Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Exploring the Mechanism of Brucea Javanica against Ovarian Cancer based on Network Pharmacology and the Influence of Luteolin on the PI3K/AKT Pathway

Author(s): Jufan Zhu, Mengfei Han, Yiheng Yang, Renqian Feng, Yan Hu* and Yuli Wang*

Volume 27, Issue 1, 2024

Published on: 04 August, 2023

Page: [157 - 167] Pages: 11

DOI: 10.2174/1386207326666230627114111

Price: $65

Abstract

Background: Ovarian cancer (OC) is a commonly diagnosed female cancer around the world. The Chinese herbal medicine Brucea Javanica has an anti-cancer effect. However, there is no relevant report on whether Brucea Javanica is effective in treating OC, and the corresponding mechanism is also unknown.

Objective: This study was projected to excavate the active components and underpinned molecular mechanisms of Brucea Javanica in treating ovarian cancer (OC) through network pharmacology combined with in vitro experiments.

Methods: The essential active components of Brucea Javanica were selected using the TCMSP database. The OC-related targets were selected by GeneCards, intersecting targets were obtained by Venn Diagram. The core targets were obtained through the PPI network and Cytoscape, and the key pathway was gained through GO and KEGG enrichment analyses. Meanwhile, docking conformation was observed as reflected by molecular docking. MTT, colony formation assay and flow cytometer (FCM) analysis were performed to determine cell proliferation and apoptosis, respectively. Finally, Levels of various signaling proteins were evaluated by western blotting.

Results: Luteolin, β-sitosterol and their corresponding targets were selected as the essential active components of Brucea Javanica. 76 intersecting targets were obtained by Venn Diagram. TP53, AKT1, and TNF were obtained through the PPI network and Cytoscape, and the key pathway PI3K/AKT was gained through GO and KEGG enrichment analyses. A good docking conformation was observed between luteolin and AKT1. Luteolin could hinder A2780 cell proliferation, induce cell apoptosis and enhance the inhibition of the PI3K/AKT pathway.

Conclusion: It was verified in vitro that luteolin could hinder OC cell proliferation and activate the PI3K/AKT pathway to lead to apoptosis.

Keywords: Brucea Javanica, luteolin, ovarian cancer, core targets, network pharmacology, molecular docking, PI3K, AKT.

Graphical Abstract
[1]
Webb, P.M.; Jordan, S.J. Epidemiology of epithelial ovarian cancer. Best Pract. Res. Clin. Obstet. Gynaecol., 2017, 41, 3-14.
[http://dx.doi.org/10.1016/j.bpobgyn.2016.08.006] [PMID: 27743768]
[2]
Sriramkumar, S.; Metcalfe, T.X.; Lai, T.; Zong, X.; Fang, F.; O’Hagan, H.M.; Nephew, K.P. Single-cell analysis of a high-grade serous ovarian cancer cell line reveals transcriptomic changes and cell subpopulations sensitive to epigenetic combination treatment. PLoS One, 2022, 17(8), e0271584.
[http://dx.doi.org/10.1371/journal.pone.0271584] [PMID: 35921335]
[3]
Yubero, A.; Barquín, A.; Estévez, P.; Pajares, B.; Sánchez, L.; Reche, P.; Alarcón, J.; Calzas, J.; Gaba, L.; Fuentes, J.; Santaballa, A.; Salvador, C.; Manso, L.; Herrero, A.; Taus, Á.; Márquez, R.; Madani, J.; Merino, M.; Marquina, G.; Casado, V.; Constenla, M.; Gutiérrez, M.; Dosil, A.; González-Martín, A. Rucaparib in recurrent ovarian cancer: real-world experience from the rucaparib early access programme in Spain – A GEICO study. BMC Cancer, 2022, 22(1), 1150.
[http://dx.doi.org/10.1186/s12885-022-10191-5] [PMID: 36348385]
[4]
Kuo, Y.T.; Liao, H.H.; Chiang, J.H.; Wu, M.Y.; Chen, B.C.; Chang, C.M.; Yeh, M.H.; Chang, T.T.; Sun, M.F.; Yeh, C.C.; Yen, H.R. Complementary Chinese Herbal Medicine Therapy Improves Survival of Patients With Pancreatic Cancer in Taiwan: A Nationwide Population-Based Cohort Study. Integr. Cancer Ther., 2018, 17(2), 411-422.
[http://dx.doi.org/10.1177/1534735417722224] [PMID: 28774207]
[5]
Li, K.; Liang, Y.; Wang, Q.; Li, Y.; Zhou, S.; Wei, H.; Zhou, C.; Wan, X. Brucea javanica: A review on anticancer of its pharmacological properties and clinical researches. Phytomedicine, 2021, 86, 153560.
[http://dx.doi.org/10.1016/j.phymed.2021.153560] [PMID: 33858739]
[6]
Taghizadeh, M.S.; Niazi, A.; Moghadam, A.; Afsharifar, A. Experimental, molecular docking and molecular dynamic studies of natural products targeting overexpressed receptors in breast cancer. PLoS One, 2022, 17(5), e0267961.
[http://dx.doi.org/10.1371/journal.pone.0267961] [PMID: 35536789]
[7]
Tan, Y.Q.; Jin, M.; He, X.H.; Chen, H.W. Huoxue Qingre decoction used for treatment of coronary heart disease network analysis and metabolomic evaluation. Front. Pharmacol., 2022, 13, 1025540.
[http://dx.doi.org/10.3389/fphar.2022.1025540] [PMID: 36339536]
[8]
Li, M.; Zhang, W.; Yang, L.; Wang, H.; Wang, Y.; Huang, K.; Zhang, W. The Mechanism of Xiaoyao San in the Treatment of Ovarian Cancer by Network Pharmacology and the Effect of Stigmasterol on the PI3K/Akt Pathway. Dis. Markers, 2021, 2021, 1-10.
[http://dx.doi.org/10.1155/2021/4304507] [PMID: 34306252]
[9]
Wu, J.; Li, X.Y.; Liang, J.; Fang, D.L.; Yang, Z.J.; Wei, J.; Chen, Z.J. Network pharmacological analysis of active components of Xiaoliu decoction in the treatment of glioblastoma multiforme. Front. Genet., 2022, 13, 940462.
[http://dx.doi.org/10.3389/fgene.2022.940462] [PMID: 36046228]
[10]
Zhu, W.; Zhang, R.; Ma, C.; Hu, Y.; Shi, X.; Wang, X.; Wu, X.; Ai, K. Study on the action mechanism of the yifei jianpi tongfu formula in treatment of colorectal cancer lung metastasis based on network analysis, molecular docking, and experimental validation. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-14.
[http://dx.doi.org/10.1155/2022/6229444] [PMID: 35942366]
[11]
Qin, C.; Wu, M.; Wang, X.; Zhang, W.; Qi, G.; Wu, N.Y.; Liu, X.; Lu, Y.; Zhang, J.; Chai, Y. Study on the mechanism of Danshen-Guizhi drug pair in the treatment of ovarian cancer based on network pharmacology and in vitro experiment. PeerJ, 2022, 10, e13148.
[http://dx.doi.org/10.7717/peerj.13148] [PMID: 35411258]
[12]
Jin, X.; Mei, Y.; Shen, Z.; Zhu, J.; Xing, S.; Yang, H.; Liang, G.; Zheng, X. A chalcone-syringaldehyde hybrid inhibits triple-negative breast cancer cell proliferation and migration by inhibiting CKAP2-mediated FAK and STAT3 phosphorylation. Phytomedicine, 2022, 101, 154087.
[http://dx.doi.org/10.1016/j.phymed.2022.154087] [PMID: 35429924]
[13]
Yang, Z.; Pan, Q.; Zhang, D.; Chen, J.; Qiu, Y.; Chen, X.; Zheng, F.; Lin, F. Silibinin restores the sensitivity of cisplatin and taxol in A2780-resistant cell and reduces drug-induced hepatotoxicity. Cancer Manag. Res., 2019, 11, 7111-7122.
[http://dx.doi.org/10.2147/CMAR.S201341] [PMID: 31440098]
[14]
Chen, J.; Jin, X.; Shen, Z.; Mei, Y.; Zhu, J.; Zhang, X.; Liang, G.; Zheng, X. H2O2 enhances the anticancer activity of TMPyP4 by ROS-mediated mitochondrial dysfunction and DNA damage. Med. Oncol., 2021, 38(6), 59.
[http://dx.doi.org/10.1007/s12032-021-01505-x] [PMID: 33880669]
[15]
Chen, X.; Wang, G.; Mohammed Alsayed, A.M.; Du, Z. Lu liu; Ma, Y.; Liu, P.; Zhang, Q.; Chen, X.; Chen, W.; Ye, F.; Zheng, X.; Liu, Z. Synthesis and biological evaluation of novel N-substituted benzamides as anti-migration agents for treatment of osteosarcoma. Eur. J. Med. Chem., 2021, 214, 113203.
[http://dx.doi.org/10.1016/j.ejmech.2021.113203] [PMID: 33530028]
[16]
Huang, T.; Ning, Z.; Hu, D.; Zhang, M.; Zhao, L.; Lin, C.; Zhong, L.L.D.; Yang, Z.; Xu, H.; Bian, Z. Uncovering the Mechanisms of Chinese Herbal Medicine (MaZiRenWan) for Functional Constipation by Focused Network Pharmacology Approach. Front. Pharmacol., 2018, 9, 270.
[http://dx.doi.org/10.3389/fphar.2018.00270] [PMID: 29632490]
[17]
Zhao, M.; Chen, Y.; Wang, C.; Xiao, W.; Chen, S.; Zhang, S.; Yang, L.; Li, Y. Systems Pharmacology Dissection of Multi-Scale Mechanisms of Action of Huo-Xiang-Zheng-Qi Formula for the Treatment of Gastrointestinal Diseases. Front. Pharmacol., 2019, 9, 1448.
[http://dx.doi.org/10.3389/fphar.2018.01448] [PMID: 30687082]
[18]
Hussain, Y.; Cui, J.H.; Khan, H.; Aschner, M.; Batiha, G.E.S.; Jeandet, P. Luteolin and cancer metastasis suppression: focus on the role of epithelial to mesenchymal transition. Med. Oncol., 2021, 38(6), 66.
[http://dx.doi.org/10.1007/s12032-021-01508-8] [PMID: 33950369]
[19]
Tsai, K.J.; Tsai, H.Y.; Tsai, C.C.; Chen, T.Y.; Hsieh, T.H.; Chen, C.L.; Mbuyisa, L.; Huang, Y.B.; Lin, M.W. Luteolin Inhibits Breast Cancer Stemness and Enhances Chemosensitivity through the Nrf2-Mediated Pathway. Molecules, 2021, 26(21), 6452.
[http://dx.doi.org/10.3390/molecules26216452] [PMID: 34770867]
[20]
Imran, M.; Rauf, A.; Abu-Izneid, T.; Nadeem, M.; Shariati, M.; Khan, I.; Imran, A.; Orhan, I.; Rizwan, M.; Atif, M.; Gondal, T.; Mubarak, M. Luteolin, a flavonoid, as an anticancer agent: A review. Biomed. Pharmacother., 2019, 112, 108612.
[21]
Prabahar, K.; Udhumansha, U.; Elsherbiny, N.; Qushawy, M. Microneedle mediated transdermal delivery of β-sitosterol loaded nanostructured lipid nanoparticles for androgenic alopecia. Drug Deliv., 2022, 29(1), 3022-3034.
[http://dx.doi.org/10.1080/10717544.2022.2120927] [PMID: 36110028]
[22]
Wang, Z. Zhan, Y.; Xu, J.; Wang, Y.; Sun, M.; Chen, J.; Liang, T.; Wu, L.; Xu, K. β-Sitosterol Reverses Multidrug Resistance via BCRP Suppression by Inhibiting the p53–MDM2 Interaction in Colorectal Cancer. J. Agric. Food Chem., 2020, 68(12), 3850-3858.
[http://dx.doi.org/10.1021/acs.jafc.0c00107] [PMID: 32167760]
[23]
Khan, Z.; Nath, N.; Rauf, A.; Emran, T.B.; Mitra, S.; Islam, F.; Chandran, D.; Barua, J.; Khandaker, M.U.; Idris, A.M.; Wilairatana, P.; Thiruvengadam, M. Multifunctional roles and pharmacological potential of β-sitosterol: Emerging evidence toward clinical applications. Chem. Biol. Interact., 2022, 365, 110117.
[http://dx.doi.org/10.1016/j.cbi.2022.110117] [PMID: 35995256]
[24]
Silwal-Pandit, L.; Langerød, A.; Børresen-Dale, A.L. TP53 Mutations in Breast and Ovarian Cancer. Cold Spring Harb. Perspect. Med., 2017, 7(1), a026252.
[http://dx.doi.org/10.1101/cshperspect.a026252] [PMID: 27815305]
[25]
Zhang, L.; Zhou, Q.; Qiu, Q.; Hou, L.; Wu, M.; Li, J.; Li, X.; Lu, B.; Cheng, X.; Liu, P.; Lu, W.; Lu, Y. CircPLEKHM3 acts as a tumor suppressor through regulation of the miR-9/BRCA1/DNAJB6/KLF4/AKT1 axis in ovarian cancer. Mol. Cancer, 2019, 18(1), 144.
[http://dx.doi.org/10.1186/s12943-019-1080-5] [PMID: 31623606]
[26]
Macciò, A.; Madeddu, C. Inflammation and ovarian cancer. Cytokine, 2012, 58(2), 133-147.
[http://dx.doi.org/10.1016/j.cyto.2012.01.015] [PMID: 22349527]
[27]
Rinne, N.; Christie, E.L.; Ardasheva, A.; Kwok, C.H.; Demchenko, N.; Low, C.; Tralau-Stewart, C.; Fotopoulou, C.; Cunnea, P. Targeting the PI3K/AKT/mTOR pathway in epithelial ovarian cancer, therapeutic treatment options for platinum-resistant ovarian cancer. Cancer Drug Resist., 2021, 4(3), 573-595.
[http://dx.doi.org/10.20517/cdr.2021.05] [PMID: 35582310]
[28]
Ghoneum, A.; Said, N. PI3K-AKT-mTOR and NFκB pathways in ovarian cancer: implications for targeted therapeutics. Cancers (Basel), 2019, 11(7), 949.
[http://dx.doi.org/10.3390/cancers11070949] [PMID: 31284467]
[29]
Deng, J.; Bai, X.; Feng, X.; Ni, J.; Beretov, J.; Graham, P.; Li, Y. Inhibition of PI3K/Akt/mTOR signaling pathway alleviates ovarian cancer chemoresistance through reversing epithelial-mesenchymal transition and decreasing cancer stem cell marker expression. BMC Cancer, 2019, 19(1), 618.
[http://dx.doi.org/10.1186/s12885-019-5824-9] [PMID: 31234823]
[30]
Zhou, J.; Jiang, Y.; Chen, H.; Wu, Y.; Zhang, L. Tanshinone I attenuates the malignant biological properties of ovarian cancer by inducing apoptosis and autophagy via the inactivation of PI3K/AKT/mTOR pathway. Cell Prolif., 2020, 53(2), e12739.
[http://dx.doi.org/10.1111/cpr.12739] [PMID: 31820522]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy