Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Lifestyle Modulators of Neuroplasticity in Parkinson’s Disease: Evidence in Human Neuroimaging Studies

Author(s): Silvia Paola Caminiti*, Silvia Gallo, Federico Menegon, Andrea Naldi, Cristoforo Comi and Giacomo Tondo

Volume 23, Issue 5, 2024

Published on: 05 July, 2023

Page: [602 - 613] Pages: 12

DOI: 10.2174/1871527322666230616121213

Price: $65

Abstract

Parkinson’s disease (PD) is a neurodegenerative disease characterized by both motor and non-motor symptoms. A progressive neuronal loss and the consequent clinical impairment lead to deleterious effects on daily living and quality of life. Despite effective symptomatic therapeutic approaches, no disease-modifying therapies are currently available. Emerging evidence suggests that adopting a healthy lifestyle can improve the quality of life of PD patients. In addition, modulating lifestyle factors can positively affect the microstructural and macrostructural brain levels, corresponding to clinical improvement. Neuroimaging studies may help to identify the mechanisms through which physical exercise, dietary changes, cognitive enrichment, and exposure to substances modulate neuroprotection. All these factors have been associated with a modified risk of developing PD, with attenuation or exacerbation of motor and non-motor symptomatology, and possibly with structural and molecular changes. In the present work, we review the current knowledge on how lifestyle factors influence PD development and progression and the neuroimaging evidence for the brain structural, functional, and molecular changes induced by the adoption of positive or negative lifestyle behaviours.

Keywords: Neurodegeneration, physical exercise, diet, smoking, PET, MRI, cognitive reserve, neuroplasticity.

Graphical Abstract
[1]
Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020; 396(10248): 413-46.
[http://dx.doi.org/10.1016/S0140-6736(20)30367-6] [PMID: 32738937]
[2]
Viel TA, Toricelli M, Pereira AAR, et al. Mechanisms of neuroplasticity and brain degeneration: strategies for protection during the aging process. Neural Regen Res 2021; 16(1): 58-67.
[http://dx.doi.org/10.4103/1673-5374.286952] [PMID: 32788448]
[3]
Markram H, Gerstner W, Sjöström PJ. A history of spike-timing-dependent plasticity. Front Synaptic Neurosci 2011; 3: 4.
[http://dx.doi.org/10.3389/fnsyn.2011.00004] [PMID: 22007168]
[4]
Mateos-Aparicio P, Rodríguez-Moreno A. The impact of studying brain plasticity. Front Cell Neurosci 2019; 13: 66.
[http://dx.doi.org/10.3389/fncel.2019.00066] [PMID: 30873009]
[5]
Janssen Daalen JM, Schootemeijer S, Richard E, Darweesh SKL, Bloem BR. Lifestyle interventions for the prevention of Parkinson disease: a recipe for action. Neurology 2022; 99(7) (Suppl. 1): 42-51.
[http://dx.doi.org/10.1212/WNL.0000000000200787] [PMID: 35970584]
[6]
Balestrino R, Schapira AHV. Parkinson disease. Eur J Neurol 2020; 27(1): 27-42.
[http://dx.doi.org/10.1111/ene.14108] [PMID: 31631455]
[7]
Schapira AH, Chaudhuri K. Non-motor features of Parkinson disease. Nat Rev Neurosci 2017; 18: 435-50.
[8]
Fearnley JM, Lees AJ. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 1991; 114(5): 2283-301.
[http://dx.doi.org/10.1093/brain/114.5.2283] [PMID: 1933245]
[9]
Politis M. Neuroimaging in Parkinson disease: from research setting to clinical practice. Nat Rev Neurol 2014; 10(12): 708-22.
[http://dx.doi.org/10.1038/nrneurol.2014.205] [PMID: 25385334]
[10]
Lee HM, Koh SB. Many faces of Parkinson’s disease: non-motor symptoms of Parkinson’s disease. J Mov Disord 2015; 8(2): 92-7.
[http://dx.doi.org/10.14802/jmd.15003] [PMID: 26090081]
[11]
Mitchell T, Lehéricy S, Chiu SY, Strafella AP, Stoessl AJ, Vaillancourt DE. Emerging neuroimaging biomarkers across disease stage in Parkinson disease: a review. JAMA Neurol 2021; 78(10): 1262-72.
[http://dx.doi.org/10.1001/jamaneurol.2021.1312] [PMID: 34459865]
[12]
de Natale ER, Wilson H, Politis M. Academic Press 2023. Dopaminergic molecular imaging in familial and idiopathic Parkinson’s disease. Neuroimaging in Parkinson's Disease and Related Disorders.
[http://dx.doi.org/10.1016/B978-0-12-821651-4.00016-6]
[13]
Tondo G, Comi C, Naldi A, et al. Neuroimaging in multiple system atrophyNeuroimaging in Parkinson s Disease and Related Disorders. Elsevier 2023; pp. 311-54.
[http://dx.doi.org/10.1016/B978-0-12-821651-4.00008-7]
[14]
Perani D, Caminiti SP, Carli G, Tondo G. PET neuroimaging in dementia conditions. Springer 2021; pp. 211-45.
[http://dx.doi.org/10.1007/978-3-030-53168-3_9]
[15]
Pilotto A, Premi E, Paola Caminiti S, et al. Single-subject SPM FDG-PET patterns predict risk of dementia progression in Parkinson disease. Neurology 2018; 90(12): e1029-37.
[http://dx.doi.org/10.1212/WNL.0000000000005161] [PMID: 29453242]
[16]
Pyatigorskaya N, Gallea C, Garcia-Lorenzo D, Vidailhet M, Lehericy S. A review of the use of magnetic resonance imaging in Parkinson’s disease. Ther Adv Neurol Disord 2014; 7(4): 206-20.
[http://dx.doi.org/10.1177/1756285613511507] [PMID: 25002908]
[17]
Filippi M, Sarasso E, Piramide N, et al. Progressive brain atrophy and clinical evolution in Parkinson’s disease. Neuroimage Clin 2020; 28: 102374.
[http://dx.doi.org/10.1016/j.nicl.2020.102374] [PMID: 32805678]
[18]
Filippi M, Sarasso E, Agosta F. Resting‐state functional MRI in Parkinsonian syndromes. Mov Disord Clin Pract 2019; 6(2): 104-17.
[http://dx.doi.org/10.1002/mdc3.12730] [PMID: 30838308]
[19]
Prodoehl J, Burciu RG, Vaillancourt DE. Resting state functional magnetic resonance imaging in Parkinson’s disease. Curr Neurol Neurosci Rep 2014; 14(6): 448.
[http://dx.doi.org/10.1007/s11910-014-0448-6] [PMID: 24744021]
[20]
Le Bihan D, Mangin JF, Poupon C, et al. Diffusion tensor imaging: Concepts and applications. J Magn Reson Imaging 2001; 13(4): 534-46.
[http://dx.doi.org/10.1002/jmri.1076] [PMID: 11276097]
[21]
Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage 2002; 17(3): 1429-36.
[http://dx.doi.org/10.1006/nimg.2002.1267] [PMID: 12414282]
[22]
Atkinson-Clement C, Pinto S, Eusebio A, Coulon O. Diffusion tensor imaging in Parkinson’s disease: Review and meta-analysis. Neuroimage Clin 2017; 16: 98-110.
[http://dx.doi.org/10.1016/j.nicl.2017.07.011] [PMID: 28765809]
[23]
Tondo G, Esposito M, Dervenoulas G, Wilson H, Politis M, Pagano G. Hybrid PET-MRI applications in movement disorders. Int Rev Neurobiol 2019; 144: 211-57.
[http://dx.doi.org/10.1016/bs.irn.2018.10.003] [PMID: 30638455]
[24]
Nag N, Jelinek GA. A narrative review of lifestyle factors associated with Parkinson’s disease risk and progression. Neurodegener Dis 2019; 19(2): 51-9.
[http://dx.doi.org/10.1159/000502292] [PMID: 31487721]
[25]
Paul KC, Chuang YH, Shih IF, et al. The association between lifestyle factors and Parkinson’s disease progression and mortality. Mov Disord 2019; 34(1): 58-66.
[http://dx.doi.org/10.1002/mds.27577] [PMID: 30653734]
[26]
Palasz E, Niewiadomski W, Gasiorowska A, Wysocka A, Stepniewska A, Niewiadomska G. Exercise-induced neuroprotection and recovery of motor function in animal models of Parkinson’s disease. Front Neurol 2019; 10: 1143.
[http://dx.doi.org/10.3389/fneur.2019.01143] [PMID: 31736859]
[27]
Chen H, Zhang SM, Schwarzschild MA, Hernán MA, Ascherio A. Physical activity and the risk of Parkinson disease. Neurology 2005; 64(4): 664-9.
[http://dx.doi.org/10.1212/01.WNL.0000151960.28687.93] [PMID: 15728289]
[28]
Xu Q, Park Y, Huang X, et al. Physical activities and future risk of Parkinson disease. Neurology 2010; 75(4): 341-8.
[http://dx.doi.org/10.1212/WNL.0b013e3181ea1597] [PMID: 20660864]
[29]
Yang F, Trolle Lagerros Y, Bellocco R, et al. Physical activity and risk of Parkinson’s disease in the Swedish National March Cohort. Brain 2015; 138(2): 269-75.
[http://dx.doi.org/10.1093/brain/awu323] [PMID: 25410713]
[30]
van der Kolk NM, de Vries NM, Kessels RPC, et al. Effectiveness of home-based and remotely supervised aerobic exercise in Parkinson’s disease: a double-blind, randomised controlled trial. Lancet Neurol 2019; 18(11): 998-1008.
[http://dx.doi.org/10.1016/S1474-4422(19)30285-6] [PMID: 31521532]
[31]
A McKenzie J, Spielman L, Pointer C. Neuroinflammation as a common mechanism associated with the modifiable risk factors for Alzheimer’s and Parkinson’s diseases. Curr Aging Sci 2017; 10: 158-76.
[32]
Comi C, Tondo G. Insights into the protective role of immunity in neurodegenerative disease. Neural Regen Res 2017; 12(1): 64-5.
[http://dx.doi.org/10.4103/1673-5374.198980] [PMID: 28250745]
[33]
Vecchio LM, Meng Y, Xhima K, Lipsman N, Hamani C, Aubert I. The neuroprotective effects of exercise: maintaining a healthy brain throughout aging. Brain Plast 2018; 4(1): 17-52.
[http://dx.doi.org/10.3233/BPL-180069] [PMID: 30564545]
[34]
Rafferty MR, Schmidt PN, Luo ST, et al. Regular exercise, quality of life, and mobility in Parkinson’s disease: a longitudinal analysis of national Parkinson foundation quality improvement initiative data. J Parkinsons Dis 2017; 7(1): 193-202.
[http://dx.doi.org/10.3233/JPD-160912] [PMID: 27858719]
[35]
Schenkman M, Moore CG, Kohrt WM, et al. Effect of high-intensity treadmill exercise on motor symptoms in patients with de novo Parkinson disease: a phase 2 randomized clinical trial. JAMA Neurol 2018; 75(2): 219-26.
[http://dx.doi.org/10.1001/jamaneurol.2017.3517] [PMID: 29228079]
[36]
Shulman LM, Katzel LI, Ivey FM, et al. Randomized clinical trial of 3 types of physical exercise for patients with Parkinson disease. JAMA Neurol 2013; 70(2): 183-90.
[http://dx.doi.org/10.1001/jamaneurol.2013.646] [PMID: 23128427]
[37]
Mak MK, Wong-Yu IS, Shen X, Chung CL. Long-term effects of exercise and physical therapy in people with Parkinson disease. Nat Rev Neurol 2017; 13(11): 689-703.
[http://dx.doi.org/10.1038/nrneurol.2017.128] [PMID: 29027544]
[38]
Lamotte G, Rafferty MR, Prodoehl J, et al. Effects of endurance exercise training on the motor and non-motor features of Parkinson’s disease: a review. J Parkinsons Dis 2015; 5(1): 21-41.
[http://dx.doi.org/10.3233/JPD-140425] [PMID: 25374272]
[39]
da Silva FC, Iop RR, de Oliveira LC, et al. Effects of physical exercise programs on cognitive function in Parkinson’s disease patients: A systematic review of randomized controlled trials of the last 10 years. PLoS One 2018; 13(2): e0193113.
[http://dx.doi.org/10.1371/journal.pone.0193113] [PMID: 29486000]
[40]
Ribas CG, Alves da Silva L, Corrêa MR, Teive HG, Valderramas S. Effectiveness of exergaming in improving functional balance, fatigue and quality of life in Parkinson’s disease: A pilot randomized controlled trial. Parkinsonism Relat Disord 2017; 38: 13-8.
[http://dx.doi.org/10.1016/j.parkreldis.2017.02.006] [PMID: 28190675]
[41]
Marotta N, Calafiore D, Curci C, et al. Integrating virtual reality and exergaming in cognitive rehabilitation of patients with Parkinson disease: a systematic review of randomized controlled trials. Eur J Phys Rehabil Med 2022; 58(6): 818-26.
[PMID: 36169933]
[42]
Mirelman A, Rochester L, Maidan I, et al. Addition of a non-immersive virtual reality component to treadmill training to reduce fall risk in older adults (V-TIME): a randomised controlled trial. Lancet 2016; 388(10050): 1170-82.
[http://dx.doi.org/10.1016/S0140-6736(16)31325-3] [PMID: 27524393]
[43]
dos Santos Delabary M, Komeroski IG, Monteiro EP, Costa RR, Haas AN. Effects of dance practice on functional mobility, motor symptoms and quality of life in people with Parkinson’s disease: a systematic review with meta-analysis. Aging Clin Exp Res 2018; 30(7): 727-35.
[http://dx.doi.org/10.1007/s40520-017-0836-2] [PMID: 28980176]
[44]
Li F, Harmer P, Fitzgerald K, et al. Tai chi and postural stability in patients with Parkinson’s disease. N Engl J Med 2012; 366(6): 511-9.
[http://dx.doi.org/10.1056/NEJMoa1107911] [PMID: 22316445]
[45]
van Puymbroeck M, Walter A, Hawkins BL, et al. Functional improvements in Parkinson’s disease following a randomized trial of yoga. Evid Based Complement Alternat Med 2018; 2018: 2018.
[46]
Hughes KC, Gao X, Kim IY, et al. Intake of dairy foods and risk of Parkinson disease. Neurology 2017; 89(1): 46-52.
[http://dx.doi.org/10.1212/WNL.0000000000004057] [PMID: 28596209]
[47]
Choi HK, Atkinson K, Karlson EW, Willett W, Curhan G. Purine-rich foods, dairy and protein intake, and the risk of gout in men. N Engl J Med 2004; 350(11): 1093-103.
[http://dx.doi.org/10.1056/NEJMoa035700] [PMID: 15014182]
[48]
Ascherio A, LeWitt PA, Xu K, et al. Urate as a predictor of the rate of clinical decline in Parkinson disease. Arch Neurol 2009; 66(12): 1460-8.
[http://dx.doi.org/10.1001/archneurol.2009.247] [PMID: 19822770]
[49]
Morelli M, Carta AR, Kachroo A, Schwarzschild MA. Pathophysiological roles for purines. Prog Brain Res 2010; 183: 183-208.
[http://dx.doi.org/10.1016/S0079-6123(10)83010-9] [PMID: 20696321]
[50]
de Lau LML, Koudstaal PJ, Hofman A, Breteler MMB. Serum uric acid levels and the risk of Parkinson disease. Ann Neurol 2005; 58(5): 797-800.
[http://dx.doi.org/10.1002/ana.20663] [PMID: 16240356]
[51]
Gao X, Cassidy A, Schwarzschild MA, Rimm EB, Ascherio A. Habitual intake of dietary flavonoids and risk of Parkinson disease. Neurology 2012; 78(15): 1138-45.
[http://dx.doi.org/10.1212/WNL.0b013e31824f7fc4] [PMID: 22491871]
[52]
Gao X, Chen H, Fung TT, et al. Prospective study of dietary pattern and risk of Parkinson disease. Am J Clin Nutr 2007; 86(5): 1486-94.
[http://dx.doi.org/10.1093/ajcn/86.5.1486] [PMID: 17991663]
[53]
Mischley LK, Lau RC, Bennett RD. Role of diet and nutritional supplements in Parkinson’s disease progression. Oxid Med Cell Longev 2017; 2017: 1-9.
[http://dx.doi.org/10.1155/2017/6405278] [PMID: 29081890]
[54]
Molsberry S, Bjornevik K, Hughes KC, Healy B, Schwarzschild M, Ascherio A. Diet pattern and prodromal features of Parkinson disease. Neurology 2020; 95(15): e2095-108.
[http://dx.doi.org/10.1212/WNL.0000000000010523] [PMID: 32817391]
[55]
Paknahad Z, Sheklabadi E, Derakhshan Y, Bagherniya M, Chitsaz A. The effect of the Mediterranean diet on cognitive function in patients with Parkinson’s disease: A randomized clinical controlled trial. Complement Ther Med 2020; 50: 102366.
[http://dx.doi.org/10.1016/j.ctim.2020.102366] [PMID: 32444045]
[56]
Abbott RD, Ross GW, White LR, et al. Midlife adiposity and the future risk of Parkinson’s disease. Neurology 2002; 59(7): 1051-7.
[http://dx.doi.org/10.1212/WNL.59.7.1051] [PMID: 12370461]
[57]
Wang YL, Wang YT, Li JF, Zhang YZ, Yin HL, Han B. Body mass index and risk of Parkinson’s disease: a dose-response meta-analysis of prospective studies. PLoS One 2015; 10(6): e0131778.
[http://dx.doi.org/10.1371/journal.pone.0131778] [PMID: 26121579]
[58]
Kang SH, Moon SJ, Kang M, Chung SJ, Cho GJ, Koh SB. Incidence of Parkinson’s disease and modifiable risk factors in Korean population: A longitudinal follow-up study of a nationwide cohort. Front Aging Neurosci 2023; 15: 1094778.
[http://dx.doi.org/10.3389/fnagi.2023.1094778] [PMID: 36865411]
[59]
Li L, Liu S, Zhuang J, et al. Recent research progress on metabolic syndrome and risk of Parkinson’s disease. Rev Neurosci 2022; 0(0)
[http://dx.doi.org/10.1515/revneuro-2022-0093] [PMID: 36450297]
[60]
Jeong SM, Han K, Kim D, Rhee SY, Jang W, Shin DW. Body mass index, diabetes, and the risk of Parkinson’s disease. Mov Disord 2020; 35(2): 236-44.
[http://dx.doi.org/10.1002/mds.27922] [PMID: 31785021]
[61]
Noyce AJ, Kia DA, Hemani G, et al. Estimating the causal influence of body mass index on risk of Parkinson disease: A Mendelian randomisation study. PLoS Med 2017; 14(6): e1002314.
[http://dx.doi.org/10.1371/journal.pmed.1002314] [PMID: 28609445]
[62]
Chen H, Zhang SM, Schwarzschild MA, Hernán MA, Willett WC, Ascherio A. Obesity and the risk of Parkinson’s disease. Am J Epidemiol 2004; 159(6): 547-55.
[http://dx.doi.org/10.1093/aje/kwh059] [PMID: 15003958]
[63]
Park KY, Nam GE, Han K, Park HK, Hwang HS. Waist circumference and risk of Parkinson’s disease. NPJ Parkinsons Dis 2022; 8(1): 89.
[http://dx.doi.org/10.1038/s41531-022-00353-4] [PMID: 35803940]
[64]
Cavalheiro EKFF, da Silva LE, Oliveira MP, et al. Effects of obesity on neuroinflammatory and neurochemical parameters in an animal model of reserpine-induced Parkinson’s disease. Behav Brain Res 2022; 434: 114019.
[http://dx.doi.org/10.1016/j.bbr.2022.114019] [PMID: 35872330]
[65]
Nicoletti A, Pugliese P, Nicoletti G, et al. Voluptuary habits and clinical subtypes of Parkinson’s disease: The FRAGAMP case-control study. Mov Disord 2010; 25(14): 2387-94.
[http://dx.doi.org/10.1002/mds.23297] [PMID: 20669181]
[66]
Kenborg L, Lassen CF, Ritz B, et al. Lifestyle, family history, and risk of idiopathic Parkinson disease: a large Danish case-control study. Am J Epidemiol 2015; 181(10): 808-16.
[http://dx.doi.org/10.1093/aje/kwu332] [PMID: 25925389]
[67]
Ascherio A, Schwarzschild MA. The epidemiology of Parkinson’s disease: risk factors and prevention. Lancet Neurol 2016; 15(12): 1257-72.
[http://dx.doi.org/10.1016/S1474-4422(16)30230-7] [PMID: 27751556]
[68]
Costa J, Lunet N, Santos C, Santos J, Vaz-Carneiro A. Caffeine exposure and the risk of Parkinson’s disease: a systematic review and meta-analysis of observational studies. J Alzheimers Dis 2010; 20 (Suppl. 1): S221-38.
[http://dx.doi.org/10.3233/JAD-2010-091525] [PMID: 20182023]
[69]
Kaster MP, Machado NJ, Silva HB, et al. Caffeine acts through neuronal adenosine A 2A receptors to prevent mood and memory dysfunction triggered by chronic stress. Proc Natl Acad Sci 2015; 112(25): 7833-8.
[http://dx.doi.org/10.1073/pnas.1423088112] [PMID: 26056314]
[70]
Khadrawy YA, Salem AM, El-Shamy KA, Ahmed EK, Fadl NN, Hosny EN. Neuroprotective and therapeutic effect of caffeine on the rat model of Parkinson’s disease induced by rotenone. J Diet Suppl 2017; 14(5): 553-72.
[http://dx.doi.org/10.1080/19390211.2016.1275916] [PMID: 28301304]
[71]
Chen H, Huang X, Guo X, et al. Smoking duration, intensity, and risk of Parkinson disease. Neurology 2010; 74(11): 878-84.
[http://dx.doi.org/10.1212/WNL.0b013e3181d55f38] [PMID: 20220126]
[72]
Abbas MM, Xu Z, Tan LCS. Epidemiology of Parkinson’s disease—east versus west. Mov Disord Clin Pract 2018; 5(1): 14-28.
[http://dx.doi.org/10.1002/mdc3.12568] [PMID: 30363342]
[73]
Alves G, Kurz M, Lie SA, Larsen JP. Cigarette smoking in Parkinson’s disease: Influence on disease progression. Mov Disord 2004; 19(9): 1087-92.
[http://dx.doi.org/10.1002/mds.20117] [PMID: 15372603]
[74]
Fowler JS, Volkow ND, Wang GJ, et al. Inhibition of monoamine oxidase B in the brains of smokers. Nature 1996; 379(6567): 733-6.
[http://dx.doi.org/10.1038/379733a0] [PMID: 8602220]
[75]
Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Agúndez JAG. Alcohol consumption and risk for Parkinson’s disease: a systematic review and meta-analysis. J Neurol 2019; 266(8): 1821-34.
[http://dx.doi.org/10.1007/s00415-018-9032-3] [PMID: 30155737]
[76]
Zhang D, Jiang H, Xie J. Alcohol intake and risk of Parkinson’s disease: A meta-analysis of observational studies. Mov Disord 2014; 29(6): 819-22.
[http://dx.doi.org/10.1002/mds.25863] [PMID: 24590499]
[77]
Hernán MA, Chen H, Schwarzschild MA, Ascherio A. Alcohol consumption and the incidence of Parkinson’s disease. Ann Neurol 2003; 54(2): 170-5.
[http://dx.doi.org/10.1002/ana.10611] [PMID: 12891669]
[78]
Peters S, Gallo V, Vineis P, et al. Alcohol consumption and risk of Parkinson’s disease: data from a large prospective European cohort. Mov Disord 2020; 35(7): 1258-63.
[http://dx.doi.org/10.1002/mds.28039] [PMID: 32357270]
[79]
Liu R, Guo X, Park Y, et al. Alcohol consumption, types of alcohol, and Parkinson’s disease. PLoS One 2013; 8(6): e66452.
[http://dx.doi.org/10.1371/journal.pone.0066452] [PMID: 23840473]
[80]
Stern Y. What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc 2002; 8(3): 448-60.
[http://dx.doi.org/10.1017/S1355617702813248] [PMID: 11939702]
[81]
Perani D, Farsad M, Ballarini T, et al. The impact of bilingualism on brain reserve and metabolic connectivity in Alzheimer’s dementia. Proc Natl Acad Sci 2017; 114(7): 1690-5.
[http://dx.doi.org/10.1073/pnas.1610909114] [PMID: 28137833]
[82]
Hindle J. Cognitive reserve in Parkinson’s disease: a systematic review and meta-analysis. Parkinsonism Relat Disord 2014; 20: 1-7.
[83]
Chung SJ, Lee JJ, Lee PH, Sohn YH. Emerging concepts of motor reserve in Parkinson’s disease. J Mov Disord 2020; 13(3): 171-84.
[http://dx.doi.org/10.14802/jmd.20029] [PMID: 32854486]
[84]
Petzinger GM, Fisher BE, McEwen S, Beeler JA, Walsh JP, Jakowec MW. Exercise-enhanced neuroplasticity targeting motor and cognitive circuitry in Parkinson’s disease. Lancet Neurol 2013; 12(7): 716-26.
[http://dx.doi.org/10.1016/S1474-4422(13)70123-6] [PMID: 23769598]
[85]
Johansson H, Hagströmer M, Grooten WJA, Franzén E. Exercise-induced neuroplasticity in Parkinson’s disease: a metasynthesis of the literature. Neural Plast 2020; 2020: 1-15.
[http://dx.doi.org/10.1155/2020/8961493] [PMID: 32256559]
[86]
Ahlskog JE. Aerobic exercise: evidence for a direct brain effect to slow parkinson disease progressionMayo Clinic Proceedings. Elsevier 2018; pp. 360-72.
[http://dx.doi.org/10.1016/j.mayocp.2017.12.015]
[87]
Fisher BE, Wu AD, Salem GJ, et al. The effect of exercise training in improving motor performance and corticomotor excitability in people with early Parkinson’s disease. Arch Phys Med Rehabil 2008; 89(7): 1221-9.
[http://dx.doi.org/10.1016/j.apmr.2008.01.013] [PMID: 18534554]
[88]
Fisher BE, Li Q, Nacca A, et al. Treadmill exercise elevates striatal dopamine D2 receptor binding potential in patients with early Parkinson’s disease. Neuroreport 2013; 24(10): 509-14.
[http://dx.doi.org/10.1097/WNR.0b013e328361dc13] [PMID: 23636255]
[89]
Sacheli MA, Murray DK, Vafai N, et al. Habitual exercisers versus sedentary subjects with Parkinson’s Disease: Multimodal PET and fMRI study. Mov Disord 2018; 33(12): 1945-50.
[http://dx.doi.org/10.1002/mds.27498] [PMID: 30376184]
[90]
Sacheli MA, Neva JL, Lakhani B, et al. Exercise increases caudate dopamine release and ventral striatal activation in Parkinson’s disease. Mov Disord 2019; 34(12): 1891-900.
[http://dx.doi.org/10.1002/mds.27865] [PMID: 31584222]
[91]
Sunwoo MK, Lee JE, Hong JY, et al. Premorbid exercise engagement and motor reserve in Parkinson’s disease. Parkinsonism Relat Disord 2017; 34: 49-53.
[http://dx.doi.org/10.1016/j.parkreldis.2016.10.023] [PMID: 27852513]
[92]
Kelly NA, Wood KH, Allendorfer JB, et al. High-intensity exercise acutely increases substantia nigra and prefrontal brain activity in Parkinson’s disease. Med Sci Monit 2017; 23: 6064-71.
[http://dx.doi.org/10.12659/MSM.906179] [PMID: 29273705]
[93]
Johansson ME, Cameron IGM, Van der Kolk NM, et al. Aerobic exercise alters brain function and structure in Parkinson’s disease: A Randomized Controlled Trial. Ann Neurol 2022; 91(2): 203-16.
[http://dx.doi.org/10.1002/ana.26291] [PMID: 34951063]
[94]
Ding H, Droby A, Anwar AR, et al. Treadmill training in Parkinson’s disease is underpinned by the interregional connectivity in cortical-subcortical network. NPJ Parkinsons Dis 2022; 8(1): 153.
[http://dx.doi.org/10.1038/s41531-022-00427-3] [PMID: 36369264]
[95]
Donahue EK, Venkadesh S, Bui V, et al. Physical activity intensity is associated with cognition and functional connectivity in Parkinson’s disease. Parkinsonism Relat Disord 2022; 104: 7-14.
[http://dx.doi.org/10.1016/j.parkreldis.2022.09.005] [PMID: 36191358]
[96]
Shah C, Beall EB, Frankemolle AMM, et al. Exercise therapy for Parkinson’s disease: pedaling rate is related to changes in motor connectivity. Brain Connect 2016; 6(1): 25-36.
[http://dx.doi.org/10.1089/brain.2014.0328] [PMID: 26414696]
[97]
Beall EB, Lowe MJ, Alberts JL, et al. The effect of forced-exercise therapy for Parkinson’s disease on motor cortex functional connectivity. Brain Connect 2013; 3(2): 190-8.
[http://dx.doi.org/10.1089/brain.2012.0104] [PMID: 23316956]
[98]
Droby A, Maidan I, Jacob Y, Giladi N, Hausdorff JM, Mirelman A. Distinct effects of motor training on resting-state functional networks of the brain in Parkinson’s disease. Neurorehabil Neural Repair 2020; 34(9): 795-803.
[http://dx.doi.org/10.1177/1545968320940985] [PMID: 32684069]
[99]
Beyer PL, Palarino M, Michalek D, Busenbark K, Koller WC. Weight change and body composition in patients with Parkinson’s disease. J Am Diet Assoc 1995; 95(9): 979-83.
[http://dx.doi.org/10.1016/S0002-8223(95)00269-3] [PMID: 7657912]
[100]
Wills AMA, Pérez A, Wang J, et al. Association between change in body mass index, unified Parkinson’s disease rating scale scores, and survival among persons with Parkinson disease: secondary analysis of longitudinal data from NINDS exploratory trials in Parkinson disease long-term study 1. JAMA Neurol 2016; 73(3): 321-8.
[http://dx.doi.org/10.1001/jamaneurol.2015.4265] [PMID: 26751506]
[101]
Yoon SY, Heo SJ, Lee HJ, et al. Initial BMI and Weight Loss over Time Predict Mortality in Parkinson Disease. J Am Med Dir Assoc 2022; 23(10): 1719.e1-7.
[http://dx.doi.org/10.1016/j.jamda.2022.07.015] [PMID: 36007544]
[102]
Chen H, Zhang SM, Hernán MA, Willett WC, Ascherio A. Weight loss in Parkinson’s disease. Ann Neurol 2003; 53(5): 676-9.
[http://dx.doi.org/10.1002/ana.10577] [PMID: 12731005]
[103]
Pak K, Shin HK, Kim EJ, et al. Weight loss is associated with rapid striatal dopaminergic degeneration in Parkinson’s disease. Parkinsonism Relat Disord 2018; 51: 67-72.
[http://dx.doi.org/10.1016/j.parkreldis.2018.02.044] [PMID: 29510907]
[104]
Lee JJ, Oh JS, Ham JH, et al. Association of body mass index and the depletion of nigrostriatal dopamine in Parkinson’s disease. Neurobiol Aging 2016; 38: 197-204.
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.11.009] [PMID: 26827658]
[105]
Wang GJ, Volkow ND, Logan J, et al. Brain dopamine and obesity. Lancet 2001; 357(9253): 354-7.
[http://dx.doi.org/10.1016/S0140-6736(00)03643-6] [PMID: 11210998]
[106]
Pak K, Kim H, Seok JW, et al. Prediction of future weight change with dopamine transporter in patients with Parkinson’s disease. J Neural Transm 2019; 126(6): 723-9.
[http://dx.doi.org/10.1007/s00702-019-02016-w] [PMID: 31102003]
[107]
Pak K, Kim K, Lee MJ, et al. Prediction of future weight change with the dopamine transporter. Brain Imaging Behav 2019; 13(3): 588-93.
[http://dx.doi.org/10.1007/s11682-018-9878-0] [PMID: 29744803]
[108]
Mochizuki H, Taniguchi A, Nakazato Y, et al. Increased body mass index associated with autonomic dysfunction in Parkinson’s disease. Parkinsonism Relat Disord 2016; 24: 129-31.
[http://dx.doi.org/10.1016/j.parkreldis.2016.01.007] [PMID: 26774537]
[109]
Politis M, Loane C, Wu K, Brooks DJ, Piccini P. Serotonergic mediated body mass index changes in Parkinson’s disease. Neurobiol Dis 2011; 43(3): 609-15.
[http://dx.doi.org/10.1016/j.nbd.2011.05.009] [PMID: 21624463]
[110]
van Galen KA, Ter Horst KW, Serlie MJ. Serotonin, food intake, and obesity. Obes Rev 2021; 22(7): e13210.
[PMID: 33559362]
[111]
Politis M, Wu K, Loane C, et al. Staging of serotonergic dysfunction in Parkinson’s Disease: An in vivo 11C-DASB PET study. Neurobiol Dis 2010; 40(1): 216-21.
[http://dx.doi.org/10.1016/j.nbd.2010.05.028] [PMID: 20594979]
[112]
Magalhães CP, de Freitas MFL, Nogueira MI, et al. Modulatory role of serotonin on feeding behavior. Nutr Neurosci 2010; 13(6): 246-55.
[http://dx.doi.org/10.1179/147683010X12611460764723] [PMID: 21040622]
[113]
Goto Y, Grace AA. Dopaminergic modulation of limbic and cortical drive of nucleus accumbens in goal-directed behavior. Nat Neurosci 2005; 8(6): 805-12.
[http://dx.doi.org/10.1038/nn1471] [PMID: 15908948]
[114]
Vetrano DL, Pisciotta MS, Laudisio A, et al. Sarcopenia in Parkinson disease: comparison of different criteria and association with disease severity. J Am Med Dir Assoc 2018; 19(6): 523-7.
[http://dx.doi.org/10.1016/j.jamda.2017.12.005] [PMID: 29396191]
[115]
Lee CY, Chen HL, Chen PC, et al. Correlation between executive network integrity and sarcopenia in patients with Parkinson’s disease. Int J Environ Res Public Health 2019; 16(24): 4884.
[http://dx.doi.org/10.3390/ijerph16244884] [PMID: 31817127]
[116]
Chahine LM, Dos Santos C, Fullard M, et al. Modifiable vascular risk factors, white matter disease and cognition in early Parkinson’s disease. Eur J Neurol 2019; 26(2): 246-e18.
[http://dx.doi.org/10.1111/ene.13797] [PMID: 30169897]
[117]
Sławek J, Roszmann A, Robowski P, et al. The impact of MRI white matter hyperintensities on dementia in Parkinson’s disease in relation to the homocysteine level and other vascular risk factors. Neurodegener Dis 2013; 12(1): 1-12.
[http://dx.doi.org/10.1159/000338610] [PMID: 22831964]
[118]
Gu Q, Liu X, Zeng Q, et al. The protective role of cigarette smoking against Parkinson’s disease via moderation of the interaction between iron deposition in the nigrostriatal pathway and clinical symptoms. Quant Imaging Med Surg 2022; 12(7): 3603-24.
[http://dx.doi.org/10.21037/qims-21-1090] [PMID: 35782263]
[119]
Gigante AF, Defazio G, Niccoli Asabella A, et al. Smoking in Patients with Parkinson’s Disease: preliminary striatal DaT-SPECT findings. Acta Neurol Scand 2016; 134(4): 265-70.
[http://dx.doi.org/10.1111/ane.12537] [PMID: 26659996]
[120]
Gigante AF, Asabella AN, Iliceto G, et al. Chronic coffee consumption and striatal DAT-SPECT findings in Parkinson’s disease. Neurol Sci 2018; 39(3): 551-5.
[http://dx.doi.org/10.1007/s10072-018-3253-1] [PMID: 29362953]
[121]
Bloomberg M, Dugravot A, Dumurgier J, et al. Sex differences and the role of education in cognitive ageing: analysis of two UK-based prospective cohort studies. Lancet Public Health 2021; 6(2): e106-15.
[http://dx.doi.org/10.1016/S2468-2667(20)30258-9] [PMID: 33516287]
[122]
Nguyen TT, Tchetgen EJT, Kawachi I, et al. Instrumental variable approaches to identifying the causal effect of educational attainment on dementia risk. Ann Epidemiol 2016; 26(1): 71-76.e3, 3.
[http://dx.doi.org/10.1016/j.annepidem.2015.10.006] [PMID: 26633592]
[123]
Perneczky R, Drzezga A, Boecker H, et al. Activities of daily living, cerebral glucose metabolism, and cognitive reserve in Lewy body and Parkinson’s disease. Dement Geriatr Cogn Disord 2008; 26(5): 475-81.
[http://dx.doi.org/10.1159/000167791] [PMID: 18984958]
[124]
Kotagal V, Bohnen NI, Müller MLTM, et al. Educational attainment and motor burden in Parkinson’s disease. Mov Disord 2015; 30(8): 1143-7.
[http://dx.doi.org/10.1002/mds.26272] [PMID: 26096339]
[125]
Sunwoo MK, Hong JY, Lee JJ, Lee PH, Sohn YH. Does education modify motor compensation in Parkinson’s disease? J Neurol Sci 2016; 362: 118-20.
[http://dx.doi.org/10.1016/j.jns.2016.01.030] [PMID: 26944130]
[126]
Boccalini C, Carli G, Pilotto A, Padovani A, Perani D. Gender differences in dopaminergic system dysfunction in de novo Parkinson’s disease clinical subtypes. Neurobiol Dis 2022; 167: 105668.
[http://dx.doi.org/10.1016/j.nbd.2022.105668] [PMID: 35219854]
[127]
Speelman AD, Groothuis JT, van Nimwegen M, et al. Cardiovascular responses during a submaximal exercise test in patients with Parkinson’s disease. J Parkinsons Dis 2012; 2(3): 241-7.
[http://dx.doi.org/10.3233/JPD-2012-012111] [PMID: 23938232]
[128]
Cole-Hunter T, Zhang J, So R, et al. Long-term air pollution exposure and Parkinson’s disease mortality in a large pooled European cohort: An ELAPSE study. Environ Int 2023; 171: 107667.
[http://dx.doi.org/10.1016/j.envint.2022.107667] [PMID: 36516478]
[129]
Gill D, Cameron AC, Burgess S, et al. Urate, blood pressure, and cardiovascular disease: evidence from mendelian randomization and meta-analysis of clinical trials. Hypertension 2021; 77(2): 383-92.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.120.16547] [PMID: 33356394]
[130]
Nair MK, Augustine LF, Konapur A. Food-based interventions to modify diet quality and diversity to address multiple micronutrient deficiency. Front Public Health 2016; 3: 277.
[http://dx.doi.org/10.3389/fpubh.2015.00277] [PMID: 26779472]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy