; Squares, R.; Squares, S.; Sulston, J.E.; Taylor, K.; Whitehead, S.; Barrell, B.G. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 1998, 393(6685), 537-544.
[http://dx.doi.org/10.1038/31159] [PMID: 9634230]
[72]
Bliska, J.B.; Guan, K.L.; Dixon, J.E.; Falkow, S. Tyrosine phosphate hydrolysis of host proteins by an essential Yersinia virulence determinant. Proc. Natl. Acad. Sci., 1991, 88(4), 1187-1191.
[http://dx.doi.org/10.1073/pnas.88.4.1187] [PMID: 1705028]
[73]
Guan, K.; Dixon, J.E. Protein tyrosine phosphatase activity of an essential virulence determinant in Yersinia. Science, 1990, 249(4968), 553-556.
[http://dx.doi.org/10.1126/science.2166336] [PMID: 2166336]
[74]
Martins, P.G.A.; Menegatti, A.C.O.; Chiaradia-Delatorre, L.D.; de Oliveira, K.N.; Guido, R.V.C.; Andricopulo, A.D.; Vernal, J.; Yunes, R.A.; Nunes, R.J.; Terenzi, H. Synthetic chalcones and sulfonamides as new classes of Yersinia enterocolitica YopH tyrosine phosphatase inhibitors. Eur. J. Med. Chem., 2013, 64, 35-41.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.018] [PMID: 23639652]
[75]
Bhatt, A.; Molle, V.; Besra, G.S.; Jacobs, W.R., Jr; Kremer, L. The Mycobacterium tuberculosis FAS-II condensing enzymes: Their role in mycolic acid biosynthesis, acid-fastness, pathogenesis and in future drug development. Mol. Microbiol., 2007, 64(6), 1442-1454.
[http://dx.doi.org/10.1111/j.1365-2958.2007.05761.x] [PMID: 17555433]
[76]
Kar Mahapatra, D.; Asati, V.; Bharti, S.K. An updated patent review of therapeutic applications of chalcone derivatives (2014-present). Expert Opin. Ther. Pat., 2019, 29(5), 385-406.
[http://dx.doi.org/10.1080/13543776.2019.1613374] [PMID: 31030616]
[77]
Xiangyi, L.; Jianyong, L.; Yajun, Y.; Yitao, G.; Jiyu, Z.; Xuzheng, Z.; Bing, L.; Jianrong, N.; Xiaojuan, W. Chalcone thiazole amide compound and preparation method and applications thereof. Patent CN104725332A, 2017.
[78]
Enqin, Z.; Shang, S.; Shuaimin, X.; Mingming, W.; Bai, Z.W.; Zhou, P.; Wang, M.; Wang, P.; Wang, S.; Cui, Y.; Hua, D.; Yong, Y.; Hongmin, L. Chalcone derivative with antimicrobial agent activity. Patent CN105622492B, 2016.
[79]
Enqin, Z.; Shang, S.; Shuaimin, X.; Mingming, W.; Bai, Z.W.; Zhou, P.; Wang, M.; Wang, P.; Wang, S.; Cui, Y.; Hua, D.; Yong, Y.; Hongmin, L. Chalcone cationic antimicrobial peptide simulant with antimicrobial activity and preparation method thereof. Patent CN105566149B, 2016.
[80]
Ho, S.Y.; Soo, S.K.; Soo, K. S Antifungal composition comprising 2',4'-dihydroxychalcone compound. Patent KR101731159B1, 2015.
[81]
Xiaorong, T.; Jian, Y.; Sumei, G.; Hui, L.; Yang, G.; Zhihong, X.; Shouyi, L.; Yan, Z.; Wu, W.L. A kind of thiophenechalcone semicarbazone Schiff base compound and its preparation method and application. Patent CN105367543A, 2015.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy