Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Review Article

Anti-Inflammatory Potential of Curcumin: From Chemistry and Mechanistic Insight to Nanoformulations

Author(s): Diwakar Aggarwal, Mayank Chaudhary, Nandini Bajaj, Deepika Sharma, Sushil Kumar Upadhyay, Vivek Kumar Garg, Hadi Sajid Abdulabbas, Hardeep Singh Tuli* and Isha Rani

Volume 20, Issue 1, 2024

Published on: 19 September, 2023

Article ID: e260723219160 Pages: 11

DOI: 10.2174/1573407219666230726164538

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Curcumin is a natural compound obtained from Curcuma longa that possesses a vast therapeutic potential for disease treatment. It is a potent anticancer, anti-inflammatory, antioxidant, and anti-aging phytochemical as evident from numerous studies. Curcumin's antiinflammatory and antioxidant properties are thought to be more potent than its other biological actions. Curcumin's anti-inflammatory properties can lead to an improvement in symptoms and make it a viable candidate for the treatment and prevention of pro-inflammatory disorders.

Objective: The goal of this review is to analyse curcumin's anti-inflammatory properties and mechanisms in the treatment of various disorders. The effect of different curcumin-based nanoformulations on anti-inflammatory potential is also reviewed, as the therapeutic use of curcumin is influenced by its solubility, bioavailability, and pharmacokinetic profile.

Methodology: The literature searched during the last ten years using keywords such as curcumin, anti-inflammatory mechanisms, cytokines, and nanoformulations from multiple databases, such as PubMed, Science Direct, Scopus, and others. The quality research and review articles containing the aforementioned keywords were chosen for this review article.

Conclusion: This review focuses on the anti-inflammatory properties of curcumin against a variety of inflammatory disorders that arise over the course of various illnesses. It also emphasises the importance of developing alternative nanoformulations to address the limitations of curcumin usage. Further, it will aid the scientific community's understanding of curcumin and its anti-inflammatory mechanisms, prompting them to devise innovative treatment options.

Keywords: Turmeric, antioxidant, inflammation, bioavailability, target release, curcumin.

Graphical Abstract
[1]
Kotha, R.R.; Luthria, D.L. Curcumin: Biological, pharmaceutical, nutraceutical, and analytical aspects. Molecules, 2019, 24(16), 2930.
[http://dx.doi.org/10.3390/molecules24162930] [PMID: 31412624]
[2]
Hewlings, S.; Kalman, D. Curcumin: A review of its effects on human health. Foods, 2017, 6(10), 92.
[http://dx.doi.org/10.3390/foods6100092] [PMID: 29065496]
[3]
Goel, A.; Kunnumakkara, A.B.; Aggarwal, B.B. Curcumin as “Curecumin”: From kitchen to clinic. Biochem. Pharmacol., 2008, 75(4), 787-809.
[http://dx.doi.org/10.1016/j.bcp.2007.08.016] [PMID: 17900536]
[4]
Gupta, S.C.; Patchva, S.; Aggarwal, B.B. Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J., 2013, 15(1), 195-218.
[http://dx.doi.org/10.1208/s12248-012-9432-8] [PMID: 23143785]
[5]
Gopi, S.; Jacob, J.; Varma, K.; Jude, S.; Amalraj, A.; Arundhathy, C.A.; George, R.; Sreeraj, T.R.; Divya, C.; Kunnumakkara, A.B.; Stohs, S.J. Comparative oral absorption of curcumin in a natural turmeric matrix with two other curcumin formulations: An open-label parallel-arm study. Phytother. Res., 2017, 31(12), 1883-1891.
[http://dx.doi.org/10.1002/ptr.5931] [PMID: 29027274]
[6]
Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm., 2007, 4(6), 807-818.
[http://dx.doi.org/10.1021/mp700113r] [PMID: 17999464]
[7]
Mirzaei, H.; Shakeri, A.; Rashidi, B.; Jalili, A.; Banikazemi, Z.; Sahebkar, A. Phytosomal curcumin: A review of pharmacokinetic, experi-mental and clinical studies. Biomed. Pharmacother., 2017, 85, 102-112.
[http://dx.doi.org/10.1016/j.biopha.2016.11.098] [PMID: 27930973]
[8]
Hussain, Z.; Thu, H.E.; Ng, S.F.; Khan, S.; Katas, H. Nanoencapsulation, an efficient and promising approach to maximize wound healing efficacy of curcumin: A review of new trends and state-of-the-art. Colloids Surf. B Biointerfaces, 2017, 150, 223-241.
[http://dx.doi.org/10.1016/j.colsurfb.2016.11.036] [PMID: 27918967]
[9]
Amalraj, A.; Pius, A.; Gopi, S.; Gopi, S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives – A review. J. Tradit. Complement. Med., 2017, 7(2), 205-233.
[http://dx.doi.org/10.1016/j.jtcme.2016.05.005] [PMID: 28417091]
[10]
Kumar, G.; Mittal, S.; Sak, K.; Tuli, H.S. Molecular mechanisms underlying chemopreventive potential of curcumin: Current challenges and future perspectives. Life Sci., 2016, 148, 313-328.
[http://dx.doi.org/10.1016/j.lfs.2016.02.022] [PMID: 26876915]
[11]
Kocaadam, B.; Şanlier, N. Curcumin, an active component of turmeric ( Curcuma longa ), and its effects on health. Crit. Rev. Food Sci. Nutr., 2017, 57(13), 2889-2895.
[http://dx.doi.org/10.1080/10408398.2015.1077195] [PMID: 26528921]
[12]
Chen, C.Y.; Kao, C.L.; Liu, C.M. The cancer prevention, anti-inflammatory and anti-oxidation of bioactive phytochemicals targeting the TLR4 signaling pathway. Int. J. Mol. Sci., 2018, 19(9), 2729.
[http://dx.doi.org/10.3390/ijms19092729] [PMID: 30213077]
[13]
Maheshwari, R.K.; Singh, A.K.; Gaddipati, J.; Srimal, R.C. Multiple biological activities of curcumin: A short review. Life Sci., 2006, 78(18), 2081-2087.
[http://dx.doi.org/10.1016/j.lfs.2005.12.007]
[14]
Franzone, F.; Nebbioso, M.; Pergolizzi, T.; Attanasio, G.; Musacchio, A.; Greco, A.; Limoli, P.; Artico, M.; Spandidos, D.; Taurone, S.; Agostinelli, E. Anti-inflammatory role of curcumin in retinal disorders (Review). Exp. Ther. Med., 2021, 22(1), 790.
[http://dx.doi.org/10.3892/etm.2021.10222] [PMID: 34055089]
[15]
Peng, Y.; Ao, M.; Dong, B.; Jiang, Y.; Yu, L.; Chen, Z.; Hu, C.; Xu, R. Anti-inflammatory effects of curcumin in the inflammatory diseas-es: Status, limitations and countermeasures. Drug Des. Devel. Ther., 2021, 15, 4503-4525.
[http://dx.doi.org/10.2147/DDDT.S327378] [PMID: 34754179]
[16]
Tuli, H.S.; Mistry, H.; Kaur, G.; Aggarwal, D.; Garg, V.K.; Mittal, S.; Yerer, M.B.; Sak, K.; Khan, M.A. Gallic acid: A dietary polyphenol that exhibits anti-neoplastic activities by modulating multiple oncogenic targets. Anticancer. Agents Med. Chem., 2022, 22(3), 499-514.
[http://dx.doi.org/10.2174/1871520621666211119085834] [PMID: 34802408]
[17]
Chowdhury, I.; Banerjee, S.; Driss, A.; Xu, W.; Mehrabi, S.; Nezhat, C.; Sidell, N.; Taylor, R.N.; Thompson, W.E. Curcumin attenuates proangiogenic and proinflammatory factors in human eutopic endometrial stromal cells through the NF‐κB signaling pathway. J. Cell. Physiol., 2019, 234(5), 6298-6312.
[http://dx.doi.org/10.1002/jcp.27360] [PMID: 30259980]
[18]
Fu, Y.; Gao, R.; Cao, Y.; Guo, M.; Wei, Z.; Zhou, E.; Li, Y.; Yao, M.; Yang, Z.; Zhang, N. Curcumin attenuates inflammatory responses by suppressing TLR4-mediated NF-κB signaling pathway in lipopolysaccharide-induced mastitis in mice. Int. Immunopharmacol., 2014, 20(1), 54-58.
[http://dx.doi.org/10.1016/j.intimp.2014.01.024] [PMID: 24508537]
[19]
Zeng, Z.; Zhan, L.; Liao, H.; Chen, L.; Lv, X. Curcumin improves TNBS-induced colitis in rats by inhibiting IL-27 expression via the TLR4/NF-κB signaling pathway. Planta Med., 2012, 79(2), 102-109.
[http://dx.doi.org/10.1055/s-0032-1328057] [PMID: 23250811]
[20]
Rahimifard, M.; Maqbool, F.; Moeini-Nodeh, S.; Niaz, K.; Abdollahi, M.; Braidy, N.; Nabavi, S.M.; Nabavi, S.F. Targeting the TLR4 signaling pathway by polyphenols: A novel therapeutic strategy for neuroinflammation. Ageing Res. Rev., 2017, 36, 11-19.
[http://dx.doi.org/10.1016/j.arr.2017.02.004] [PMID: 28235660]
[21]
Zhang, J.; Zheng, Y.; Luo, Y.; Du, Y.; Zhang, X.; Fu, J. Curcumin inhibits LPS-induced neuroinflammation by promoting microglial M2 polarization via TREM2/TLR4/NF-κB pathways in BV2 cells. Mol. Immunol., 2019, 116, 29-37.
[http://dx.doi.org/10.1016/j.molimm.2019.09.020] [PMID: 31590042]
[22]
Gao, Y.; Zhuang, Z.; Lu, Y.; Tao, T.; Zhou, Y.; Liu, G.; Wang, H.; Zhang, D.; Wu, L.; Dai, H.; Li, W.; Hang, C. Curcumin mitigates neuro-inflammation by modulating microglia polarization through inhibiting TLR4 axis signaling pathway following experimental subarachnoid hemorrhage. Front. Neurosci., 2019, 13, 1223.
[http://dx.doi.org/10.3389/fnins.2019.01223] [PMID: 31803007]
[23]
Ashrafizadeh, M.; Rafiei, H.; Mohammadinejad, R.; Afshar, E.G.; Farkhondeh, T.; Samarghandian, S. Potential therapeutic effects of curcumin mediated by JAK/STAT signaling pathway: A review. Phytother. Res., 2020, 34(8), 1745-1760.
[http://dx.doi.org/10.1002/ptr.6642] [PMID: 32157749]
[24]
Kahkhaie, K.R.; Mirhosseini, A.; Aliabadi, A.; Mohammadi, A.; Mousavi, M.J.; Haftcheshmeh, S.M.; Sathyapalan, T.; Sahebkar, A. Cur-cumin: A modulator of inflammatory signaling pathways in the immune system. Inflammopharmacology, 2019, 27(5), 885-900.
[http://dx.doi.org/10.1007/s10787-019-00607-3] [PMID: 31140036]
[25]
Olcum, M.; Tastan, B.; Ercan, I.; Eltutan, I.B.; Genc, S. Inhibitory effects of phytochemicals on NLRP3 inflammasome activation: A review. Phytomedicine, 2020, 75, 153238.
[http://dx.doi.org/10.1016/j.phymed.2020.153238] [PMID: 32507349]
[26]
Hasanzadeh, S.; Read, M.I.; Bland, A.R.; Majeed, M.; Jamialahmadi, T.; Sahebkar, A. Curcumin: An inflammasome silencer. Pharmacol. Res., 2020, 159, 104921.
[http://dx.doi.org/10.1016/j.phrs.2020.104921] [PMID: 32464325]
[27]
Lin, X.; Bai, D.; Wei, Z.; Zhang, Y.; Huang, Y.; Deng, H.; Huang, X. Curcumin attenuates oxidative stress in RAW264.7 cells by increasing the activity of antioxidant enzymes and activating the Nrf2-Keap1 pathway. PLoS One, 2019, 14(5), e0216711.
[http://dx.doi.org/10.1371/journal.pone.0216711] [PMID: 31112588]
[28]
Yousefian, M.; Shakour, N.; Hosseinzadeh, H.; Hayes, A.W.; Hadizadeh, F.; Karimi, G. The natural phenolic compounds as modulators of NADPH oxidases in hypertension. Phytomedicine, 2019, 55, 200-213.
[http://dx.doi.org/10.1016/j.phymed.2018.08.002] [PMID: 30668430]
[29]
Derochette, S.; Franck, T.; Mouithys-Mickalad, A.; Ceusters, J.; Deby-Dupont, G.; Lejeune, J.P.; Neven, P.; Serteyn, D. Curcumin and resveratrol act by different ways on NADPH oxidase activity and reactive oxygen species produced by equine neutrophils. Chem. Biol. Interact., 2013, 206(2), 186-193.
[http://dx.doi.org/10.1016/j.cbi.2013.09.011] [PMID: 24060679]
[30]
Tuli, H.S.; Sak, K.; Gupta, D.S.; Kaur, G.; Aggarwal, D.; Chaturvedi, P.N.; Choudhary, R.; Yerer, M.B.; Kaur, J.; Kumar, M.; Garg, V.K.; Sethi, G. Anti-inflammatory and anticancer properties of birch bark-derived betulin: Recent developments. Plants, 2021, 10(12), 2663.
[http://dx.doi.org/10.3390/plants10122663] [PMID: 34961132]
[31]
Ulańczyk, Z.; Grabowicz, A.; Cecerska-Heryć, E.; Śleboda-Taront, D.; Krytkowska, E.; Mozolewska-Piotrowska, K.; Safranow, K.; Kawa, M.P.; Dołęgowska, B.; Machalińska, A. Dietary and lifestyle factors modulate the activity of the endogenous antioxidant system in patients with age-related macular degeneration: Correlations with disease severity. Antioxidants, 2020, 9(10), 954.
[http://dx.doi.org/10.3390/antiox9100954] [PMID: 33027903]
[32]
Muangnoi, C.; Sharif, U.; Ratnatilaka, N.B.P.; Rojsitthisak, P.; Paraoan, L. Protective effects of curcumin ester prodrug, curcumin diethyl disuccinate against H2O2-induced oxidative stress in human retinal pigment epithelial cells: Potential therapeutic avenues for age-related macular degeneration. Int. J. Mol. Sci., 2019, 20(13), 3367.
[http://dx.doi.org/10.3390/ijms20133367] [PMID: 31323999]
[33]
Khimmaktong, W.; Petpiboolthai, H.; Sriya, P.; Anupunpisit, V. Effects of curcumin on restoration and improvement of microvasculature characteristic in diabetic rat’s choroid of eye. J. Med. Assoc. Thai., 2014, 97(S2), S39-S46.
[PMID: 25518174]
[34]
Gupta, S.K.; Kumar, B.; Nag, T.C.; Agrawal, S.S.; Agrawal, R.; Agrawal, P.; Saxena, R.; Srivastava, S. Curcumin prevents experimental diabetic retinopathy in rats through its hypoglycemic, antioxidant, and anti-inflammatory mechanisms. J. Ocul. Pharmacol. Ther., 2011, 27(2), 123-130.
[http://dx.doi.org/10.1089/jop.2010.0123] [PMID: 21314438]
[35]
Wang, S.; Ye, Q.; Tu, J.; Zhang, M.; Ji, B. Curcumin protects against hypertension aggravated retinal ischemia/reperfusion in a rat stroke model. Clin. Exp. Hypertens., 2017, 39(8), 711-717.
[http://dx.doi.org/10.1080/10641963.2017.1313854] [PMID: 28678631]
[36]
Vasireddy, V.; Chavali, V.R.M.; Joseph, V.T.; Kadam, R.; Lin, J.H.; Jamison, J.A.; Kompella, U.B.; Reddy, G.B.; Ayyagari, R. Rescue of photoreceptor degeneration by curcumin in transgenic rats with P23H rhodopsin mutation. PLoS One, 2011, 6(6), e21193.
[http://dx.doi.org/10.1371/journal.pone.0021193] [PMID: 21738619]
[37]
Chin, K.Y. The spice for joint inflammation: Anti-inflammatory role of curcumin in treating osteoarthritis. Drug Des. Devel. Ther., 2016, 10, 3029-3042.
[http://dx.doi.org/10.2147/DDDT.S117432] [PMID: 27703331]
[38]
Shakibaei, M.; John, T.; Schulze-Tanzil, G.; Lehmann, I.; Mobasheri, A. Suppression of NF-κB activation by curcumin leads to inhibition of expression of cyclo-oxygenase-2 and matrix metalloproteinase-9 in human articular chondrocytes: Implications for the treatment of osteoarthritis. Biochem. Pharmacol., 2007, 73(9), 1434-1445.
[http://dx.doi.org/10.1016/j.bcp.2007.01.005] [PMID: 17291458]
[39]
Mathy-Hartert, M.; Jacquemond-Collet, I.; Priem, F.; Sanchez, C.; Lambert, C.; Henrotin, Y. Curcumin inhibits pro-inflammatory media-tors and metalloproteinase-3 production by chondrocytes. Inflamm. Res., 2009, 58(12), 899-908.
[http://dx.doi.org/10.1007/s00011-009-0063-1] [PMID: 19579007]
[40]
TenBroek, E.M.; Yunker, L.; Nies, M.F.; Bendele, A.M. Randomized controlled studies on the efficacy of antiarthritic agents in inhibiting cartilage degeneration and pain associated with progression of osteoarthritis in the rat. Arthritis Res. Ther., 2016, 18(1), 24.
[http://dx.doi.org/10.1186/s13075-016-0921-5] [PMID: 26794830]
[41]
Meng, Z.; Yan, C.; Deng, Q.; Gao, D.; Niu, X. Curcumin inhibits LPS-induced inflammation in rat vascular smooth muscle cells in vitrovia ROS-relative TLR4-MAPK/NF-κB pathways. Acta Pharmacol. Sin., 2013, 34(7), 901-911.
[http://dx.doi.org/10.1038/aps.2013.24] [PMID: 23645013]
[42]
Paramasivam, M.; Poi, R.; Banerjee, H.; Bandyopadhyay, A. High-performance thin layer chromatographic method for quantitative deter-mination of curcuminoids in Curcuma longa germplasm. Food Chem., 2009, 113(2), 640-644.
[http://dx.doi.org/10.1016/j.foodchem.2008.07.051]
[43]
Lee, K.J.; Kim, Y.S.; Ma, J.Y. Separation and identification of curcuminoids from Asian turmeric (Curcuma longa L.) using RP-HPLC and LC-MS. Asian J. Chem., 2013, 25(2), 909-912.
[http://dx.doi.org/10.14233/ajchem.2013.13129]
[44]
Lee, K.J.; Kim, Y.S.; Jung, P.M.; Ma, J.Y. Optimization of the conditions for the analysis of curcumin and a related compound in curcuma longa with mobile-phase composition and column temperature via RP-HPLC. Asian J. Chem., 2013, 25(11), 6306-6310.
[http://dx.doi.org/10.14233/ajchem.2013.14471]
[45]
Paulucci, V.P.; Couto, R.O.; Teixeira, C.C.C.; Freitas, L.A.P. Optimization of the extraction of curcumin from Curcuma longa rhizomes. Rev. Bras. Farmacogn., 2013, 23(1), 94-100.
[http://dx.doi.org/10.1590/S0102-695X2012005000117]
[46]
Ali, I.; Haque, A.; Saleem, K. Separation and identification of curcuminoids in turmeric powder by HPLC using phenyl column. Anal. Methods, 2014, 6(8), 2526-2536.
[http://dx.doi.org/10.1039/C3AY41987H]
[47]
Priyadarsini, K. The chemistry of curcumin: From extraction to therapeutic agent. Molecules, 2014, 19(12), 20091-20112.
[http://dx.doi.org/10.3390/molecules191220091] [PMID: 25470276]
[48]
Priyadarsini, K.I. Photophysics, photochemistry and photobiology of curcumin: Studies from organic solutions, bio-mimetics and living cells. J. Photochem. Photobiol. Photochem. Rev., 2009, 10(2), 81-95.
[http://dx.doi.org/10.1016/j.jphotochemrev.2009.05.001]
[49]
Indira, P.K. Chemical and structural features influencing the biological activity of curcumin. Curr. Pharm. Des., 2013, 19(11), 2093-2100.
[http://dx.doi.org/10.2174/138161213805289228] [PMID: 23116315]
[50]
Mahady, G.B.; Pendland, S.L.; Yun, G.; Lu, Z.Z. Turmeric (Curcuma longa) and curcumin inhibit the growth of Helicobacter pylori, a group 1 carcinogen. Anticancer Res., 2002, 22(6C), 4179-4181.
[PMID: 12553052]
[51]
Aggarwal, B.B.; Harikumar, K.B. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardio-vascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int. J. Biochem. Cell Biol., 2009, 41(1), 40-59.
[http://dx.doi.org/10.1016/j.biocel.2008.06.010] [PMID: 18662800]
[52]
Bharat, B.A.; Anushree, K.; Alok, C.B. Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res., 2003, 23, 363-398.
[53]
Basnet, P.; Skalko-Basnet, N. Curcumin: An anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules, 2011, 16(6), 4567-4598.
[http://dx.doi.org/10.3390/molecules16064567] [PMID: 21642934]
[54]
Wright, L.; Frye, J.; Gorti, B.; Timmermann, B.; Funk, J. Bioactivity of turmeric-derived curcuminoids and related metabolites in breast cancer. Curr. Pharm. Des., 2013, 19(34), 6218-6225.
[http://dx.doi.org/10.2174/1381612811319340013] [PMID: 23448448]
[55]
Panahi, Y.; Hosseini, M.S.; Khalili, N.; Naimi, E.; Simental-Mendía, L.E.; Majeed, M.; Sahebkar, A. Effects of curcumin on serum cytokine concentrations in subjects with metabolic syndrome: A post-hoc analysis of a randomized controlled trial. Biomed. Pharmacother., 2016, 82, 578-582.
[http://dx.doi.org/10.1016/j.biopha.2016.05.037] [PMID: 27470399]
[56]
Bimonte, S.; Barbieri, A.; Leongito, M.; Piccirillo, M.; Giudice, A.; Pivonello, C.; de Angelis, C.; Granata, V.; Palaia, R.; Izzo, F. Curcumin anticancer studies in pancreatic cancer. Nutrients, 2016, 8(7), 433.
[http://dx.doi.org/10.3390/nu8070433] [PMID: 27438851]
[57]
Zhang, K.; Chen, M.; Du, Z-Y.; Zheng, X.; Li, D-L.; Zhou, RP. Use of curcumin in diagnosis, prevention, and treatment of Alzheimer’s disease. Neural Regen. Res., 2018, 13(4), 742-752.
[http://dx.doi.org/10.4103/1673-5374.230303] [PMID: 29722330]
[58]
Boccellino, M.; Ambrosio, P.; Ballini, A.; De Vito, D.; Scacco, S.; Cantore, S.; Feola, A.; Di Donato, M.; Quagliuolo, L.; Sciarra, A.; Galasso, G.; Crocetto, F.; Imbimbo, C.; Boffo, S.; Di Zazzo, E.; Di Domenico, M. The role of curcumin in prostate cancer cells and derived spheroids. Cancers, 2022, 14(14), 3348.
[http://dx.doi.org/10.3390/cancers14143348]
[59]
Yadav, R.; Parihar, R.D.; Dhiman, U.; Dhamija, P.; Upadhyay, S.K.; Imran, M.; Behera, S.K.; Keshava Prasad, T.S. Docking of fda approved drugs targeting nsp-16, n-protein and main protease of sars-cov-2 as dual inhibitors. Biointerface Res. Appl. Chem., 2020, 11(3), 9848-9861.
[http://dx.doi.org/10.33263/BRIAC113.98489861]
[60]
Pricci, M.; Girardi, B.; Giorgio, F.; Losurdo, G.; Ierardi, E.; Di Leo, A. Curcumin and colorectal cancer: From basic to clinical evidences. Int. J. Mol. Sci., 2020, 21(7), 2364.
[http://dx.doi.org/10.3390/ijms21072364] [PMID: 32235371]
[61]
Termini, D.; Den Hartogh, D.J.; Jaglanian, A.; Tsiani, E. Curcumin against Prostate Cancer: Current evidence. Biomolecules, 2020, 10(11), 1536.
[http://dx.doi.org/10.3390/biom10111536] [PMID: 33182828]
[62]
Shaikh, S.; Shaikh, J.; Naba, Y.S.; Doke, K.; Ahmed, K.; Yusufi, M. Curcumin: Reclaiming the lost ground against cancer resistance. Cancer Drug Resist., 2021, 4(2), 298-320.
[http://dx.doi.org/10.20517/cdr.2020.92] [PMID: 35582033]
[63]
Pant, M.; Dan, S.; Pant, S.; Raj, A.; Upadhyay, S.K. Progression in Alzheimer’s Disease correlates with epigenetics and cerebral formaldehyde: From potential hereditary mechanism and environmental factors to therapeutic measures. Curr. Pharmacol. Rep., 2021, 7(5), 187-205.
[http://dx.doi.org/10.1007/s40495-021-00265-6]
[64]
Ombredane, A.S.; Silva, V.R.P.; Andrade, L.R.; Pinheiro, W.O.; Simonelly, M.; Oliveira, J.V.; Pinheiro, A.C.; Gonçalves, G.F.; Felice, G.J.; Garcia, M.P.; Campos, P.M.; Luz, G.V.S.; Joanitti, G.A. In vivo efficacy and toxicity of curcumin nanoparticles in breast cancer treatment: A systematic review. Front. Oncol., 2021, 11, 612903.
[http://dx.doi.org/10.3389/fonc.2021.612903] [PMID: 33767985]
[65]
Ojo, O.A.; Adeyemo, T.R.; Rotimi, D.; Batiha, G.E.S.; Mostafa-Hedeab, G.; Iyobhebhe, M.E.; Elebiyo, T.C.; Atunwa, B.; Ojo, A.B.; Lima, C.M.G.; Conte-Junior, C.A. Anticancer properties of curcumin against colorectal cancer: A review. Front. Oncol., 2022, 12, 881641.
[http://dx.doi.org/10.3389/fonc.2022.881641] [PMID: 35530318]
[66]
Li, M.; Yue, G.G.L.; Luo, L.; Tsui, S.K.W.; Fung, K.P.; Ng, S.S.M.; Lau, C.B.S. Turmeric is therapeutic in vivo on patient-derived colorectal cancer xenografts: Inhibition of growth, metastasis, and tumor recurrence. Front. Oncol., 2021, 10, 574827.
[http://dx.doi.org/10.3389/fonc.2020.574827] [PMID: 33552955]
[67]
Guneydas, G.; Topcul, M.R. Antiproliferative effects of curcumin different types of Breast Cancer. Asian Pac. J. Cancer Prev., 2022, 23(3), 911-917.
[http://dx.doi.org/10.31557/APJCP.2022.23.3.911] [PMID: 35345363]
[68]
Tønnesen, H.H.; de Vries, H.; Karlsen, J.; Van Henegouwen, G.B. Studies on curcumin and curcuminoids. IX: Investigation of the photo-biological activity of curcumin using bacterial indicator systems. J. Pharm. Sci., 1987, 76(5), 371-373.
[http://dx.doi.org/10.1002/jps.2600760506] [PMID: 3309256]
[69]
Khurana, A.; Ho, C.T. High performance liquid chromatographic analysis of curcuminoids and their photo-oxidative decomposition compounds in curcuma longa L. J. Liq. Chromatogr., 1988, 11(11), 2295-2304.
[http://dx.doi.org/10.1080/01483918808067200]
[70]
Baum, L.; Ng, A. Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer’s disease animal models. J. Alzheimers Dis., 2004, 6(4), 367-377.
[http://dx.doi.org/10.3233/JAD-2004-6403] [PMID: 15345806]
[71]
Barik, A.; Mishra, B.; Shen, L.; Mohan, H.; Kadam, R.M.; Dutta, S.; Zhang, H.Y.; Priyadarsini, K.I. Evaluation of a new copper(II)–curcumin complex as superoxide dismutase mimic and its free radical reactions. Free Radic. Biol. Med., 2005, 39(6), 811-822.
[http://dx.doi.org/10.1016/j.freeradbiomed.2005.05.005] [PMID: 16109310]
[72]
Koiram, P.R.; Veerapur, V.P.; Kunwar, A.; Mishra, B.; Barik, A.; Priyadarsini, I.K.; Mazhuvancherry, U.K. Effect of curcumin and curcumin copper complex (1:1) on radiation-induced changes of anti-oxidant enzymes levels in the livers of Swiss albino mice. J. Radiat. Res., 2007, 48(3), 241-245.
[http://dx.doi.org/10.1269/jrr.06103] [PMID: 17464095]
[73]
Leung, M.H.M.; Harada, T.; Kee, T.W. Delivery of curcumin and medicinal effects of the copper(II)-curcumin complexes. Curr. Pharm. Des., 2013, 19(11), 2070-2083.
[http://dx.doi.org/10.2174/138161213805289237] [PMID: 23116313]
[74]
Kashyap, D.; Tuli, H.S.; Yerer, M.B.; Sharma, A.; Sak, K.; Srivastava, S.; Pandey, A.; Garg, V.K.; Sethi, G.; Bishayee, A. Natural product-based nanoformulations for cancer therapy: Opportunities and challenges. Semin. Cancer Biol., 2021, 69, 5-23.
[http://dx.doi.org/10.1016/j.semcancer.2019.08.014] [PMID: 31421264]
[75]
Han, H.K. The effects of black pepper on the intestinal absorption and hepatic metabolism of drugs. Expert Opin. Drug Metab. Toxicol., 2011, 7(6), 721-729.
[http://dx.doi.org/10.1517/17425255.2011.570332] [PMID: 21434835]
[76]
Shoba, G.; Joy, D.; Joseph, T.; Majeed, M.; Rajendran, R.; Srinivas, P. Influence of piperine on the pharmacokinetics of curcumin in ani-mals and human volunteers. Planta Med., 1998, 64(4), 353-356.
[http://dx.doi.org/10.1055/s-2006-957450] [PMID: 9619120]
[77]
Prasad, S.; Tyagi, A.K.; Aggarwal, B.B. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: The golden pigment from golden spice. Cancer Res. Treat., 2014, 46(1), 2-18.
[http://dx.doi.org/10.4143/crt.2014.46.1.2] [PMID: 24520218]
[78]
Li, L.; Braiteh, F.S.; Kurzrock, R. Liposome-encapsulated curcumin. Cancer, 2005, 104(6), 1322-1331.
[http://dx.doi.org/10.1002/cncr.21300] [PMID: 16092118]
[79]
Kunwar, A.; Barik, A.; Pandey, R.; Priyadarsini, K.I. Transport of liposomal and albumin loaded curcumin to living cells: An absorption and fluorescence spectroscopic study. Biochim. Biophys. Acta, Gen. Subj., 2006, 1760(10), 1513-1520.
[http://dx.doi.org/10.1016/j.bbagen.2006.06.012] [PMID: 16904830]
[80]
Gangwar, R.K.; Tomar, G.B.; Dhumale, V.A.; Zinjarde, S.; Sharma, R.B.; Datar, S. Curcumin conjugated silica nanoparticles for improving bioavailability and its anticancer applications. J. Agric. Food Chem., 2013, 61(40)
[http://dx.doi.org/10.1021/jf402894x] [PMID: 24028689]
[81]
Dinda, A.K.; Prashant, C.K.; Naqvi, S.; Unnithan, J.; Samim, M.; Maitra, A. Curcumin loaded organically modified silica (ORMOSIL) nanoparticle; a novel agent for cancer therapy. Int. J. Nanotechnol., 2012, 9(10/11/12), 862-871.
[http://dx.doi.org/10.1504/IJNT.2012.049451]
[82]
Chin, S.F.; Iyer, K.S.; Saunders, M.; St Pierre, T.G.; Buckley, C.; Paskevicius, M.; Raston, C.L. Encapsulation and sustained release of curcumin using superparamagnetic silica reservoirs. Chemistry, 2009, 15(23), 5661-5665.
[http://dx.doi.org/10.1002/chem.200802747] [PMID: 19396886]
[83]
Jin, D.; Park, K.W.; Lee, J.H.; Song, K.; Kim, J.G.; Seo, M.L.; Jung, J.H. The selective immobilization of curcumin onto the internal surface of mesoporous hollow silica particles by covalent bonding and its controlled release. J. Mater. Chem., 2011, 21(11), 3641-3645.
[http://dx.doi.org/10.1039/c0jm03846f]
[84]
Singh, S.P.; Sharma, M.; Gupta, P.K. Enhancement of phototoxicity of curcumin in human oral cancer cells using silica nanoparticles as delivery vehicle. Lasers Med. Sci., 2014, 29(2), 645-652.
[http://dx.doi.org/10.1007/s10103-013-1357-7] [PMID: 23807180]
[85]
Sindhu, K.; Rajaram, A.; Sreeram, K.J.; Rajaram, R. Curcumin conjugated gold nanoparticle synthesis and its biocompatibility. RSC Advances, 2014, 4(4), 1808-1818.
[http://dx.doi.org/10.1039/C3RA45345F]
[86]
Singh, D.K.; Jagannathan, R.; Khandelwal, P.; Abraham, P.M.; Poddar, P. In situ synthesis and surface functionalization of gold nanoparticles with curcumin and their antioxidant properties: An experimental and density functional theory investigation. Nanoscale, 2013, 5(5), 1882-1893.
[http://dx.doi.org/10.1039/c2nr33776b] [PMID: 23348618]
[87]
Sreelakshmi, C.; Goel, N.; Datta, K.K.R.; Addlagatta, A.; Ummanni, R.; Reddy, B.V.S. Green synthesis of curcumin capped gold nanoparticles and evaluation of their cytotoxicity. Nanosci. Nanotechnol. Lett., 2013, 5(12), 1258-1265.
[http://dx.doi.org/10.1166/nnl.2013.1678]
[88]
Urošević, M.; Nikolić, L.; Gajić, I.; Nikolić, V.; Dinić, A.; Miljković, V. Curcumin. Antibiotics, 2022, 11(2), 135.
[http://dx.doi.org/10.3390/antibiotics11020135] [PMID: 35203738]
[89]
Cui, Y.; Song, H.T.; Zhang, P.; Yin, X.; Wang, Y.; Wei, X.; Jia, X.J. Curcumin protects PC12 cells from a high glucose-induced inflammatory response by regulating the miR-218-5p/TLR4 axis. Medicine (Baltimore), 2022, 101(40), e30967.
[http://dx.doi.org/10.1097/MD.0000000000030967] [PMID: 36221434]
[90]
Chen, H.; Jiang, Y.; Liu, R.; Deng, J.; Chen, Q.; Chen, L.; Liang, G.; Chen, X.; Xu, Z. Curcumin derivative C66 suppresses pancreatic cancer progression through the inhibition of JNK-mediated inflammation. Molecules, 2022, 27(10), 3076.
[http://dx.doi.org/10.3390/molecules27103076] [PMID: 35630552]
[91]
Xie, Q.F.; Cheng, J.J.; Chen, J.F.; Feng, Y.C.; Lin, G.S.; Xu, Y. Comparation of anti-inflammatory and antioxidantactivities of curcumin, tetrahydrocurcuminand octahydrocurcuminin LPS-Stimulated RAW264.7 macrophages. Evid. Based Complement. Alternat. Med., 2020, 2020, 8856135.
[http://dx.doi.org/10.1155/2020/8856135] [PMID: 33424997]
[92]
Islam, T.; Koboziev, I.; Albracht-Schulte, K.; Mistretta, B.; Scoggin, S.; Yosofvand, M.; Moussa, H.; Zabet-Moghaddam, M.; Ramalingam, L.; Gunaratne, P.H.; Moustaid-Moussa, N. Curcumin reduces adipose tissue inflammation and alters gut microbiota in diet‐induced obese male mice. Mol. Nutr. Food Res., 2021, 65(22), 2100274.
[http://dx.doi.org/10.1002/mnfr.202100274] [PMID: 34510720]
[93]
Gong, Z.; Zhao, S.; Zhou, J.; Yan, J.; Wang, L.; Du, X.; Li, H.; Chen, Y.; Cai, W.; Wu, J. Curcumin alleviates DSS-induced colitis via inhibiting NLRP3 inflammsome activation and IL-1β production. Mol. Immunol., 2018, 104, 11-19.
[http://dx.doi.org/10.1016/j.molimm.2018.09.004] [PMID: 30396035]
[94]
Wang, Q.; Ye, C.; Sun, S.; Li, R.; Shi, X.; Wang, S.; Zeng, X.; Kuang, N.; Liu, Y.; Shi, Q.; Liu, R. Curcumin attenuates collagen-induced rat arthritis via anti-inflammatory and apoptotic effects. Int. Immunopharmacol., 2019, 72, 292-300.
[http://dx.doi.org/10.1016/j.intimp.2019.04.027] [PMID: 31005039]
[95]
Wang, Y.; Li, Y.; He, L.; Mao, B.; Chen, S.; Martinez, V.; Guo, X.; Shen, X.; Liu, B.; Li, C. Commensal flora triggered target anti-inflammation of alginate-curcumin micelle for ulcerative colitis treatment. Colloids Surf. B Biointerfaces, 2021, 203, 111756.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111756] [PMID: 33865087]
[96]
Li, X.; Xu, D.Q.; Sun, D.Y.; Zhang, T.; He, X.; Xiao, D.M. Curcumin ameliorates monosodium urate‐induced gouty arthritis through Nod‐like receptor 3 inflammasome mediation via inhibiting nuclear factor‐kappa B signaling. J. Cell. Biochem., 2019, 120(4), 6718-6728.
[http://dx.doi.org/10.1002/jcb.27969] [PMID: 30592318]
[97]
Yin, H.; Guo, Q.; Li, X.; Tang, T.; Li, C.; Wang, H.; Sun, Y.; Feng, Q.; Ma, C.; Gao, C.; Yi, F.; Peng, J. Curcumin suppresses IL-1β secretion and prevents inflammation through inhibition of the NLRP3 inflammasome. J. Immunol., 2018, 200(8), 2835-2846.
[http://dx.doi.org/10.4049/jimmunol.1701495] [PMID: 29549176]
[98]
Frank, A.; Abu-Lafi, S.; Adawi, A.; Schwed, J.S.; Stark, H.; Rayan, A. From medicinal plant extracts to defined chemical compounds targeting the histamine H4 receptor: Curcuma longa in the treatment of inflammation. Inflamm. Res., 2017, 66(10), 923-929.
[http://dx.doi.org/10.1007/s00011-017-1075-x] [PMID: 28647836]
[99]
Cui, L.; Jia, X.; Zhou, Q.; Zhai, X.; Zhou, Y.; Zhu, H. Curcumin affects β -catenin pathway in hepatic stellate cell in vitro and in vivo. J. Pharm. Pharmacol., 2014, 66(11), 1615-1622.
[http://dx.doi.org/10.1111/jphp.12283] [PMID: 24945564]
[100]
Karthikeyan, A.; Senthil, N.; Min, T. Nanocurcumin: A promising candidate for therapeutic applications. Front. Pharmacol., 2020, 11, 487.
[http://dx.doi.org/10.3389/fphar.2020.00487] [PMID: 32425772]
[101]
Naksuriya, O.; Okonogi, S.; Schiffelers, R.M.; Hennink, W.E. Curcumin nanoformulations: A review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials, 2014, 35(10), 3365-3383.
[http://dx.doi.org/10.1016/j.biomaterials.2013.12.090] [PMID: 24439402]
[102]
Salehi, B.; Rodrigues, C.F.; Peron, G.; Dall’Acqua, S.; Sharifi Rad, J.; Azmi, L.; Shukla, I.; Singh Baghel, U.; Prakash Mishra, A.; Elissawy, A.M.; Singab, A.N.; Pezzani, R.; Redaelli, M.; Patra, J.K.; Kulandaisamy Venil, C.; Das, G.; Singh, D.; Kriplani, P.; Venditti, A.; Fokou, P.V.T.; Iriti, M.; Amarowicz, R.; Martorell, M.; Cruz-Martins, N. Curcumin nanoformulations for antimicrobial and wound healing purposes. Phytother. Res., 2021, 35(5), 2487-2499.
[http://dx.doi.org/10.1002/ptr.6976] [PMID: 33587320]
[103]
Yallapu, M.M.; Nagesh, P.K.B.; Jaggi, M.; Chauhan, S.C. Therapeutic applications of curcumin nanoformulations. AAPS J., 2015, 17(6), 1341-1356.
[http://dx.doi.org/10.1208/s12248-015-9811-z] [PMID: 26335307]
[104]
Pizzorno, L.; Jeffrey, S. Bland, phd—the disease delusion: Conquering the causes of chronic illness for a healthier, longer and happier life. Integr. Med., 2014, 13, 52-56.
[105]
Singh, A.K.; Vinayak, M. Curcumin attenuates CFA induced thermal hyperalgesia by modulation of antioxidant enzymes and down regulation of TNF-α, IL-1β and IL-6. Neurochem. Res., 2015, 40(3), 463-472.
[http://dx.doi.org/10.1007/s11064-014-1489-6] [PMID: 25479948]
[106]
Maleki Dizaj, S.; Alipour, M.; Dalir Abdolahinia, E.; Ahmadian, E.; Eftekhari, A.; Forouhandeh, H.; Rahbar Saadat, Y.; Sharifi, S.; Zununi Vahed, S. Curcumin nanoformulations: Beneficial nanomedicine against cancer. Phytother. Res., 2022, 36(3), 1156-1181.
[http://dx.doi.org/10.1002/ptr.7389] [PMID: 35129230]
[107]
Gera, M.; Sharma, N.; Ghosh, M.; Huynh, D.L.; Lee, S.J.; Min, T.; Kwon, T.; Jeong, D.K. Nanoformulations of curcumin: An emerging paradigm for improved remedial application. Oncotarget, 2017, 8(39), 66680-66698.
[http://dx.doi.org/10.18632/oncotarget.19164] [PMID: 29029547]
[108]
Pivari, F.; Mingione, A.; Brasacchio, C.; Soldati, L. Curcumin and type 2 diabetes mellitus: Prevention and treatment. Nutrients, 2019, 11(8), 1837.
[http://dx.doi.org/10.3390/nu11081837] [PMID: 31398884]
[109]
Burge, K.; Gunasekaran, A.; Eckert, J.; Chaaban, H. Curcumin and intestinal inflammatory diseases: Molecular mechanisms of protection. Int. J. Mol. Sci., 2019, 20(8), 1912.
[http://dx.doi.org/10.3390/ijms20081912] [PMID: 31003422]
[110]
Zhang, X.; Wu, J.; Ye, B.; Wang, Q.; Xie, X.; Shen, H. Protective effect of curcumin on TNBS-induced intestinal inflammation is mediated through the JAK/STAT pathway. BMC Complement. Altern. Med., 2016, 16(1), 299.
[http://dx.doi.org/10.1186/s12906-016-1273-z] [PMID: 27544348]
[111]
Kunnumakkara, A.B.; Bordoloi, D.; Padmavathi, G.; Monisha, J.; Roy, N.K.; Prasad, S.; Aggarwal, B.B. Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases. Br. J. Pharmacol., 2017, 174(11), 1325-1348.
[http://dx.doi.org/10.1111/bph.13621] [PMID: 27638428]
[112]
Garg, V.K.; Sood, A.; Kapoor, D.; Sak, K.; Mittal, S.; Tuli, H.S. Emerging antineoplastic potential of nanoparticles against different types of cancer. In: Nanotherapeutics in Cancer; Jenny Stanford Publishing, 2022; pp. 79-96.
[http://dx.doi.org/10.1201/9781003334538-4]
[113]
Sun, D.; Zhuang, X.; Xiang, X.; Liu, Y.; Zhang, S.; Liu, C.; Barnes, S.; Grizzle, W.; Miller, D.; Zhang, H.G. A novel nanoparticle drug delivery system: The anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol. Ther., 2010, 18(9), 1606-1614.
[http://dx.doi.org/10.1038/mt.2010.105] [PMID: 20571541]
[114]
Singh, A.K.; Jiang, Y.; Gupta, S.; Younus, M.; Ramzan, M. Anti-inflammatory potency of nano-formulated puerarin and curcumin in rats subjected to the lipopolysaccharide-induced inflammation. J. Med. Food, 2013, 16(10), 899-911.
[http://dx.doi.org/10.1089/jmf.2012.0049] [PMID: 24138167]
[115]
Rocha, B.; Gonçalves, O.; Leimann, F.; Rebecca, E.; Silva-Buzanello, R.; Filho, L.; Araújo, P.; Cuman, R.; Bersani-Amado, C. Curcumin encapsulated in poly-L-lactic acid improves its anti-inflammatory efficacy in vivo. Adv. Med. Plant Res., 2014, 2, 62-73.
[116]
Beloqui, A.; Coco, R.; Memvanga, P.B.; Ucakar, B.; des Rieux, A.; Préat, V. pH-sensitive nanoparticles for colonic delivery of curcumin in inflammatory bowel disease. Int. J. Pharm., 2014, 473(1-2), 203-212.
[http://dx.doi.org/10.1016/j.ijpharm.2014.07.009] [PMID: 25014369]
[117]
Shukla, P.; Dwivedi, P.; Gupta, P.K.; Mishra, P.R. Optimization of novel tocopheryl acetate nanoemulsions for parenteral delivery of curcumin for therapeutic intervention of sepsis. Expert Opin. Drug Deliv., 2014, 11(11), 1697-1712.
[http://dx.doi.org/10.1517/17425247.2014.932769] [PMID: 25046368]
[118]
Chaudhary, H.; Kohli, K.; Kumar, V. A novel nano-carrier transdermal gel against inflammation. Int. J. Pharm., 2014, 465(1-2), 175-186.
[http://dx.doi.org/10.1016/j.ijpharm.2014.02.023] [PMID: 24548719]
[119]
Singh, N.; Khullar, N.; Kakkar, V.; Kaur, I.P. Attenuation of carbon tetrachloride-induced hepatic injury with curcumin-loaded solid lipid nanoparticles. BioDrugs, 2014, 28(3), 297-312.
[http://dx.doi.org/10.1007/s40259-014-0086-1] [PMID: 24567262]
[120]
Arora, R.; Kuhad, A.; Kaur, I.P.; Chopra, K. Curcumin loaded solid lipid nanoparticles ameliorate adjuvant-induced arthritis in rats. Eur. J. Pain, 2015, 19(7), 940-952.
[http://dx.doi.org/10.1002/ejp.620] [PMID: 25400173]
[121]
Wang, J.; Wang, H.; Zhu, R.; Liu, Q.; Fei, J.; Wang, S. Anti-inflammatory activity of curcumin-loaded solid lipid nanoparticles in IL-1β transgenic mice subjected to the lipopolysaccharide-induced sepsis. Biomaterials, 2015, 53, 475-483.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.116] [PMID: 25890744]
[122]
Al-Rohaimi, A.H. Comparative anti-inflammatory potential of crystalline and amorphous nano curcumin in topical drug delivery. J. Oleo Sci., 2015, 64(1), 27-40.
[http://dx.doi.org/10.5650/jos.ess14175] [PMID: 25519291]
[123]
Young, N.A.; Bruss, M.S.; Gardner, M.; Willis, W.L.; Mo, X.; Valiente, G.R.; Cao, Y.; Liu, Z.; Jarjour, W.N.; Wu, L.C. Oral administration of nano-emulsion curcumin in mice suppresses inflammatory-induced NFκB signaling and macrophage migration. PLoS One, 2014, 9(11), e111559.
[http://dx.doi.org/10.1371/journal.pone.0111559] [PMID: 25369140]
[124]
Jeengar, M.K.; Rompicharla, S.V.K.; Shrivastava, S.; Chella, N.; Shastri, N.R.; Naidu, V.G.M.; Sistla, R. Emu oil based nano-emulgel for topical delivery of curcumin. Int. J. Pharm., 2016, 506(1-2), 222-236.
[http://dx.doi.org/10.1016/j.ijpharm.2016.04.052] [PMID: 27109049]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy