Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Mini-Review Article

Antimicrobial Peptides: Sources, Expression Systems, and Applications

Author(s): Mengru Li, Weitao Lu, Yanyan Sun and Chunming Dong*

Volume 24, Issue 8, 2023

Published on: 18 August, 2023

Page: [640 - 654] Pages: 15

DOI: 10.2174/1389203724666230727101636

Price: $65

Abstract

Antimicrobial peptides (AMPs) are widely sourced and have a variety of biological activities such as broad-spectrum antibacterial, antiviral, and anticancer. Since AMPs are less likely to cause drug resistance, they are expected to be an alternative to antibiotics. Compared with natural extraction and chemical synthesis methods, producing AMPs using genetic engineering is a hot research topic for the large-scale production of AMPs. This paper outlines the sources of AMPs, focuses on different expression systems, and reviews the current status of AMPs applications in animal husbandry, food preservation and medicine, and agriculture to provide a theoretical basis and support for using genetic engineering to express AMPs.

Keywords: Antimicrobial peptide, recombinant expression, chemical synthesis, antibiotics, genetic engineering, AMPs.

Graphical Abstract
[1]
DeNegre, A.A.; Ndeffo, M.M.L.; Myers, K.; Fefferman, N.H. Emergence of antibiotic resistance in immunocompromised host populations: A case study of emerging antibiotic resistant tuberculosis in AIDS patients. PLoS One, 2019, 14(2), e0212969.
[http://dx.doi.org/10.1371/journal.pone.0212969] [PMID: 30817798]
[2]
Dumford, D.M., III; Skalweit, M. Antibiotic-resistant infections and treatment challenges in the immunocompromised host. Infect. Dis. Clin. North Am., 2016, 30(2), 465-489.
[http://dx.doi.org/10.1016/j.idc.2016.02.008] [PMID: 27208768]
[3]
Teillant, A.; Gandra, S.; Barter, D.; Morgan, D.J.; Laxminarayan, R. Potential burden of antibiotic resistance on surgery and cancer chemotherapy antibiotic prophylaxis in the USA: A literature review and modelling study. Lancet Infect. Dis., 2015, 15(12), 1429-1437.
[http://dx.doi.org/10.1016/S1473-3099(15)00270-4] [PMID: 26482597]
[4]
Jenssen, H.; Hamill, P.; Hancock, R.E.W. Peptide antimicrobial agents. Clin. Microbiol. Rev., 2006, 19(3), 491-511.
[http://dx.doi.org/10.1128/CMR.00056-05] [PMID: 16847082]
[5]
Chan, D.I.; Prenner, E.J.; Vogel, H.J. Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action. Biochim. Biophys. Acta Biomembr., 2006, 1758(9), 1184-1202.
[http://dx.doi.org/10.1016/j.bbamem.2006.04.006] [PMID: 16756942]
[6]
Yan, J.; Wang, K.; Dang, W.; Chen, R.; Xie, J.; Zhang, B.; Song, J.; Wang, R. Two hits are better than one: Membrane-active and DNA binding-related double-action mechanism of NK-18, a novel antimicrobial peptide derived from mammalian NK-lysin. Antimicrob. Agents Chemother., 2013, 57(1), 220-228.
[http://dx.doi.org/10.1128/AAC.01619-12] [PMID: 23089755]
[7]
Song, D.; Zong, X.; Zhang, H.; Wang, T.; Yi, H.; Luan, C.; Wang, Y. Antimicrobial peptide Cathelicidin-BF prevents intestinal barrier dysfunction in a mouse model of endotoxemia. Int. Immunopharmacol., 2015, 25(1), 141-147.
[http://dx.doi.org/10.1016/j.intimp.2015.01.017] [PMID: 25639228]
[8]
Moravej, H.; Moravej, Z.; Yazdanparast, M.; Heiat, M.; Mirhosseini, A.; Moosazadeh, M.M.; Mirnejad, R. Antimicrobial peptides: Features, action, and their resistance mechanisms in bacteria. Microb. Drug Resist., 2018, 24(6), 747-767.
[http://dx.doi.org/10.1089/mdr.2017.0392] [PMID: 29957118]
[9]
Ma, W.; Zhao, L.; Zhao, W.; Xie, Y. ( E )-2-hexenal, as a potential natural antifungal compound, inhibits aspergillus flavus spore germination by disrupting mitochondrial energy metabolism. J. Agric. Food Chem., 2019, 67(4), 1138-1145.
[http://dx.doi.org/10.1021/acs.jafc.8b06367] [PMID: 30614691]
[10]
Wiesner, J.; Vilcinskas, A. Antimicrobial peptides: The ancient arm of the human immune system. Virulence, 2010, 1(5), 440-464.
[http://dx.doi.org/10.4161/viru.1.5.12983] [PMID: 21178486]
[11]
Kang, H.K.; Kim, C.; Seo, C.H.; Park, Y. The therapeutic applications of antimicrobial peptides (AMPs): A patent review. J. Microbiol., 2017, 55(1), 1-12.
[http://dx.doi.org/10.1007/s12275-017-6452-1] [PMID: 28035594]
[12]
Thomma, B.; Cammue, B.; Thevissen, K. Plant defensins. Planta, 2002, 216(2), 193-202.
[http://dx.doi.org/10.1007/s00425-002-0902-6] [PMID: 12447532]
[13]
Lay, F.; Anderson, M. Defensins--components of the innate immune system in plants. Curr. Protein Pept. Sci., 2005, 6(1), 85-101.
[http://dx.doi.org/10.2174/1389203053027575] [PMID: 15638771]
[14]
da Silva Pereira, L.; do Nascimento, V.V.; de Fátima Ferreira Ribeiro, S.; Rodrigues, R.; Fernandes, K.V.S.; de Oliveira Carvalho, A.; Vasconcelos, I.M.; dos Santos Bento, C.; Sudré, C.P.; Zottich, U.; Gomes, V.M. Characterization of Capsicum annuum L. leaf and root antimicrobial peptides: Antimicrobial activity against phytopathogenic microorganisms. Acta Physiol. Plant., 2018, 40(6), 107.
[http://dx.doi.org/10.1007/s11738-018-2685-9]
[15]
Taveira, G.B.; Carvalho, A.O.; Rodrigues, R.; Trindade, F.G.; Da Cunha, M.; Gomes, V.M. Thionin-like peptide from Capsicum annuum fruits: Mechanism of action and synergism with fluconazole against Candida species. BMC Microbiol., 2016, 16(1), 12.
[http://dx.doi.org/10.1186/s12866-016-0626-6] [PMID: 26819228]
[16]
Maracahipes, Á.C.; Taveira, G.B.; Sousa-Machado, L.Y.; Machado, O.L.T.; Rodrigues, R.; Carvalho, A.O.; Gomes, V.M. Characterization and antifungal activity of a plant peptide expressed in the interaction between Capsicum annuum fruits and the anthracnose fungus. Biosci. Rep., 2019, 39(12), BSR20192803.
[http://dx.doi.org/10.1042/BSR20192803] [PMID: 31804672]
[17]
Afroz, M.; Akter, S.; Ahmed, A.; Rouf, R.; Shilpi, J.A.; Tiralongo, E.; Sarker, S.D.; Göransson, U.; Uddin, S.J. Ethnobotany and antimicrobial peptides from plants of the solanaceae family: An update and future prospects. Front. Pharmacol., 2020, 11, 565.
[http://dx.doi.org/10.3389/fphar.2020.00565] [PMID: 32477108]
[18]
Diz, M.S.; Carvalho, A.O.; Ribeiro, S.F.F.; Da Cunha, M.; Beltramini, L.; Rodrigues, R.; Nascimento, V.V.; Machado, O.L.T.; Gomes, V.M. Characterisation, immunolocalisation and antifungal activity of a lipid transfer protein from chili pepper (Capsicum annuum) seeds with novel α-amylase inhibitory properties. Physiol. Plant., 2011, 142(3), 233-246.
[http://dx.doi.org/10.1111/j.1399-3054.2011.01464.x] [PMID: 21382036]
[19]
Heymich, M.L.; Friedlein, U.; Trollmann, M.; Schwaiger, K.; Böckmann, R.A.; Pischetsrieder, M. Generation of antimicrobial peptides Leg1 and Leg2 from chickpea storage protein, active against food spoilage bacteria and foodborne pathogens. Food Chem., 2021, 347, 128917.
[http://dx.doi.org/10.1016/j.foodchem.2020.128917] [PMID: 33465691]
[20]
Kuddus, M.R.; Rumi, F.; Tsutsumi, M.; Takahashi, R.; Yamano, M.; Kamiya, M.; Kikukawa, T.; Demura, M.; Aizawa, T. Expression, purification and characterization of the recombinant cysteine-rich antimicrobial peptide snakin-1 in Pichia pastoris. Protein Expr. Purif., 2016, 122, 15-22.
[http://dx.doi.org/10.1016/j.pep.2016.02.002] [PMID: 26854372]
[21]
Odintsova, T.I.; Vassilevski, A.A.; Slavokhotova, A.A.; Musolyamov, A.K.; Finkina, E.I.; Khadeeva, N.V.; Rogozhin, E.A.; Korostyleva, T.V.; Pukhalsky, V.A.; Grishin, E.V.; Egorov, T.A. A novel antifungal hevein-type peptide from Triticum kiharae seeds with a unique 10-cysteine motif. FEBS J., 2009, 276(15), 4266-4275.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07135.x] [PMID: 19583772]
[22]
Baxter, A.A.; Richter, V.; Lay, F.T.; Poon, I.K.H.; Adda, C.G.; Veneer, P.K.; Phan, T.K.; Bleackley, M.R.; Anderson, M.A.; Kvansakul, M.; Hulett, M.D. The tomato defensin TPP3 binds phosphatidylinositol (4,5)-bisphosphate via a conserved dimeric cationic grip conformation to mediate cell lysis. Mol. Cell. Biol., 2015, 35(11), 1964-1978.
[http://dx.doi.org/10.1128/MCB.00282-15] [PMID: 25802281]
[23]
Yamauchi, H. Two novel insect defensins from larvae of the Cupreous chafer, Anomala cuprea: Purification, amino acid sequences and antibacterial activity. Insect Biochem. Mol. Biol., 2001, 32(1), 75-84.
[http://dx.doi.org/10.1016/S0965-1748(01)00082-0] [PMID: 11719071]
[24]
Lu, D.; Geng, T.; Hou, C.; Huang, Y.; Qin, G.; Guo, X. Bombyx mori cecropin A has a high antifungal activity to entomopathogenic fungus Beauveria bassiana. Gene, 2016, 583(1), 29-35.
[http://dx.doi.org/10.1016/j.gene.2016.02.045] [PMID: 26945628]
[25]
Buonocore, F.; Fausto, A.M.; Della Pelle, G.; Roncevic, T.; Gerdol, M.; Picchietti, S. Attacins: A promising class of insect antimicrobial peptides. Antibiotics, 2021, 10(2), 212.
[http://dx.doi.org/10.3390/antibiotics10020212] [PMID: 33672685]
[26]
Moghaddam, M.R.B.; Gross, T.; Becker, A.; Vilcinskas, A.; Rahnamaeian, M. The selective antifungal activity of Drosophila melanogaster metchnikowin reflects the species-dependent inhibition of succinate–coenzyme Q reductase. Sci. Rep., 2017, 7(1), 8192.
[http://dx.doi.org/10.1038/s41598-017-08407-x] [PMID: 28811531]
[27]
Steiner, H.; Hultmark, D.; Engström, Å.; Bennich, H.; Boman, H.G. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature, 1981, 292(5820), 246-248.
[http://dx.doi.org/10.1038/292246a0] [PMID: 7019715]
[28]
Galdiero, S.; Falanga, A.; Berisio, R.; Grieco, P.; Morelli, G.; Galdiero, M. Antimicrobial peptides as an opportunity against bacterial diseases. Curr. Med. Chem., 2015, 22(14), 1665-1677.
[http://dx.doi.org/10.2174/0929867322666150311145632] [PMID: 25760092]
[29]
Reddy, K.V.R.; Yedery, R.D.; Aranha, C. Antimicrobial peptides: Premises and promises. Int. J. Antimicrob. Agents, 2004, 24(6), 536-547.
[http://dx.doi.org/10.1016/j.ijantimicag.2004.09.005] [PMID: 15555874]
[30]
Bae, J.S.; Jung, J.M.; An, C.M.; Kim, J.W.; Hwang, S.D.; Kwon, M.G.; Park, M.A.; Kim, M.C.; Park, C.I. Piscidin: Antimicrobial peptide of rock bream, Oplegnathus fasciatus. Fish Shellfish Immunol., 2016, 51, 136-142.
[http://dx.doi.org/10.1016/j.fsi.2016.02.010] [PMID: 26876358]
[31]
Masso-Silva, J.; Diamond, G. Antimicrobial peptides from fish. Pharmaceuticals, 2014, 7(3), 265-310.
[http://dx.doi.org/10.3390/ph7030265] [PMID: 24594555]
[32]
Álvarez, C.A.; Acosta, F.; Montero, D.; Guzmán, F.; Torres, E.; Vega, B.; Mercado, L. Synthetic hepcidin from fish: Uptake and protection against Vibrio anguillarum in sea bass (Dicentrarchus labrax). Fish Shellfish Immunol., 2016, 55, 662-670.
[http://dx.doi.org/10.1016/j.fsi.2016.06.035] [PMID: 27368538]
[33]
Zhang, X.J.; Zhang, X.Y.; Zhang, N.; Guo, X.; Peng, K.S.; Wu, H.; Lu, L.F.; Wu, N.; Chen, D.D.; Li, S.; Nie, P.; Zhang, Y.A. Distinctive structural hallmarks and biological activities of the multiple cathelicidin antimicrobial peptides in a primitive teleost fish. J. Immunol., 2015, 194(10), 4974-4987.
[http://dx.doi.org/10.4049/jimmunol.1500182] [PMID: 25876762]
[34]
Ting, C.H.; Huang, H.N.; Huang, T.C.; Wu, C.J.; Chen, J.Y. The mechanisms by which pardaxin, a natural cationic antimicrobial peptide, targets the endoplasmic reticulum and induces c-FOS. Biomaterials, 2014, 35(11), 3627-3640.
[http://dx.doi.org/10.1016/j.biomaterials.2014.01.032] [PMID: 24477193]
[35]
Conlon, J.M.; Mechkarska, M. Host-defense peptides with therapeutic potential from skin secretions of frogs from the family pipidae. Pharmaceuticals, 2014, 7(1), 58-77.
[http://dx.doi.org/10.3390/ph7010058] [PMID: 24434793]
[36]
Tajbakhsh, M.; Karimi, A.; Fallah, F.; Akhavan, M.M. Overview of ribosomal and non-ribosomal antimicrobial peptides produced by Gram positive bacteria. Cell. Mol. Biol., 2017, 63(10), 20-32.
[http://dx.doi.org/10.14715/cmb/2017.63.10.4] [PMID: 29096754]
[37]
Yeaman, M.R.; Yount, N.Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev., 2003, 55(1), 27-55.
[http://dx.doi.org/10.1124/pr.55.1.2] [PMID: 12615953]
[38]
Simons, A.; Alhanout, K.; Duval, R.E. Bacteriocins, antimicrobial peptides from bacterial origin: Overview of their biology and their impact against multidrug-resistant bacteria. Microorganisms, 2020, 8(5), 639.
[http://dx.doi.org/10.3390/microorganisms8050639] [PMID: 32349409]
[39]
Sumi, C.D.; Yang, B.W.; Yeo, I.C.; Hahm, Y.T. Antimicrobial peptides of the genus Bacillus : A new era for antibiotics. Can. J. Microbiol., 2015, 61(2), 93-103.
[http://dx.doi.org/10.1139/cjm-2014-0613] [PMID: 25629960]
[40]
Bissett, J.; Gams, W.; Jaklitsch, W.; Samuels, G.J. Accepted Trichoderma names in the year 2015. IMA Fungus, 2015, 6(2), 263-295.
[http://dx.doi.org/10.5598/imafungus.2015.06.02.02] [PMID: 26734542]
[41]
Schneider, T.; Kruse, T.; Wimmer, R.; Wiedemann, I.; Sass, V.; Pag, U.; Jansen, A.; Nielsen, A.K.; Mygind, P.H.; Raventós, D.S.; Neve, S.; Ravn, B.; Bonvin, A.M.J.J.; De Maria, L.; Andersen, A.S.; Gammelgaard, L.K.; Sahl, H.G.; Kristensen, H.H. Plectasin, a fungal defensin, targets the bacterial cell wall precursor Lipid II. Science, 2010, 328(5982), 1168-1172.
[http://dx.doi.org/10.1126/science.1185723] [PMID: 20508130]
[42]
Le, C.F.; Fang, C.M.; Sekaran, S.D. Intracellular targeting mechanisms by antimicrobial peptides. Antimicrob. Agents Chemother., 2017, 61(4), e02340-16.
[http://dx.doi.org/10.1128/AAC.02340-16] [PMID: 28167546]
[43]
Wang, T.; Zou, C.; Wen, N.; Liu, X.; Meng, Z.; Feng, S.; Zheng, Z.; Meng, Q.; Wang, C. The effect of structural modification of antimicrobial peptides on their antimicrobial activity, hemolytic activity, and plasma stability. J. Pept. Sci., 2021, 27(5), e3306.
[http://dx.doi.org/10.1002/psc.3306] [PMID: 33554385]
[44]
Zhou, J.; Chen, L.; Liu, Y.; Shen, T.; Zhang, C.; Liu, Z.; Feng, X.; Wang, C. Antimicrobial peptide PMAP-37 analogs: Increasing the positive charge to enhance the antibacterial activity of PMAP-37. J. Pept. Sci., 2019, 25(12), e3220.
[http://dx.doi.org/10.1002/psc.3220] [PMID: 31858653]
[45]
Gagnon, M.C.; Strandberg, E.; Grau-Campistany, A.; Wadhwani, P.; Reichert, J.; Bürck, J.; Rabanal, F.; Auger, M.; Paquin, J.F.; Ulrich, A.S. Influence of the length and charge on the activity of α-helical amphipathic antimicrobial peptides. Biochemistry, 2017, 56(11), 1680-1695.
[http://dx.doi.org/10.1021/acs.biochem.6b01071] [PMID: 28282123]
[46]
Ahn, H.; Cho, W.; Kang, S.H.; Ko, S.S.; Park, M.S.; Cho, H.; Lee, K.H. Design and synthesis of novel antimicrobial peptides on the basis of α helical domain of Tenecin 1, an insect defensin protein, and structure–activity relationship study. Peptides, 2006, 27(4), 640-648.
[http://dx.doi.org/10.1016/j.peptides.2005.08.016] [PMID: 16226345]
[47]
Jiang, Z.; Vasil, A.I.; Hale, J.; Hancock, R.E.W.; Vasil, M.L.; Hodges, R.S. Effects of net charge and the number of positively charged residues on the biological activity of amphipathic α-helical cationic antimicrobial peptides. Adv. Exp. Med. Biol., 2009, 611, 561-562.
[http://dx.doi.org/10.1007/978-0-387-73657-0_246] [PMID: 19400313]
[48]
Jiang, Z.; Kullberg, B.J.; van der Lee, H.; Vasil, A.I.; Hale, J.D.; Mant, C.T.; Hancock, R.E.W.; Vasil, M.L.; Netea, M.G.; Hodges, R.S. Effects of hydrophobicity on the antifungal activity of alpha-helical antimicrobial peptides. Chem. Biol. Drug Des., 2008, 72(6), 483-495.
[http://dx.doi.org/10.1111/j.1747-0285.2008.00728.x] [PMID: 19090916]
[49]
Frederiksen, N.; Louka, S.; Mudaliar, C.; Domraceva, I.; Kreicberga, A.; Pugovics, O.; Żabicka, D.; Tomczak, M.; Wygoda, W.; Björkling, F.; Franzyk, H. Peptide/β-peptoid hybrids with ultrashort PEG-like moieties: Effects on hydrophobicity, antibacterial activity and hemolytic properties. Int. J. Mol. Sci., 2021, 22(13), 7041.
[http://dx.doi.org/10.3390/ijms22137041] [PMID: 34208826]
[50]
Chen, Y.; Mant, C.T.; Farmer, S.W.; Hancock, R.E.W.; Vasil, M.L.; Hodges, R.S. Rational design of alpha-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. J. Biol. Chem., 2005, 280(13), 12316-12329.
[http://dx.doi.org/10.1074/jbc.M413406200] [PMID: 15677462]
[51]
Wang, C.K.; Craik, D.J. Designing macrocyclic disulfide-rich peptides for biotechnological applications. Nat. Chem. Biol., 2018, 14(5), 417-427.
[http://dx.doi.org/10.1038/s41589-018-0039-y] [PMID: 29662187]
[52]
Hansen, I.K.Ø.; Lövdahl, T.; Simonovic, D.; Hansen, K.Ø.; Andersen, A.J.C.; Devold, H.; Richard, C.S.M.; Andersen, J.H.; Strøm, M.B.; Haug, T. Antimicrobial activity of small synthetic peptides based on the marine peptide turgencin A: Prediction of antimicrobial peptide sequences in a natural peptide and strategy for optimization of potency. Int. J. Mol. Sci., 2020, 21(15), 5460.
[http://dx.doi.org/10.3390/ijms21155460] [PMID: 32751755]
[53]
Mishra, A.; Choi, J.; Moon, E.; Baek, K.H. Tryptophan-rich and proline-rich antimicrobial peptides. Molecules, 2018, 23(4), 815.
[http://dx.doi.org/10.3390/molecules23040815] [PMID: 29614844]
[54]
Lima, W.G.; Brito, J.C.M.; de Lima, M.E.; Pizarro, A.C.S.T.; Vianna, M.A.M.M.; de Paiva, M.C.; de Assis, D.C.S.; Cardoso, V.N.; Fernandes, S.O.A. A short synthetic peptide, based on LyeTx I from Lycosa erythrognatha venom, shows potential to treat pneumonia caused by carbapenem-resistant Acinetobacter baumannii without detectable resistance. J. Antibiot., 2021, 74(7), 425-434.
[http://dx.doi.org/10.1038/s41429-021-00421-6] [PMID: 33972716]
[55]
Huan, Y.; Kong, Q.; Mou, H.; Yi, H. Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Front. Microbiol., 2020, 11, 582779.
[http://dx.doi.org/10.3389/fmicb.2020.582779] [PMID: 33178164]
[56]
Kesidis, A.; Depping, P.; Lodé, A.; Vaitsopoulou, A.; Bill, R.M.; Goddard, A.D.; Rothnie, A.J. Expression of eukaryotic membrane proteins in eukaryotic and prokaryotic hosts. Methods, 2020, 180, 3-18.
[http://dx.doi.org/10.1016/j.ymeth.2020.06.006] [PMID: 32534131]
[57]
Lei, M.; Jayaraman, A.; Van Deventer, J.A.; Lee, K. Engineering selectively targeting antimicrobial peptides. Annu. Rev. Biomed. Eng., 2021, 23(1), 339-357.
[http://dx.doi.org/10.1146/annurev-bioeng-010220-095711] [PMID: 33852346]
[58]
Hong, P.K.; Gottardi, D.; Ndagijimana, M.; Betti, M. Glycation and transglutaminase mediated glycosylation of fish gelatin peptides with glucosamine enhance bioactivity. Food Chem., 2014, 142, 285-293.
[http://dx.doi.org/10.1016/j.foodchem.2013.07.045] [PMID: 24001843]
[59]
Koehbach, J.; Craik, D.J. The vast structural diversity of antimicrobial peptides. Trends Pharmacol. Sci., 2019, 40(7), 517-528.
[http://dx.doi.org/10.1016/j.tips.2019.04.012] [PMID: 31230616]
[60]
Wang, G. Post-translational modifications of natural antimicrobial peptides and strategies for peptide engineering. Curr. Biotechnol., 2012, 1(1), 72-79.
[http://dx.doi.org/10.2174/2211550111201010072] [PMID: 24511461]
[61]
Dos Santos Cabrera, M.P.; Arcisio-Miranda, M.; Broggio Costa, S.T.; Konno, K.; Ruggiero, J.R.; Procopio, J.; Ruggiero, N.J. Study of the mechanism of action of anoplin, a helical antimicrobial decapeptide with ion channel-like activity, and the role of the amidated C -terminus. J. Pept. Sci., 2008, 14(6), 661-669.
[http://dx.doi.org/10.1002/psc.960]
[62]
Simmaco, M.; Kreil, G.; Barra, D. Bombinins, antimicrobial peptides from Bombina species. Biochim. Biophys. Acta Biomembr., 2009, 1788(8), 1551-1555.
[http://dx.doi.org/10.1016/j.bbamem.2009.01.004] [PMID: 19366600]
[63]
Li, C.; Haug, T.; Moe, M.K.; Styrvold, O.B.; Stensvåg, K. Centrocins: Isolation and characterization of novel dimeric antimicrobial peptides from the green sea urchin, Strongylocentrotus droebachiensis. Dev. Comp. Immunol., 2010, 34(9), 959-968.
[http://dx.doi.org/10.1016/j.dci.2010.04.004] [PMID: 20438753]
[64]
Castiglione, F.; Lazzarini, A.; Carrano, L.; Corti, E.; Ciciliato, I.; Gastaldo, L.; Candiani, P.; Losi, D.; Marinelli, F.; Selva, E.; Parenti, F. Determining the structure and mode of action of microbisporicin, a potent lantibiotic active against multiresistant pathogens. Chem. Biol., 2008, 15(1), 22-31.
[http://dx.doi.org/10.1016/j.chembiol.2007.11.009] [PMID: 18215770]
[65]
Wilson-Stanford, S.; Kalli, A.; Håkansson, K.; Kastrantas, J.; Orugunty, R.S.; Smith, L. Oxidation of lanthionines renders the lantibiotic nisin inactive. Appl. Environ. Microbiol., 2009, 75(5), 1381-1387.
[http://dx.doi.org/10.1128/AEM.01864-08] [PMID: 19114522]
[66]
Taylor, S.W.; Sun, C.; Hsieh, A.; Andon, N.L.; Ghosh, S.S. A sulfated, phosphorylated 7 kDa secreted peptide characterized by direct analysis of cell culture media. J. Proteome Res., 2008, 7(2), 795-802.
[http://dx.doi.org/10.1021/pr7006686] [PMID: 18181560]
[67]
Bednarska, N.G.; Wren, B.W.; Willcocks, S.J. The importance of the glycosylation of antimicrobial peptides: Natural and synthetic approaches. Drug Discov. Today, 2017, 22(6), 919-926.
[http://dx.doi.org/10.1016/j.drudis.2017.02.001] [PMID: 28212948]
[68]
Schroeder, B.O.; Wu, Z.; Nuding, S.; Groscurth, S.; Marcinowski, M.; Beisner, J.; Buchner, J.; Schaller, M.; Stange, E.F.; Wehkamp, J. Reduction of disulphide bonds unmasks potent antimicrobial activity of human β-defensin 1. Nature, 2011, 469(7330), 419-423.
[http://dx.doi.org/10.1038/nature09674] [PMID: 21248850]
[69]
Nolde, S.B.; Vassilevski, A.A.; Rogozhin, E.A.; Barinov, N.A.; Balashova, T.A.; Samsonova, O.V.; Baranov, Y.V.; Feofanov, A.V.; Egorov, T.A.; Arseniev, A.S.; Grishin, E.V. Disulfide-stabilized helical hairpin structure and activity of a novel antifungal peptide EcAMP1 from seeds of barnyard grass (Echinochloa crus-galli). J. Biol. Chem., 2011, 286(28), 25145-25153.
[http://dx.doi.org/10.1074/jbc.M110.200378] [PMID: 21561864]
[70]
Rink, R.; Kuipers, A.; de Boef, E.; Leenhouts, K.J.; Driessen, A.J.M.; Moll, G.N.; Kuipers, O.P. Lantibiotic structures as guidelines for the design of peptides that can be modified by lantibiotic enzymes. Biochemistry, 2005, 44(24), 8873-8882.
[http://dx.doi.org/10.1021/bi050081h] [PMID: 15952794]
[71]
Montalbán-López, M.; Spolaore, B.; Pinato, O.; Martínez-Bueno, M.; Valdivia, E.; Maqueda, M.; Fontana, A. Characterization of linear forms of the circular enterocin AS-48 obtained by limited proteolysis. FEBS Lett., 2008, 582(21-22), 3237-3242.
[http://dx.doi.org/10.1016/j.febslet.2008.08.018] [PMID: 18760277]
[72]
Biéler, S.; Silva, F.; Belin, D. The polypeptide core of Microcin E492 stably associates with the mannose permease and interferes with mannose metabolism. Res. Microbiol., 2010, 161(8), 706-710.
[http://dx.doi.org/10.1016/j.resmic.2010.07.003] [PMID: 20674740]
[73]
Peciak, K.; Tommasi, R.; Choi, J.; Brocchini, S.; Laurine, E. Expression of soluble and active interferon consensus in SUMO fusion expression system in E. coli. Protein Expr. Purif., 2014, 99, 18-26.
[http://dx.doi.org/10.1016/j.pep.2014.03.009] [PMID: 24680730]
[74]
Malakhov, M.P.; Mattern, M.R.; Malakhova, O.A.; Drinker, M.; Weeks, S.D.; Butt, T.R. SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. J. Struct. Funct. Genomics, 2004, 5(1/2), 75-86.
[http://dx.doi.org/10.1023/B:JSFG.0000029237.70316.52] [PMID: 15263846]
[75]
Parachin, N.S.; Mulder, K.C.; Viana, A.A.B.; Dias, S.C.; Franco, O.L. Expression systems for heterologous production of antimicrobial peptides. Peptides, 2012, 38(2), 446-456.
[http://dx.doi.org/10.1016/j.peptides.2012.09.020] [PMID: 23022589]
[76]
McLean, D.T.F.; McCrudden, M.T.C.; Linden, G.J.; Irwin, C.R.; Conlon, J.M.; Lundy, F.T. Antimicrobial and immunomodulatory properties of PGLa-AM1, CPF-AM1, and magainin-AM1: Potent activity against oral pathogens. Regul. Pept., 2014, 194-195, 63-68.
[http://dx.doi.org/10.1016/j.regpep.2014.11.002] [PMID: 25447193]
[77]
Zhang, X.; Jiang, A.; Wang, G.; Yu, H.; Qi, B.; Xiong, Y.; Zhou, G.; Qin, M.; Dou, J.; Wang, J. Fusion expression of the PGLa-AM1 with native structure and evaluation of its anti-Helicobacter pylori activity. Appl. Microbiol. Biotechnol., 2017, 101(14), 5667-5675.
[http://dx.doi.org/10.1007/s00253-017-8302-9] [PMID: 28488117]
[78]
Wanmakok, M.; Orrapin, S.; Intorasoot, A.; Intorasoot, S. Expression in Escherichia coli of novel recombinant hybrid antimicrobial peptide AL32-P113 with enhanced antimicrobial activity in vitro. Gene, 2018, 671, 1-9.
[http://dx.doi.org/10.1016/j.gene.2018.05.106] [PMID: 29859288]
[79]
Ashcheulova, D.O.; Efimova, L.V.; Lushchyk, A.Y.; Yantsevich, A.V.; Baikov, A.N.; Pershina, A.G. Production of the recombinant antimicrobial peptide UBI 18-35 in Escherichia coli. Protein Expr. Purif., 2018, 143, 38-44.
[http://dx.doi.org/10.1016/j.pep.2017.10.011] [PMID: 29066154]
[80]
Lin, Q.; Xie, K.; Chen, D.; Yu, B.; Mao, X.; Yu, J.; Luo, J.; Zheng, P.; Luo, Y.; Yan, H.; He, J. Expression and functional characterization of a novel antimicrobial peptide: Human beta-defensin 118. BioMed Res. Int., 2020, 2020, 1-10.
[http://dx.doi.org/10.1155/2020/1395304] [PMID: 33224970]
[81]
Hong, I.; Kim, Y.S.; Choi, S.G. Simple purification of human antimicrobial peptide dermcidin (MDCD-1L) by intein-mediated expression in E.coli. J. Microbiol. Biotechnol., 2010, 20(2), 350-355.
[http://dx.doi.org/10.4014/jmb.0907.07029] [PMID: 20208440]
[82]
Pelegrini, P.B.; Murad, A.M.; Silva, L.P.; dos Santos, R.C.P.; Costa, F.T.; Tagliari, P.D.; Bloch, C., Jr; Noronha, E.F.; Miller, R.N.G.; Franco, O.L. Identification of a novel storage glycine-rich peptide from guava (Psidium guajava) seeds with activity against Gram-negative bacteria. Peptides, 2008, 29(8), 1271-1279.
[http://dx.doi.org/10.1016/j.peptides.2008.03.013] [PMID: 18448201]
[83]
Tavares, L.S.; Rettore, J.V.; Freitas, R.M.; Porto, W.F.; Duque, A.P.N.; Singulani, J.L.; Silva, O.N.; Detoni, M.L.; Vasconcelos, E.G.; Dias, S.C.; Franco, O.L.; Santos, M.O. Antimicrobial activity of recombinant Pg-AMP1, a glycine-rich peptide from guava seeds. Peptides, 2012, 37(2), 294-300.
[http://dx.doi.org/10.1016/j.peptides.2012.07.017] [PMID: 22841855]
[84]
Ren, G.; Ke, N.; Berkmen, M. Use of the shuffle strains in production of proteins. Curr. Protoc. Protein Sci., 2016, 85, 5.26.1-5.26.21.
[http://dx.doi.org/10.1002/cpps.11] [PMID: 27479507]
[85]
Lobstein, J.; Emrich, C.A.; Jeans, C.; Faulkner, M.; Riggs, P.; Berkmen, M. SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microb. Cell Fact., 2012, 11(1), 753.
[http://dx.doi.org/10.1186/1475-2859-11-56] [PMID: 22569138]
[86]
Puertas, J.M.; Caminal, G.; González, G. Expression of metallocarboxypeptidase inhibitors in Escherichia coli: Effect of cysteine content and protein size in the secretory production of disulfide-bridged proteins. J. Ind. Microbiol. Biotechnol., 2011, 38(9), 1553-1560.
[http://dx.doi.org/10.1007/s10295-011-0944-5] [PMID: 21301927]
[87]
Mamat, U.; Wilke, K.; Bramhill, D.; Schromm, A.B.; Lindner, B.; Kohl, T.A.; Corchero, JL.; Villaverde, A.; Schaffer, L.; Head, S.R.; Souvignier, C.; Meredith, TC.; Woodard, RW. Detoxifying Escherichia coli for endotoxin-free production of recombinant proteins. Microb. Cell Fact., 2015, 14, 57.
[http://dx.doi.org/10.1186/s12934-015-0241-5.] [PMID: 25890161]
[88]
Hayat, S.M.G.; Farahani, N.; Golichenari, B.; Sahebkar, A. Recombinant protein expression in Escherichia coli (E.coli): What we need to know. Curr. Pharm. Des., 2018, 24(6), 718-725.
[http://dx.doi.org/10.2174/1381612824666180131121940] [PMID: 29384059]
[89]
Zobel, S.; Kumpfmüller, J.; Süssmuth, R.D.; Schweder, T. Bacillus subtilis as heterologous host for the secretory production of the non-ribosomal cyclodepsipeptide enniatin. Appl. Microbiol. Biotechnol., 2015, 99(2), 681-691.
[http://dx.doi.org/10.1007/s00253-014-6199-0] [PMID: 25398283]
[90]
Orhan, E.; Omay, D.; Güvenilir, Y. Partial purification and characterization of protease enzyme from Bacillus subtilis and Bacillus cereus. Appl. Biochem. Biotechnol., 2005, 121(1-3), 0183-0194.
[http://dx.doi.org/10.1385/ABAB:121:1-3:0183] [PMID: 15917598]
[91]
Kang, X.M.; Cai, X.; Huang, Z.H.; Liu, Z.Q.; Zheng, Y.G. Construction of a highly active secretory expression system in Bacillus subtilis of a recombinant amidase by promoter and signal peptide engineering. Int. J. Biol. Macromol., 2020, 143, 833-841.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.144] [PMID: 31765756]
[92]
Promchai, R.; Promdonkoy, B.; Tanapongpipat, S.; Visessanguan, W.; Eurwilaichitr, L.; Luxananil, P. A novel salt-inducible vector for efficient expression and secretion of heterologous proteins in Bacillus subtilis. J. Biotechnol., 2016, 222, 86-93.
[http://dx.doi.org/10.1016/j.jbiotec.2016.02.019] [PMID: 26880537]
[93]
Zhang, K.; Su, L.; Duan, X.; Liu, L.; Wu, J. High-level extracellular protein production in Bacillus subtilis using an optimized dual-promoter expression system. Microb. Cell Fact., 2017, 16(1), 32.
[http://dx.doi.org/10.1186/s12934-017-0649-1] [PMID: 28219382]
[94]
Liu, Y.; Shi, C.; Li, D.; Chen, X.; Li, J.; Zhang, Y.; Yuan, H.; Li, Y.; Lu, F. Engineering a highly efficient expression system to produce BcaPRO protease in Bacillus subtilis by an optimized promoter and signal peptide. Int. J. Biol. Macromol., 2019, 138, 903-911.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.07.175] [PMID: 31356949]
[95]
Kunst, F.; Ogasawara, N.; Moszer, I.; Albertini, A.M.; Alloni, G.; Azevedo, V.; Bertero, M.G.; Bessières, P.; Bolotin, A.; Borchert, S.; Borriss, R.; Boursier, L.; Brans, A.; Braun, M.; Brignell, S.C.; Bron, S.; Brouillet, S.; Bruschi, C.V.; Caldwell, B.; Capuano, V.; Carter, N.M.; Choi, S.K.; Codani, J-J.; Connerton, I.F.; Cummings, N.J.; Daniel, R.A.; Denizot, F.; Devine, K.M.; Düsterhöft, A.; Ehrlich, S.D.; Emmerson, P.T.; Entian, K.D.; Errington, J.; Fabret, C.; Ferrari, E.; Foulger, D.; Fritz, C.; Fujita, M.; Fujita, Y.; Fuma, S.; Galizzi, A.; Galleron, N.; Ghim, S.Y.; Glaser, P.; Goffeau, A.; Golightly, E.J.; Grandi, G.; Guiseppi, G.; Guy, B.J.; Haga, K.; Haiech, J.; Harwood, C.R.; Hénaut, A.; Hilbert, H.; Holsappel, S.; Hosono, S.; Hullo, M.F.; Itaya, M.; Jones, L.; Joris, B.; Karamata, D.; Kasahara, Y.; Klaerr-Blanchard, M.; Klein, C.; Kobayashi, Y.; Koetter, P.; Koningstein, G.; Krogh, S.; Kumano, M.; Kurita, K.; Lapidus, A.; Lardinois, S.; Lauber, J.; Lazarevic, V.; Lee, S.M.; Levine, A.; Liu, H.; Masuda, S.; Mauël, C.; Médigue, C.; Medina, N.; Mellado, R.P.; Mizuno, M.; Moestl, D.; Nakai, S.; Noback, M.; Noone, D.; O’Reilly, M.; Ogawa, K.; Ogiwara, A.; Oudega, B.; Park, S.H.; Parro, V.; Pohl, T.M.; Portetelle, D.; Porwollik, S.; Prescott, A.M.; Presecan, E.; Pujic, P.; Purnelle, B.; Rapoport, G.; Rey, M.; Reynolds, S.; Rieger, M.; Rivolta, C.; Rocha, E.; Roche, B.; Rose, M.; Sadaie, Y.; Sato, T.; Scanlan, E.; Schleich, S.; Schroeter, R.; Scoffone, F.; Sekiguchi, J.; Sekowska, A.; Seror, S.J.; Serror, P.; Shin, B.S.; Soldo, B.; Sorokin, A.; Tacconi, E.; Takagi, T.; Takahashi, H.; Takemaru, K.; Takeuchi, M.; Tamakoshi, A.; Tanaka, T.; Terpstra, P.; Tognoni, A.; Tosato, V.; Uchiyama, S.; Vandenbol, M.; Vannier, F.; Vassarotti, A.; Viari, A.; Wambutt, R.; Wedler, E.; Wedler, H.; Weitzenegger, T.; Winters, P.; Wipat, A.; Yamamoto, H.; Yamane, K.; Yasumoto, K.; Yata, K.; Yoshida, K.; Yoshikawa, H-F.; Zumstein, E.; Yoshikawa, H.; Danchin, A. The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature, 1997, 390(6657), 249-256.
[http://dx.doi.org/10.1038/36786] [PMID: 9384377]
[96]
Ji, S.; Li, W.; Baloch, A.R.; Wang, M.; Li, H.; Cao, B.; Zhang, H. Efficient biosynthesis of a cecropin A-melittin mutant in Bacillus subtilis WB700. Sci. Rep., 2017, 7(1), 40587.
[http://dx.doi.org/10.1038/srep40587] [PMID: 28071737]
[97]
Li, L.; Mu, L.; Wang, X.; Yu, J.; Hu, R.; Li, Z. A novel expression vector for the secretion of abaecin in Bacillus subtilis. Braz. J. Microbiol., 2017, 48(4), 809-814.
[http://dx.doi.org/10.1016/j.bjm.2017.01.009] [PMID: 28651889]
[98]
Luan, C.; Zhang, H.W.; Song, D.G.; Xie, Y.G.; Feng, J.; Wang, Y.Z. Expressing antimicrobial peptide cathelicidin-BF in Bacillus subtilis using SUMO technology. Appl. Microbiol. Biotechnol., 2014, 98(8), 3651-3658.
[http://dx.doi.org/10.1007/s00253-013-5246-6] [PMID: 24121930]
[99]
Zhang, L.; Li, X.; Wei, D.; Wang, J.; Shan, A.; Li, Z. Expression of plectasin in Bacillus subtilis using SUMO technology by a maltose-inducible vector. J. Ind. Microbiol. Biotechnol., 2015, 42(10), 1369-1376.
[http://dx.doi.org/10.1007/s10295-015-1673-y] [PMID: 26299602]
[100]
Quartley, E.; Alexandrov, A.; Mikucki, M.; Buckner, F.S.; Hol, W.G.; DeTitta, G.T.; Phizicky, E.M.; Grayhack, E.J. Heterologous expression of L. major proteins in S. cerevisiae: A test of solubility, purity, and gene recoding. J. Struct. Funct. Genomics, 2009, 10(3), 233-247.
[http://dx.doi.org/10.1007/s10969-009-9068-9] [PMID: 19701618]
[101]
Verma, R.; Boleti, E.; George, A.J.T. Antibody engineering: Comparison of bacterial, yeast, insect and mammalian expression systems. J. Immunol. Methods, 1998, 216(1-2), 165-181.
[http://dx.doi.org/10.1016/S0022-1759(98)00077-5] [PMID: 9760222]
[102]
Zhang, J.; Wu, X.; Yue, Y.Y.; Chen, Y.Q.; Zhang, S.Q. Cloning, expression and characterization of antibacterial peptide CM4 in Pichia pastoris. Wei Sheng Wu Hsueh Pao, 2005, 45(5), 720-723.
[PMID: 16342763]
[103]
Juturu, V.; Wu, J.C. Heterologous protein expression in Pichia pastoris : Latest research progress and applications. ChemBioChem, 2018, 19(1), 7-21.
[http://dx.doi.org/10.1002/cbic.201700460] [PMID: 29235217]
[104]
Deng, T.; Ge, H.; He, H.; Liu, Y.; Zhai, C.; Feng, L.; Yi, L. The heterologous expression strategies of antimicrobial peptides in microbial systems. Protein Expr. Purif., 2017, 140, 52-59.
[http://dx.doi.org/10.1016/j.pep.2017.08.003] [PMID: 28807840]
[105]
Li, Z.; Cheng, Q.; Guo, H.; Zhang, R.; Si, D. Expression of hybrid peptide EF-1 in Pichia pastoris, its purification, and antimicrobial characterization. Molecules, 2020, 25(23), 5538.
[http://dx.doi.org/10.3390/molecules25235538] [PMID: 33255863]
[106]
Zhan, N.; Zhang, L.; Yang, H.; Zheng, Y.; Wei, X.; Wang, J.; Shan, A. Design and heterologous expression of a novel dimeric LL37 variant in Pichia pastoris. Microb. Cell Fact., 2021, 20(1), 143.
[http://dx.doi.org/10.1186/s12934-021-01635-x] [PMID: 34301247]
[107]
Nikpoor, M.; Lohrasbi-Nejad, A.; Zolala, J. Heterologous expression and functional characterization of CAP18 from Oryctolagus cuniculus. Rep. Biochem. Mol. Biol., 2022, 10(4), 622-632.
[http://dx.doi.org/10.52547/rbmb.10.4.622] [PMID: 35291606]
[108]
Dong, B.; Lin, Y.; Wang, J.; Du, W.; Sun, C.; Fu, S.; Wu, T. Antibacterial activity of antimicrobial peptide gcDefb1 against foodborne pathogenic bacteria and its application in pork storage. Food Sci. Biotechnol., 2022, 31(5), 597-605.
[http://dx.doi.org/10.1007/s10068-022-01060-9] [PMID: 35529682]
[109]
Cregg, J.M.; Tolstorukov, I.; Kusari, A.; Sunga, J.; Chappell, T. Chapter 13 expression in the yeast Pichia pastoris. In: Methods Enzymol; , 2009; 463, pp. 169-189.
[110]
Meng, D.M.; Zhao, J.F.; Ling, X.; Dai, H.X.; Guo, Y.J.; Gao, X.F.; Dong, B.; Zhang, Z.Q.; Meng, X.; Fan, Z.C. Recombinant expression, purification and antimicrobial activity of a novel antimicrobial peptide PaDef in Pichia pastoris. Protein Expr. Purif., 2017, 130, 90-99.
[http://dx.doi.org/10.1016/j.pep.2016.10.003] [PMID: 27742254]
[111]
Peng, H.; Liu, H.P.; Chen, B.; Hao, H.; Wang, K.J. Optimized production of scygonadin in Pichia pastoris and analysis of its antimicrobial and antiviral activities. Protein Expr. Purif., 2012, 82(1), 37-44.
[http://dx.doi.org/10.1016/j.pep.2011.11.008] [PMID: 22108619]
[112]
Kant, P.; Liu, W.Z.; Pauls, K.P. PDC1, a corn defensin peptide expressed in Escherichia coli and Pichia pastoris inhibits growth of Fusarium graminearum. Peptides, 2009, 30(9), 1593-1599.
[http://dx.doi.org/10.1016/j.peptides.2009.05.024] [PMID: 19505517]
[113]
Song, X.; Wang, J.; Wu, F.; Li, X.; Teng, M.; Gong, W. cDNA cloning, functional expression and antifungal activities of a dimeric plant defensin SPE10 from Pachyrrhizus erosus seeds. Plant Mol. Biol., 2005, 57(1), 13-20.
[http://dx.doi.org/10.1007/s11103-004-6637-y] [PMID: 15821865]
[114]
Almeida, M.S.; Cabral, K.S.; Neves de Medeiros, L.; Valente, A.P.; Almeida, F.C.L.; Kurtenbach, E. cDNA cloning and heterologous expression of functional cysteine-rich antifungal protein Psd1 in the yeast Pichia pastoris. Arch. Biochem. Biophys., 2001, 395(2), 199-207.
[http://dx.doi.org/10.1006/abbi.2001.2564] [PMID: 11697857]
[115]
Karbalaei, M.; Rezaee, S.A.; Farsiani, H. Pichia pastoris : A highly successful expression system for optimal synthesis of heterologous proteins. J. Cell. Physiol., 2020, 235(9), 5867-5881.
[http://dx.doi.org/10.1002/jcp.29583] [PMID: 32057111]
[116]
Baghban, R.; Farajnia, S.; Rajabibazl, M.; Ghasemi, Y.; Mafi, A.; Hoseinpoor, R.; Rahbarnia, L.; Aria, M. Yeast expression systems: Overview and recent advances. Mol. Biotechnol., 2019, 61(5), 365-384.
[http://dx.doi.org/10.1007/s12033-019-00164-8] [PMID: 30805909]
[117]
Deslouches, B.; Di, Y.P. Antimicrobial peptides with selective antitumor mechanisms: Prospect for anticancer applications. Oncotarget, 2017, 8(28), 46635-46651.
[http://dx.doi.org/10.18632/oncotarget.16743] [PMID: 28422728]
[118]
Leite, J.R.S.A.; Silva, L.P.; Rodrigues, M.I.S.; Prates, M.V.; Brand, G.D.; Lacava, B.M.; Azevedo, R.B.; Bocca, A.L.; Albuquerque, S.; Bloch, C., Jr Phylloseptins: A novel class of anti-bacterial and anti-protozoan peptides from the Phyllomedusa genus. Peptides, 2005, 26(4), 565-573.
[http://dx.doi.org/10.1016/j.peptides.2004.11.002] [PMID: 15752569]
[119]
Hu, Y.; Aksoy, S. An antimicrobial peptide with trypanocidal activity characterized from Glossina morsitans morsitans. Insect Biochem. Mol. Biol., 2005, 35(2), 105-115.
[http://dx.doi.org/10.1016/j.ibmb.2004.10.007] [PMID: 15681221]
[120]
Kim, I.W.; Lee, J.H.; Seo, M.; Lee, H.J.; Baek, M.; Kim, M.A.; Shin, Y.P.; Kim, S.H.; Kim, I.; Hwang, J.S. Anti-inflammatory activity of antimicrobial peptide periplanetasin-5 Derived from the cockroach Periplaneta americana. J. Microbiol. Biotechnol., 2020, 30(9), 1282-1289.
[http://dx.doi.org/10.4014/jmb.2004.04046] [PMID: 32522957]
[121]
Zhang, S.; Hou, C.; Xiao, B.; Yao, Y.; Xiao, W.; Li, C.; Shi, L. Identification and function of an Arasin-like peptide from Litopenaeus vannamei. Dev. Comp. Immunol., 2021, 125, 104174.
[http://dx.doi.org/10.1016/j.dci.2021.104174] [PMID: 34324899]
[122]
Drayton, M.; Deisinger, J.P.; Ludwig, K.C.; Raheem, N.; Müller, A.; Schneider, T.; Straus, S.K. Host defense peptides: Dual antimicrobial and immunomodulatory action. Int. J. Mol. Sci., 2021, 22(20), 11172.
[http://dx.doi.org/10.3390/ijms222011172] [PMID: 34681833]
[123]
Takahashi, M.; Umehara, Y.; Yue, H.; Trujillo-Paez, J.V.; Peng, G.; Nguyen, H.L.T.; Ikutama, R.; Okumura, K.; Ogawa, H.; Ikeda, S.; Niyonsaba, F. The antimicrobial peptide Human β-Defensin-3 accelerates wound healing by promoting angiogenesis, cell migration, and proliferation through the FGFR/JAK2/STAT3 signaling pathway. Front. Immunol., 2021, 12, 712781.
[http://dx.doi.org/10.3389/fimmu.2021.712781] [PMID: 34594328]
[124]
Xie, Z.; Zhao, Q.; Wang, H.; Wen, L.; Li, W.; Zhang, X.; Lin, W.; Li, H.; Xie, Q.; Wang, Y. Effects of antibacterial peptide combinations on growth performance, intestinal health, and immune function of broiler chickens. Poult. Sci., 2020, 99(12), 6481-6492.
[http://dx.doi.org/10.1016/j.psj.2020.08.068] [PMID: 33248563]
[125]
Landy, N.; Kheiri, F.; Faghani, M. Effects of periodical application of bioactive peptides derived from cottonseed on performance, immunity, total antioxidant activity of serum and intestinal development of broilers. Anim. Nutr., 2021, 7(1), 134-141.
[http://dx.doi.org/10.1016/j.aninu.2020.06.008] [PMID: 33997341]
[126]
Xiong, X.; Yang, H.S.; Li, L.; Wang, Y.F.; Huang, R.L.; Li, F.N.; Wang, S.P.; Qiu, W. Effects of antimicrobial peptides in nursery diets on growth performance of pigs reared on five different farms. Livest. Sci., 2014, 167, 206-210.
[http://dx.doi.org/10.1016/j.livsci.2014.04.024]
[127]
Feng, J.; Wang, L.; Xie, Y.; Chen, Y.; Yi, H.; He, D. Effects of antimicrobial peptide cathelicidin-BF on diarrhea controlling, immune responses, intestinal inflammation and intestinal barrier function in piglets with postweaning diarrhea. Int. Immunopharmacol., 2020, 85, 106658.
[http://dx.doi.org/10.1016/j.intimp.2020.106658] [PMID: 32531710]
[128]
Shabir, U.; Ali, S.; Magray, A.R.; Ganai, B.A.; Firdous, P.; Hassan, T.; Nazir, R. Fish antimicrobial peptides (AMP’s) as essential and promising molecular therapeutic agents: A review. Microb. Pathog., 2018, 114, 50-56.
[http://dx.doi.org/10.1016/j.micpath.2017.11.039] [PMID: 29180291]
[129]
Zhu, X.; Chen, F.; Li, S.; Peng, H.; Wang, K.J. A novel antimicrobial peptide sparanegtin identified in Scylla paramamosain showing antimicrobial activity and immunoprotective role in vitro and vivo. Int. J. Mol. Sci., 2021, 23(1), 15.
[http://dx.doi.org/10.3390/ijms23010015] [PMID: 35008449]
[130]
Zhang, H.; Cao, Z.; Diao, Q.; Zhou, Y.; Ao, J.; Liu, C.; Sun, Y. Antimicrobial activity and mechanisms of a derived antimicrobial peptide TroNKL-27 from golden pompano (Trachinotus ovatus) NK-lysin. Fish Shellfish Immunol., 2022, 126, 357-369.
[http://dx.doi.org/10.1016/j.fsi.2022.05.052] [PMID: 35661768]
[131]
Shin, J.M.; Gwak, J.W.; Kamarajan, P.; Fenno, J.C.; Rickard, A.H.; Kapila, Y.L. Biomedical applications of nisin. J. Appl. Microbiol., 2016, 120(6), 1449-1465.
[http://dx.doi.org/10.1111/jam.13033] [PMID: 26678028]
[132]
Li, J.; Pan, D.; Yi, J.; Hao, L.; Kang, Q.; Liu, X.; Lu, L.; Lu, J. Protective effect of β-cyclodextrin on stability of nisin and corresponding interactions involved. Carbohydr. Polym., 2019, 223, 115115.
[http://dx.doi.org/10.1016/j.carbpol.2019.115115] [PMID: 31426993]
[133]
Yang, S.; Li, J.; Aweya, J.J.; Yuan, Z.; Weng, W.; Zhang, Y.; Liu, G.M. Antimicrobial mechanism of Larimichthys crocea whey acidic protein-derived peptide (LCWAP) against Staphylococcus aureus and its application in milk. Int. J. Food Microbiol., 2020, 335, 108891.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2020.108891] [PMID: 32977153]
[134]
Omidbakhsh, A.E.; Farmani, J.; Raftani, A.Z.; Dehestani, A.; Mohseni, M. Antimicrobial activity, environmental sensitivity, mechanism of action, and food application of αs165-181 peptide. Int. J. Food Microbiol., 2021, 358, 109403.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2021.109403] [PMID: 34543802]
[135]
Hwang, D.; Lee, S.; Goo, T.W.; Yun, E.Y. Potential of antimicrobial peptide-overexpressed Tenebrio molitor larvae extract as a natural preservative for korean traditional sauces. Insects, 2022, 13(4), 381.
[http://dx.doi.org/10.3390/insects13040381] [PMID: 35447823]
[136]
Ladha, G.; Jeevaratnam, K. Characterization of purified antimicrobial peptide produced by Pediococcus pentosaceus LJR1, and its application in preservation of white leg shrimp. World J. Microbiol. Biotechnol., 2020, 36(5), 72.
[http://dx.doi.org/10.1007/s11274-020-02847-w] [PMID: 32363424]
[137]
Wang, C.; Hong, T.; Cui, P.; Wang, J.; Xia, J. Antimicrobial peptides towards clinical application: Delivery and formulation. Adv. Drug Deliv. Rev., 2021, 175, 113818.
[http://dx.doi.org/10.1016/j.addr.2021.05.028] [PMID: 34090965]
[138]
Domingues, M.; Santos, N.; Castanho, M. Antimicrobial peptide rBPI21: A translational overview from bench to clinical studies. Curr. Protein Pept. Sci., 2012, 13(7), 611-619.
[http://dx.doi.org/10.2174/138920312804142101] [PMID: 23116442]
[139]
Grönberg, A.; Mahlapuu, M.; Ståhle, M.; Whately-Smith, C.; Rollman, O. Treatment with LL-37 is safe and effective in enhancing healing of hard-to-heal venous leg ulcers: A randomized, placebo-controlled clinical trial. Wound Repair Regen., 2014, 22(5), 613-621.
[http://dx.doi.org/10.1111/wrr.12211] [PMID: 25041740]
[140]
Kaplan, C.W.; Sim, J.H.; Shah, K.R.; Kolesnikova-Kaplan, A.; Shi, W.; Eckert, R. Selective membrane disruption: Mode of action of C16G2, a specifically targeted antimicrobial peptide. Antimicrob. Agents Chemother., 2011, 55(7), 3446-3452.
[http://dx.doi.org/10.1128/AAC.00342-11] [PMID: 21518845]
[141]
Browne, K.; Chakraborty, S.; Chen, R.; Willcox, M.D.P.; Black, D.S.; Walsh, W.R.; Kumar, N. A new era of antibiotics: The clinical potential of antimicrobial peptides. Int. J. Mol. Sci., 2020, 21(19), 7047.
[http://dx.doi.org/10.3390/ijms21197047] [PMID: 32987946]
[142]
Han, H.; Li, T.; Wang, Z.; Teng, D.; Mao, R.; Hao, Y.; Yang, N.; Wang, X.; Wang, J. Improved stability and activity of a marine peptide-N6NH2 against Edwardsiella tarda and its preliminary application in fish. Mar. Drugs, 2020, 18(12), 650.
[http://dx.doi.org/10.3390/md18120650] [PMID: 33348729]
[143]
Lee, H.R.; You, D.; Kim, H.K.; Sohn, J.W.; Kim, M.J.; Park, J.K.; Lee, G.Y.; Yoo, Y.D. Romo1-derived antimicrobial peptide is a new antimicrobial agent against multidrug-resistant bacteria in a murine model of sepsis. MBio, 2020, 11(2), e03258-19.
[http://dx.doi.org/10.1128/mBio.03258-19] [PMID: 32291307]
[144]
Forouzanfar, F.; Mohammadipour, H.S.; Akbari, M.; Beyraghshamshir, R.; Tanhaeian, A.; Karimian, E. The application of a recombinant antimicrobial peptide of thrombocidin-1 expressed in Pichia pastoris as a novel approach against some oral pathogenic bacteria: An in vitro study. Protein Pept. Lett., 2022, 29(1), 102-109.
[http://dx.doi.org/10.2174/0929866528666211126161928] [PMID: 34825862]
[145]
de la Fuente-Núñez, C.; Silva, O.N.; Lu, T.K.; Franco, O.L. Antimicrobial peptides: Role in human disease and potential as immunotherapies. Pharmacol. Ther., 2017, 178, 132-140.
[http://dx.doi.org/10.1016/j.pharmthera.2017.04.002]
[146]
Castañeda-Delgado, J.E.; Frausto-Lujan, I.; González-Curiel, I.; Montoya-Rosales, A.; Serrano, C.J.; Torres-Juarez, F.; Enciso-Moreno, J.A.; Rivas-Santiago, B. Differences in cytokine production during aging and its relationship with antimicrobial peptides production. Immunol. Invest., 2017, 46(1), 48-58.
[http://dx.doi.org/10.1080/08820139.2016.1212873] [PMID: 27618158]
[147]
Ko, S.J.; Park, E.; Asandei, A.; Choi, J.Y.; Lee, S.C.; Seo, C.H.; Luchian, T.; Park, Y. Bee venom-derived antimicrobial peptide melectin has broad-spectrum potency, cell selectivity, and salt-resistant properties. Sci. Rep., 2020, 10(1), 10145.
[http://dx.doi.org/10.1038/s41598-020-66995-7] [PMID: 32576874]
[148]
Camó, C.; Bonaterra, A.; Badosa, E.; Baró, A.; Montesinos, L.; Montesinos, E.; Planas, M.; Feliu, L. Antimicrobial peptide KSL-W and analogues: Promising agents to control plant diseases. Peptides, 2019, 112, 85-95.
[http://dx.doi.org/10.1016/j.peptides.2018.11.009] [PMID: 30508634]
[149]
Caravaca-Fuentes, P.; Camó, C.; Oliveras, À.; Baró, A.; Francés, J.; Badosa, E.; Planas, M.; Feliu, L.; Montesinos, E.; Bonaterra, A. A bifunctional peptide conjugate that controls infections of erwinia amylovora in pear plants. Molecules, 2021, 26(11), 3426.
[http://dx.doi.org/10.3390/molecules26113426] [PMID: 34198776]
[150]
Mariz-Ponte, N.; Regalado, L.; Gimranov, E.; Tassi, N.; Moura, L.; Gomes, P.; Tavares, F.; Santos, C.; Teixeira, C. A synergic potential of antimicrobial peptides against pseudomonas syringae pv. actinidiae. Molecules, 2021, 26(5), 1461.
[http://dx.doi.org/10.3390/molecules26051461] [PMID: 33800273]
[151]
Jinrui, Z.; John, M.M.; Peter, B.K.; Li, H.; Michael, J.G. The wheat puroindoline genes confer fungal resistance in transgenic corn. J. Phytopathol., 2011, 159(3), 188-190.
[152]
Wu, Y.; He, Y.; Ge, X. Functional characterization of the recombinant antimicrobial peptide Trx-Ace-AMP1 and its application on the control of tomato early blight disease. Appl. Microbiol. Biotechnol., 2011, 90(4), 1303-1310.
[http://dx.doi.org/10.1007/s00253-011-3166-x] [PMID: 21380518]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy