Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Review Article

Researches on Detection of Related Substances in Drugs

Author(s): Jianzhong Qi, Hongli Wang, Lu Dai, Lei Shi, Yanjun Hao* and Haigang Chen*

Volume 19, Issue 6, 2023

Published on: 01 August, 2023

Page: [476 - 486] Pages: 11

DOI: 10.2174/1573412919666230725143826

Price: $65

Abstract

The production of drugs is very complicated. In the process of preparation and transportation, mixing a small amount of reaction raw materials, intermediates, and storage degradation products is inevitable, which affect the quality of drugs. The quality of drugs not only affects the efficacy, but also produces unpredictable side effects and toxicity, which is directly related to people's life and health. The detection of drug quality has always been the focus of attention. Related substance research is one of the key projects in drug quality research, and its content is a direct indicator of drug purity. Therefore, it is very important to establish the content standard of drug related substances and develop the detection method of related substances. The related substances of drugs are rich in variety, with different physical and chemical properties, and the components of related substances, such as degradation products need further analysis, which makes it difficult to effectively apply the detection methods. After years of research, the detection methods of related substances are constantly updated and improved. At present, the detection methods of related substances involve physical, chemical, and other fields, including chemical methods, chromatography, and spectroscopy. In this paper, the research progress of detection methods for related substances in drugs in recent years was reviewed, and the types, features, and application scope of detection methods were summarized, providing reference for quality control of chemical synthetic drugs and traditional Chinese medicines. Therefore, this work provides new ideas for the development of more accurate and efficient detection methods.

Keywords: Drugs, related substances, detection methods, research progress, chromatography, spectroscopy.

Graphical Abstract
[1]
Saracino, M.A.; Cannistraci, C.; Bugamelli, F.; Morganti, E.; Neri, I.; Balestri, R.; Patrizi, A.; Raggi, M.A. A novel HPLC-electrochemical detection approach for the determination of d-penicillamine in skin specimens. Talanta, 2013, 103, 355-360.
[http://dx.doi.org/10.1016/j.talanta.2012.10.076] [PMID: 23200399]
[2]
Wei, R.; Wang, K. WU, X.; MA, L. Research advance and application of detection methods for related substances in drugs. Chin. Pharm. J., 2015, 18(05), 851-855.
[3]
Phattanawasin, P.; Sotanaphun, U.; Sukwattanasinit, T.; Akkarawaranthorn, J.; Kitchaiya, S. Quantitative determination of sibutramine in adulterated herbal slimming formulations by TLC-image analysis method. Forensic Sci. Int., 2012, 219(1-3), 96-100.
[http://dx.doi.org/10.1016/j.forsciint.2011.12.004] [PMID: 22227151]
[4]
Strock, J.; Nguyen, M.; Sherma, J. Use of a model process for transfer of minilab TLC screening methods for quinine sulfate, mefloquine, and dihydroartemisinin—piperaquine phosphate tablets to quantitative HPTLC—densitometry methods. Acta Chromatogr., 2016, 28(3), 363-372.
[http://dx.doi.org/10.1556/1326.2016.28.3.6]
[5]
Castilho, A.L.; Saraceni, C.H.C.; Díaz, I.E.C.; Paciencia, M.L.B.; Suffredini, I.B. New trends in dentistry: Plant extracts against Enterococcus faecalis. The efficacy compared to chlorhexidine. Braz. Oral Res., 2013, 27(2), 109-115.
[http://dx.doi.org/10.1590/S1806-83242013000100017] [PMID: 23538423]
[6]
Coran, S.A.; Bambagiotti-Alberti, M.; Giannellini, V.; Baldi, A.; Picchioni, G.; Paoli, F. Development of a densitometric method for the determination of cephalexin as an alternative to the standard HPLC procedure. J. Pharm. Biomed. Anal., 1998, 18(1-2), 271-274.
[http://dx.doi.org/10.1016/S0731-7085(98)00167-8] [PMID: 9863969]
[7]
Parveen, A.; Zahiruddin, S.; Agarwal, N.; Akhtar Siddiqui, M.; Husain Ansari, S.; Ahmad, S. Modulating effects of the synergistic combination of extracts of herbal drugs on cyclophosphamide: Induced immunosuppressed mice. Saudi J. Biol. Sci., 2021, 28(11), 6178-6190.
[http://dx.doi.org/10.1016/j.sjbs.2021.06.076] [PMID: 34764748]
[8]
Abdel-Moety, E.M.; Khattab, F.I.; Kelani, K.M.; AbouAl-Alamein, A.M. Chromatographic determination of clotrimazole, ketoconazole and fluconazole in pharmaceutical formulations. Farmaco, 2002, 57(11), 931-938.
[http://dx.doi.org/10.1016/S0014-827X(02)01270-3] [PMID: 12484542]
[9]
Srisa, J.; Tankam, T.; Sukwattanasinitt, M.; Wacharasindhu, S. Micelle‐enabled one‐pot guanidine synthesis in water directly from isothiocyanate using hypervalent iodine(iii) reagents under mild conditions. Chem. Asian J., 2019, 14(19), 3335-3343.
[http://dx.doi.org/10.1002/asia.201900982] [PMID: 31397526]
[10]
Hubicka, U.; Krzek, J.; Woltyska, H.; Stachacz, B. Simultaneous identification and quantitative determination of selected aminoglycoside antibiotics by thin-layer chromatography and densitometry. J. AOAC Int., 2009, 92(4), 1068-1075.
[http://dx.doi.org/10.1093/jaoac/92.4.1068] [PMID: 19714974]
[11]
Gu, Y.; Zeng, B.; Sherma, J. Development of quantitative hptlc methods for dolutegravir, lamivudine, and tenofovir disproxil fumarate in a combination pharmaceutical product using a model process published earlier for transfer of minilab tlc screening methods to hptlc-densitometry. Acta Chromatogr., 2020, 32(3), 199-202.
[http://dx.doi.org/10.1556/1326.2019.00689]
[12]
Chen, X.J.; Yan, J. Stability investigation on lysophosphatidylcholine in the diammonium glycyrrhizinate phospholipid complex injections. Yaowu Fenxi Zazhi, 2014, 34(11), 2044-2047.
[13]
Leis, H.J.; Fauler, G.; Windischhofer, W. Quantitative analysis of memantine in human plasma by gas chromatography/negative ion chemical ionization/mass spectrometry. J. Mass Spectrom., 2002, 37(5), 477-480.
[http://dx.doi.org/10.1002/jms.303] [PMID: 12112752]
[14]
Li, T.D.; Zhang, W.; Cai, J.M.; Lin, Y.R.; Yun, J.P.; Liu, F. Determination of Sevoflurane, Isoflurane and Enflurane in the air of workplace by gas chromatography. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi, 2019, 37(6), 453-456.
[PMID: 31256530]
[15]
Korhonen, I.O.O. Simultaneous determination of C1−C8 n-alkyl acetates and corresponding mono-, di- and trichloroacetates on glass capillary columns with programmed temperature rise. Chromatographia, 1982, 15(10), 635-640.
[http://dx.doi.org/10.1007/BF02279490]
[16]
LaPorte, G.M.; Wilson, J.D.; Cantu, A.A.; Mancke, S.A.; Fortunato, S.L. The identification of 2-phenoxyethanol in ballpoint inks using gas chromatography/mass spectrometry--relevance to ink dating. J. Forensic Sci., 2004, 49(1), JFS2003217.
[http://dx.doi.org/10.1520/JFS2003217] [PMID: 14979363]
[17]
Kim, H.J.; Kim, K.; Kim, N.S.; Lee, D.S. Determination of floral fragrances of Rosa hybrida using solid-phase trapping-solvent extraction and gas chromatography–mass spectrometry. J. Chromatogr. A, 2000, 902(2), 389-404.
[http://dx.doi.org/10.1016/S0021-9673(00)00863-3] [PMID: 11192171]
[18]
Goodley, P.C.; Gordon, M. Gas chromatographic analysis of halogenated quinoline compounds. J. Chromatogr. Sci., 1972, 10(8), 532-534.
[http://dx.doi.org/10.1093/chromsci/10.8.532]
[19]
Xu, J.; Zhu, G.; Zhang, H.; Liu, J.; Jiang, K. Differentiation of isomeric cresols by silylation in combination with gas chromatography/mass spectrometry analysis. Rapid Commun. Mass Spectrom., 2020, 34(3), e8576.
[http://dx.doi.org/10.1002/rcm.8576] [PMID: 31498942]
[20]
Mirza, T.; Tan, H.S.I. Capillary gas chromatographic assay of camphor and m-cresol in dermatological creams. J. Pharm. Biomed. Anal., 1998, 17(8), 1427-1438.
[http://dx.doi.org/10.1016/S0731-7085(98)00032-6] [PMID: 9800662]
[21]
Schmidt, L.; Göen, T. Simultaneous determination of the full chlorophenol spectrum in human urine using gas chromatography with tandem mass spectrometry. Anal. Chim. Acta, 2017, 965, 123-130.
[http://dx.doi.org/10.1016/j.aca.2017.02.016] [PMID: 28366209]
[22]
Kumar, A.; Singh, B.; Malik, A.K.; Tiwary, D.K. Determination of some aldehydes by using solid-phase microextraction and high-performance liquid chromatography with UV detection. J. AOAC Int., 2007, 90(6), 1689-1694.
[http://dx.doi.org/10.1093/jaoac/90.6.1689] [PMID: 18193749]
[23]
Nageswara Rao, R.; Guru Prasad, K.; Naidu, G. C.; Maurya, P.K. Development of a validated liquid chromatographic method for determination of related substances of telmisartan in bulk drugs and formulations. J. Pharm. Biomed. Anal., 2011, 56(3), 471-478.
[http://dx.doi.org/10.1016/j.jpba.2011.05.043] [PMID: 21719227]
[24]
Proestos, C.; Chorianopoulos, N.; Nychas, G.J.E.; Komaitis, M. RP-HPLC analysis of the phenolic compounds of plant extracts. investigation of their antioxidant capacity and antimicrobial activity. J. Agric. Food Chem., 2005, 53(4), 1190-1195.
[http://dx.doi.org/10.1021/jf040083t] [PMID: 15713039]
[25]
Jain, D.K.; Jain, N.; Charde, R.; Jain, N. The RP-HPLC method for simultaneous estimation of esomeprazole and naproxen in binary combination. Pharm. Methods, 2011, 2(3), 167-172.
[http://dx.doi.org/10.4103/2229-4708.90356] [PMID: 23781450]
[26]
Durga Rao, D.; Kalyanaraman, L.; Sait, S.S.; Venkata Rao, P. A validated stability-indicating normal phase LC method for clopidogrel bisulfate and its impurities in bulk drug and pharmaceutical dosage form. J. Pharm. Biomed. Anal., 2010, 52(1), 160-165.
[http://dx.doi.org/10.1016/j.jpba.2009.12.027] [PMID: 20074888]
[27]
Petritis, K.N.; Chaimbault, P.; Elfakir, C.; Dreux, M. Ion-pair reversed-phase liquid chromatography for determination of polar underivatized amino acids using perfluorinated carboxylic acids as ion pairing agent. J. Chromatogr. A, 1999, 833(2), 147-155.
[http://dx.doi.org/10.1016/S0021-9673(98)01060-7]
[28]
Bertolini, T.; Vicentini, L.; Boschetti, S.; Andreatta, P.; Gatti, R. A novel automated hydrophilic interaction liquid chromatography method using diode-array detector/electrospray ionization tandem mass spectrometry for analysis of sodium risedroted dnate and relaegradation products in pharmaceuticals. J. Chromatogr. A, 2014, 1365, 131-139.
[http://dx.doi.org/10.1016/j.chroma.2014.09.016] [PMID: 25242223]
[29]
Zhu, J.Y.; Li, J.; Wen, L.Y.; Wang, Y. Simultaneous quantification of three impurities in felodipine and its tablets by HPLC method with correction factor. Yaowu Fenxi Zazhi, 2014, 34(2), 281-286.
[30]
Chilukuri, M.; Hussainreddy, K.; Narayanareddy, P.; Venkataramana, M. A validated stability-indicating UPLC method for the determination of impurities in Maraviroc. J. Chromatogr. Sci., 2014, 52(7), 609-616.
[http://dx.doi.org/10.1093/chromsci/bmt085] [PMID: 23825352]
[31]
Ming, D.S.; Heathcote, J. Therapeutic drug monitoring of clozapine and norclozapine in human serum using ultra-performance liquid chromatography- tandem mass spectrometry. J. Anal. Toxicol., 2009, 33(4), 198-203.
[http://dx.doi.org/10.1093/jat/33.4.198] [PMID: 19470221]
[32]
Tomasello, C.; Leggieri, A.; Cavalli, R.; Di Terri, G.; D’avolio, A. In vitro stability evaluation of different pharmaceutical products containing meropenem. Hosp. Pharm., 2015, 50(4), 296-303.
[http://dx.doi.org/10.1310/hpj5004-296] [PMID: 26448659]
[33]
Gu, X.; Chen, L.; Wang, X.; Liu, X.; You, Q.; Xi, W.; Gao, L.; Chen, G.; Chen, Y.L.; Xiong, B.; Shen, J. Direct glycosylation of bioactive small molecules with glycosyl iodide and strained olefin as acid scavenger. J. Org. Chem., 2014, 79(3), 1100-1110.
[http://dx.doi.org/10.1021/jo402551x] [PMID: 24410364]
[34]
Guo, S.; Yang, J.C.; Buchwald, S.L. A practical electrophilic nitrogen source for the synthesis of chiral primary amines by copper-catalyzed hydroamination. J. Am. Chem. Soc., 2018, 140(46), 15976-15984.
[http://dx.doi.org/10.1021/jacs.8b10564] [PMID: 30371077]
[35]
Fukushi, K.; Hirokawa, T.; Timerbaev, A.R. Recent developments of capillary electrophoresis in seawater analysis. J. Chromatogr. A, 2019, 1606, 360240.
[http://dx.doi.org/10.1016/j.chroma.2019.05.020] [PMID: 31109744]
[36]
Perez-Rama, M.; Vaamonde, E.T.; Alonso, J.A. Capillary zone electrophoresis for analysis of phytochelatins and other thiol peptides in complex biological samples derivatized with monobromobimane. Electrophoresis, 2005, 26(3), 610-620.
[http://dx.doi.org/10.1002/elps.200406138] [PMID: 15690426]
[37]
Furlanetto, S.; Orlandini, S.; Pasquini, B.; Del Bubba, M.; Pinzauti, S. Quality by Design approach in the development of a solvent-modified micellar electrokinetic chromatography method: Finding the design space for the determination of amitriptyline and its impurities. Anal. Chim. Acta, 2013, 802, 113-124.
[http://dx.doi.org/10.1016/j.aca.2013.10.005] [PMID: 24176512]
[38]
Baron, D.; Rozsypal, J.; Michel, A.; Secret, E.; Siaugue, J.M. Pluháček, T.; Petr, J. Study of interactions between carboxylated core shell magnetic nanoparticles and polymyxin B by capillary electrophoresis with inductively coupled plasma mass spectrometry. J. Chromatogr. A, 2020, 1609, 460433.
[http://dx.doi.org/10.1016/j.chroma.2019.460433] [PMID: 31427136]
[39]
Hancu, G. Sasebeşi, A.; Rusu, A.; Kelemen, H.; Ciurba, A. Study of the electrophoretic behavior of cephalosporins by capillary zone electrophoresis. Adv. Pharm. Bull., 2015, 5(2), 223-229.
[http://dx.doi.org/10.15171/apb.2015.031] [PMID: 26236661]
[40]
Cui, X.; Liang, C.; Gong, F.; Wang, R.; Ni, C.; Wu, Y.; Chen, G.; Zhang, Y. Simultaneous chiral analysis of amphetamine-type stimulants and ephedrine by capillary electrophoresis coupled to time-of-flight mass spectrometry. Chirality, 2018, 30(9), 1079-1087.
[http://dx.doi.org/10.1002/chir.22987] [PMID: 29999210]
[41]
Trikas, E.; Zachariadis, G.A.; Rosenberg, E. Determination of bis-carboxyethyl germanium sesquioxide by gas chromatography with microwave-induced plasma: Atomic emission detection after derivatization with alkyl chloroformates. Anal. Bioanal. Chem., 2014, 406(14), 3489-3496.
[http://dx.doi.org/10.1007/s00216-014-7801-0] [PMID: 24748447]
[42]
Penhoet, E.; Rajkumar, T.; Rutter, W.J. Multiple forms of fructose diphosphate aldolase in mammalian tissues. Proc. Natl. Acad. Sci., 1966, 56(4), 1275-1282.
[43]
Narendra Kumar, M.; Pavan Kumar, K.S.R.; Jagadeesh Kumar, V.; John Prasanna, S.; Kumar Sharma, H.; Krishna Reddy, V. Stability indicating ion chromatography method for the simultaneous determination of ibandronate sodium drug substance and its impurities. J. Pharm. Biomed. Anal., 2011, 54(3), 596-601.
[http://dx.doi.org/10.1016/j.jpba.2010.09.026] [PMID: 20952141]
[44]
Bijleveld, Y.; de Haan, T.; Toersche, J.; Jorjani, S.; van der Lee, J.; Groenendaal, F.; Dijk, P.; van Heijst, A.; Gavilanes, A.W.D.; de Jonge, R.; Dijkman, K.P.; van Straaten, H.; Rijken, M.; Zonnenberg, I.; Cools, F.; Nuytemans, D.; Mathôt, R. A simple quantitative method analysing amikacin, gentamicin, and vancomycin levels in human newborn plasma using ion-pair liquid chromatography/tandem mass spectrometry and its applicability to a clinical study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 951-952, 110-118.
[http://dx.doi.org/10.1016/j.jchromb.2014.01.035] [PMID: 24548921]
[45]
Wang, Y.; Zhao, Z.; Qin, J.; Liu, H.; Liu, A.; Xu, M. Rapid in situ analysis of l-histidine and α-lactose in dietary supplements by fingerprint peaks using terahertz frequency-domain spectroscopy. Talanta, 2020, 208, 120469.
[http://dx.doi.org/10.1016/j.talanta.2019.120469] [PMID: 31816746]
[46]
Abounassif, M.A.; Jefferies, T.M. The determination of d-penicillamine and its disulphide in plasma by reversed-phase ion-pair high-performance liquid chromatography. J. Pharm. Biomed. Anal., 1983, 1(1), 65-72.
[http://dx.doi.org/10.1016/0731-7085(83)80009-0] [PMID: 16867835]
[47]
Chen, Y.; Liu, Y.; Chen, Z.; Chen, M.; Zhu, Y. Simultaneous determination of alendronate, pamidronate, ibandronate and risedronate using ion chromatography with integrated pulsed amperometric detection. Se Pu, 2013, 30(4), 414-418.
[http://dx.doi.org/10.3724/SP.J.1123.2011.12070] [PMID: 22799202]
[48]
Zhang, L.; Zhang, Q.; Wang, C. Refolding of detergent-denatured lysozyme using β-cyclodextrin-assisted ion exchange chromatography. Biomed. Chromatogr., 2013, 27(3), 365-370.
[PMID: 22887001]
[49]
Kumar, V.; Remers, W.A. Aminoglycoside antibiotics. 4. regiospecific partial synthesis of ribostamycin and 4”-thioribostamycin. J. Org. Chem., 1981, 46(21), 4298-4300.
[http://dx.doi.org/10.1021/jo00334a042]
[50]
Pan, M.L.; Ping, Q.W.; Zhang, J.; Li, N. Rapid Method for determination of furfural and 5-hydroxymethyl furfural of ethanol-water hydrolysate of biomass with uv spectroscopy. Guangpuxue Yu Guangpu Fenxi, 2017, 37(1), 146-149.
[PMID: 30195283]
[51]
Juarez-Facio, A.T.; Martin de Lagarde, V.; Monteil, C.; Vaugeois, J.M.; Corbiere, C.; Rogez-Florent, T. Validation of a fast and simple HPLC-UV method for the quantification of adenosine phosphates in human bronchial epithelial cells. Molecules, 2021, 26(20), 6324.
[http://dx.doi.org/10.3390/molecules26206324] [PMID: 34684903]
[52]
Zhang, P.; Lee, Y.; Wei, X.; Wu, J.; Liu, Q.; Wan, S. Enhanced production of tanshinone IIA in endophytic fungi Emericella foeniculicola by genome shuffling. Pharm. Biol., 2018, 56(1), 357-362.
[http://dx.doi.org/10.1080/13880209.2018.1481108] [PMID: 30266071]
[53]
Ahuja, S.; Scypinski, S. Handbook of modern pharmaceutical analysis; Academic press, 2001, p. 3.
[54]
González-Bermúdez, C.A.; Frontela-Saseta, C.; López-Nicolás, R.; Ros-Berruezo, G.; Martínez-Graciá, C. Effect of adding different thickening agents on the viscosity properties and in vitro mineral availability of infant formula. Food Chem., 2014, 159, 5-11.
[http://dx.doi.org/10.1016/j.foodchem.2014.02.168] [PMID: 24767020]
[55]
Han, J.T.; Liu, Y.M.; Wang, H. Determination of eleven trace elements in Chinese traditional and herbal drugs for relieving heat and toxic by FAAS. Guangpuxue Yu Guangpu Fenxi, 2006, 26(10), 1931-1934.
[PMID: 17205756]
[56]
Ayad, M.M.; Shalaby, A.A.; Abdellatef, H.E.; Hosny, M.M. Spectrophotometric and AAS determination of ramipril and enalapril through ternary complex formation. J. Pharm. Biomed. Anal., 2002, 28(2), 311-321.
[http://dx.doi.org/10.1016/S0731-7085(01)00595-7] [PMID: 11929674]
[57]
Yining, X.; Rubino, M.; Auras, R. Detection and quantification of montmorillonite nanoclay in water-ethanol solutions by graphite furnace atomic absorption spectrometry. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2013, 30(12), 2177-2183.
[http://dx.doi.org/10.1080/19440049.2013.845800] [PMID: 24215494]
[58]
Slevin, P.; Györy-Szebényi, E.; Svehla, G. Application of displacement reactions in flame photometry—II Emission flame photometric determination of alkaline earth metals in the presence of interfering anions. Talanta, 1972, 19(3), 307-315.
[http://dx.doi.org/10.1016/0039-9140(72)80081-X] [PMID: 18961051]
[59]
Jungnickel, J.L.; Forbes, J.W. Quantitative measurement of hydrogen types by intergrated nuclear magnetic resonance intensities. Anal. Chem., 1963, 35(8), 938-942.
[http://dx.doi.org/10.1021/ac60201a005]
[60]
Hollis, D.P. Quantitative analysis of aspirin, phenacetin, and caffeine mixtures by nuclear magnetic resonance spectrometry. Anal. Chem., 1963, 35(11), 1682-1684.
[http://dx.doi.org/10.1021/ac60204a043]
[61]
Zhang, F.; Jiang, M.; Shen, W.; Ding, Y. Progress in quantitative nuclear magnetic resonance technology in pharmaceutical applications. Journal of Nanjing Normal University, 2014, 14(2), 8.
[62]
Huang, T.; Zhang, W.; Quan, C.; Li, H.M. Review on quantitative nuclear magnetic resonance. Huaxue Shiji, 2012, 34(4), 327-332.
[63]
Franco, P.H.C.; Braga, S.F.P.; de Oliveira, R.B.; César, I.C. Purity determination of a new antifungal drug candidate using quantitative 1 H NMR spectroscopy: Method validation and comparison of calibration approaches. Magn. Reson. Chem., 2020, 58(1), 97-105.
[http://dx.doi.org/10.1002/mrc.4936] [PMID: 31441102]
[64]
dos Santos Ribeiro, H.S.A.; Dagnino, D.; Schripsema, J. Rapid and accurate verification of drug identity, purity and quality by 1H-NMR using similarity calculations and differential NMR. J. Pharm. Biomed. Anal., 2021, 199, 114040.
[http://dx.doi.org/10.1016/j.jpba.2021.114040] [PMID: 33836463]
[65]
Zhu, H.; Liü, Y.J.; Han, X.W.; Liu, S.L.; Hao, J.J.; Zhao, X.L.; Yu, G.L. Comparison of structural characteristics and anticoagulation activity of enoxaparin sodium with different degree of 1,6-anhydro derivatives. Yao Xue Xue Bao, 2014, 49(7), 1049-1053.
[PMID: 25233639]
[66]
Farhadi, F.; Soltani, S.; Saberi, S.; Iranshahi, M. A qHNMR method for simultaneous quantification of terpenoids from Ferula ovina (Boiss.) Boiss roots. J. Pharm. Biomed. Anal., 2019, 172, 120-125.
[http://dx.doi.org/10.1016/j.jpba.2019.04.039] [PMID: 31035093]
[67]
Zhang, Q.; Zhu, H.B.; Yang, H.X. Discussion on the factors influencing quantitative nuclear magnetic resonance determination (China). Drug Stand., 2014, 15, 404-408.
[68]
Ben Salem, I.; Mezni, M.; Boulila, A.; Hamdi, M.; Saidi, M. Removal of penicillin G and erythromyc in with ionizing radiation followed by biological treatment. Curr. Microbiol., 2016, 73(4), 582-586.
[http://dx.doi.org/10.1007/s00284-016-1097-6] [PMID: 27447798]
[69]
Gaudiano, M.C.; Borioni, A.; Antoniella, E.; Valvo, L. Counterfeit adderall containing aceclofenac from internet pharmacies. J. Forensic Sci., 2016, 61(4), 1126-1130.
[http://dx.doi.org/10.1111/1556-4029.13095] [PMID: 27364297]
[70]
Feng, L.; Jiang, H.; Li, Y.; Teng, F.; He, Y. Effects of citicoline therapy on the network connectivity of the corpus callosum in patients with leukoaraiosis. Medicine, 2017, 96(4), e5931.
[http://dx.doi.org/10.1097/MD.0000000000005931] [PMID: 28121935]
[71]
Knüver-Hopf, J.; Mohr, H. Differences between natural and recombinant interleukin-2 revealed by gel electrophoresis and capillary electrophoresis. J. Chromatogr. A, 1995, 717(1-2), 71-74.
[http://dx.doi.org/10.1016/0021-9673(95)00557-7] [PMID: 8520686]
[72]
Klepárník, K. Recent advances in combination of capillary electrophoresis with mass spectrometry: Methodology and theory. Electrophoresis, 2015, 36(1), 159-178.
[http://dx.doi.org/10.1002/elps.201400392] [PMID: 25256902]
[73]
Taichrib, A.; Scriba, G.K.E.; Neusüß, C. Identification and characterization of impurities of tetracosactide by capillary electrophoresis and liquid chromatography coupled to time-of-flight mass spectrometry. Anal. Bioanal. Chem., 2011, 401(4), 1365-1375.
[http://dx.doi.org/10.1007/s00216-011-5183-0] [PMID: 21732044]
[74]
Belal, T.S.; Awad, T.; Clark, C.R. Stability-indicating determination of trimetazidine dihydrochloride inthe presence of two of its related substances using a direct GC/MS method. J. AOAC Int., 2014, 97(6), 1514-1518.
[http://dx.doi.org/10.5740/jaoacint.12-140] [PMID: 25632428]
[75]
Razboršek, M.I. Stability studies on trans-rosmarinic acid and GC–MS analysis of its degradation product. J. Pharm. Biomed. Anal., 2011, 55(5), 1010-1016.
[http://dx.doi.org/10.1016/j.jpba.2011.04.003] [PMID: 21515014]
[76]
Bodur, S.; Erarpat, S.; Günkara, Ö.T. Bakırdere, S. Development of an easy and rapid analytical method for the extraction and preconcentration of chloroquine phosphate from human biofluids prior to GC–MS analysis. J. Pharmacol. Toxicol. Methods, 2021, 108, 106949.
[http://dx.doi.org/10.1016/j.vascn.2021.106949] [PMID: 33503487]
[77]
Yüksel, B.; Şen, N. Development and validation of a GC-FID method for determination of cocaine in illicit drug samples. J. Res. Pharm. Pract., 2018, 22(1), 181-188.
[http://dx.doi.org/10.12991/jrp.2018.92]
[78]
Yüksel, B. Quantitative GC-FID analysis of heroin for seized drugs. J. Clin. Anal. Med, 2020, 11(1), 38-42.
[http://dx.doi.org/10.4328/ACAM.6139]
[79]
Yüksel, B. Öncü, T.; Şen, N. Assessing caffeine levels in soft beverages available in Istanbul, Turkey: An LC-MS/MS application in food toxicology. Toxicologie Analytique et Clinique, 2023, 35(1), 33-43.
[http://dx.doi.org/10.1016/j.toxac.2022.08.004]
[80]
Peterssen-Fonseca, D.; Henríquez-Aedo, K.; Carrasco-Sandoval, J.; Cañumir-Veas, J.; Herrero, M.; Aranda, M. Chemometric optimisation of pressurised liquid extraction for the determination of alliin and S‐allyl‐cysteine in giant garlic (ALLIUM AMPELOPRASUM L.) by liquid chromatography tandem mass spectrometry. Phytochem. Anal., 2021, 32(6), 1051-1058.
[http://dx.doi.org/10.1002/pca.3046] [PMID: 33779027]
[81]
Wang, Q.; Shi, L.; Tang, X.; Wang, Q.; Dang, X.; Zhang, Y. Pharmacokinetic study of multiple active constituents from Kushen–Gancao Decoction after oral administration in rat by HPLC–MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 965, 19-26.
[http://dx.doi.org/10.1016/j.jchromb.2014.05.038] [PMID: 24976484]
[82]
Kalariya, P.D.; Kumar Talluri, M.V.N.; Gaitonde, V.D.; Devrukhakar, P.S.; Srinivas, R. Quality by design: A systematic and rapid liquid chromatography and mass spectrometry method for eprosartan mesylate and its related impurities using a superficially porous particle column. J. Sep. Sci., 2014, 37(16), 2160-2171.
[http://dx.doi.org/10.1002/jssc.201301364] [PMID: 24913516]
[83]
Shivakumar, G.; Dwivedi, J. Identification of degradation products in cyclophosphamide API by LC-QTOF mass spectrometry. J. Liq. Chromatogr. Relat. Technol., 2015, 38(2), 190-195.
[http://dx.doi.org/10.1080/10826076.2014.896817]
[84]
Narayanam, M.; Sahu, A.; Singh, S. Use of LC–MS/TOF, LC–MSn, NMR and LC–NMR in characterization of stress degradation products: Application to cilazapril. J. Pharm. Biomed. Anal., 2015, 111, 190-203.
[http://dx.doi.org/10.1016/j.jpba.2015.03.038] [PMID: 25890215]
[85]
Acet, Ö.; Erdönmez, D.; Acet, B.Ö. Odabaşı M. N-acyl homoserine lactone molecules assisted quorum sensing: Effects consequences and monitoring of bacteria talking in real life. Arch. Microbiol., 2021, 203(7), 3739-3749.
[http://dx.doi.org/10.1007/s00203-021-02381-9] [PMID: 34002253]
[86]
Acet, Ö. Odabaşı M. Detection of N-hexanoyl-L-homoserine lactone via MIP-based QCM sensor: Preparation and characterization. Polym. Bull., 2022, 1-18.
[87]
Arshad, U.; Mujahid, A.; Lieberzeit, P.; Afzal, A.; Bajwa, S.Z.; Iqbal, N.; Roshan, S. Molecularly imprinted polymeric coatings for sensitive and selective gravimetric detection of artemether. RSC Advances, 2020, 10(57), 34355-34363.
[http://dx.doi.org/10.1039/D0RA04785F] [PMID: 35514404]
[88]
Sun, K.; Fan, J.; Han, J. Ameliorating effects of traditional chinese medicine preparation, chinese materia medica and active compounds on ischemia/reperfusion-induced cerebral microcirculatory disturbances and neuron damage. Acta Pharm. Sin. B, 2015, 5(1), 8-24.
[http://dx.doi.org/10.1016/j.apsb.2014.11.002] [PMID: 26579420]
[89]
Wang, H.M.; Wang, M. Nanometer preparation of traditional chinese medicine for rheumatoid arthritis. Zhongguo Zhongyao Zazhi, 2019, 44(18), 3908-3916.
[PMID: 31872724]
[90]
Zhang, Y.; Lu, P.; Qin, H.; Zhang, Y.; Sun, X.; Song, X.; Liu, J.; Peng, H.; Liu, Y.; Nwafor, E.O.; Li, J.; Liu, Z. Traditional chinese medicine combined with pulmonary drug delivery system and idiopathic pulmonary fibrosis: Rationale and therapeutic potential. Biomed. Pharmacother., 2021, 133, 111072.
[http://dx.doi.org/10.1016/j.biopha.2020.111072] [PMID: 33378971]
[91]
Hemilä, H.; Petrus, E.J.; Fitzgerald, J.T.; Prasad, A. Zinc acetate lozenges for treating the common cold: An individual patient data meta-analysis. Br. J. Clin. Pharmacol., 2016, 82(5), 1393-1398.
[http://dx.doi.org/10.1111/bcp.13057] [PMID: 27378206]
[92]
Shi, Y.M.; Zhang, Y.Q.; Fang, S.Q. Clinical and experimental studies of zhenkeling oral liquor on treatment infantile cough. Chung Kuo Chung Hsi I Chieh Ho Tsa Chih, 1996, 16(7), 390-393.
[PMID: 9387729]
[93]
Jäger, S.; Brand, L.; Eggeling, C. New fluorescence techniques for high-throughput drug discovery. Curr. Pharm. Biotechnol., 2003, 4(6), 463-476.
[http://dx.doi.org/10.2174/1389201033377382] [PMID: 14683438]

© 2024 Bentham Science Publishers | Privacy Policy