Review Article

生物碳量子点:合成与应用

卷 31, 期 25, 2024

发表于: 18 August, 2023

页: [3899 - 3924] 页: 26

弟呕挨: 10.2174/0929867330666230608105201

价格: $65

摘要

这种新型纳米材料被称为碳点:一种尺寸小于10纳米的准球形纳米颗粒,具有良好的水溶性、胶体稳定性、抗光漂白和荧光可调性等独特特性,从而展现了它们的各种特性,并在不同的应用中得到了应用。由生物体自然衍生或产生的材料被称为“生物源”。在过去的几年中,在合成碳点中使用天然衍生材料的情况逐渐增加。绿色前体或生物材料是成本低、易得、可再生和对环境无害的。最重要的是,它们提供了合成碳点所没有的基本好处。本文综述了近五年来利用生物源材料合成生物源碳点的研究进展。它还简要解释了使用的不同合成方案,以及一些重要的发现。然后,综述了生物源性碳点(BCD)在化学和生物传感器、药物传递、生物成像、催化和能源等不同应用中的应用。因此,生物碳点是未来可持续发展的材料,现在正在迅速取代从其他来源制备的传统碳量子。

关键词: 生物,碳,量子点,纳米材料,零维,电子。

[1]
Xu, X.; Ray, R.; Gu, Y.; Ploehn, H.J.; Gearheart, L.; Raker, K.; Scrivens, W.A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc., 2004, 126(40), 12736-12737.
[http://dx.doi.org/10.1021/ja040082h] [PMID: 15469243]
[2]
Wang, Y.; Hu, A. Carbon quantum dots: Synthesis, properties and applications. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2014, 2(34), 6921-6939.
[http://dx.doi.org/10.1039/C4TC00988F]
[3]
Hou, J.; Cheng, H.; Yang, C.; Takeda, O.; Zhu, H. Hierarchical carbon quantum dots/hydrogenated-γ-TaON heterojunctions for broad spectrum photocatalytic performance. Nano Energy, 2015, 18, 143-153.
[http://dx.doi.org/10.1016/j.nanoen.2015.09.005]
[4]
Mansuriya, B.D.; Altintas, Z. Carbon dots: Classification, properties, synthesis, characterization, and applications in health care—an updated review (2018–2021). Nanomaterials, 2021, 11(10), 2525.
[http://dx.doi.org/10.3390/nano11102525] [PMID: 34684966]
[5]
Liu, H.; Ye, T.; Mao, C. Fluorescent carbon nanoparticles derived from candle soot. Angew. Chem. Int. Ed., 2007, 46(34), 6473-6475.
[http://dx.doi.org/10.1002/anie.200701271] [PMID: 17645271]
[6]
Yang, Z.; Xu, M.; Liu, Y.; He, F.; Gao, F.; Su, Y.; Wei, H.; Zhang, Y. Nitrogen-doped, carbon-rich, highly photoluminescent carbon dots from ammonium citrate. Nanoscale, 2014, 6(3), 1890-1895.
[http://dx.doi.org/10.1039/C3NR05380F] [PMID: 24362823]
[7]
Zheng, L.; Chi, Y.; Dong, Y.; Lin, J.; Wang, B. Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J. Am. Chem. Soc., 2009, 131(13), 4564-4565.
[http://dx.doi.org/10.1021/ja809073f] [PMID: 19296587]
[8]
Yang, Z.; Li, Z.; Xu, M.; Ma, Y.; Zhang, J.; Su, Y.; Gao, F.; Wei, H.; Zhang, L. Controllable synthesis of fluorescent carbon dots and their detection application as nanoprobes. Nano-Micro Lett., 2013, 5(4), 247-259.
[http://dx.doi.org/10.1007/BF03353756]
[9]
Lan, J.; Liu, C.; Gao, M.; Huang, C. An efficient solid-state synthesis of fluorescent surface carboxylated carbon dots derived from C60 as a label-free probe for iron ions in living cells. Talanta, 2015, 144, 93-97.
[http://dx.doi.org/10.1016/j.talanta.2015.05.071] [PMID: 26452796]
[10]
Shen, P.; Xia, Y. Synthesis-modification integration: One-step fabrication of boronic acid functionalized carbon dots for fluorescent blood sugar sensing. Anal. Chem., 2014, 86(11), 5323-5329.
[http://dx.doi.org/10.1021/ac5001338] [PMID: 24694081]
[11]
Zhang, X.; Wei, C.; Li, Y.; Yu, D. Shining luminescent graphene quantum dots: Synthesis, physicochemical properties, and biomedical applications. Trends Analyt. Chem., 2019, 116, 109-121.
[http://dx.doi.org/10.1016/j.trac.2019.03.011]
[12]
Zhang, X.; Jiang, M.; Niu, N.; Chen, Z.; Li, S.; Liu, S.; Li, J. Review of natural product derived carbon dots: From natural products to functional materials. ChemSusChem, 2018, 11(1), 11-24.
[http://dx.doi.org/10.1002/cssc.201701847] [PMID: 29072348]
[13]
Niu, W.J.; Li, Y.; Zhu, R.H.; Shan, D.; Fan, Y.R.; Zhang, X.J. Ethylenediamine-assisted hydrothermal synthesis of nitrogen-doped carbon quantum dots as fluorescent probes for sensitive biosensing and bioimaging. Sens. Actuators B Chem., 2015, 218, 229-236.
[http://dx.doi.org/10.1016/j.snb.2015.05.006]
[14]
Nair, A.; Haponiuk, J.T.; Thomas, S.; Gopi, S. Natural carbon-based quantum dots and their applications in drug delivery: A review. Biomed. Pharmacother., 2020, 132, 110834-110849.
[http://dx.doi.org/10.1016/j.biopha.2020.110834] [PMID: 33035830]
[15]
Liu, S.; Tian, J.; Wang, L.; Zhang, Y.; Qin, X.; Luo, Y.; Asiri, A.M.; Al-Youbi, A.O.; Sun, X. Hydrothermal treatment of grass: A low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions. Adv. Mater., 2012, 24(15), 2037-2041.
[http://dx.doi.org/10.1002/adma.201200164] [PMID: 22419383]
[16]
Gayen, B.; Palchoudhury, S.; Chowdhury, J. Carbon dots: A mystic star in the world of nanoscience. J. Nanomater., 2019, 2019, 1-19.
[http://dx.doi.org/10.1155/2019/3451307]
[17]
Qiao, Z.A.; Wang, Y.; Gao, Y.; Li, H.; Dai, T.; Liu, Y.; Huo, Q. Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation. Chem. Commun., 2010, 46(46), 8812-8814.
[http://dx.doi.org/10.1039/c0cc02724c] [PMID: 20953494]
[18]
Vinoth Kumar, J.; Kavitha, G.; Arulmozhi, R.; Arul, V.; Singaravadivel, S.; Abirami, N. Green sources derived carbon dots for multifaceted applications. J. Fluoresc., 2021, 31(4), 915-932.
[http://dx.doi.org/10.1007/s10895-021-02721-4] [PMID: 33786684]
[19]
Purbia, R.; Paria, S. A simple turn on fluorescent sensor for the selective detection of thiamine using coconut water derived luminescent carbon dots. Biosens. Bioelectron., 2016, 79, 467-475.
[http://dx.doi.org/10.1016/j.bios.2015.12.087] [PMID: 26745793]
[20]
Wang, N.; Wang, Y.; Guo, T.; Yang, T.; Chen, M.; Wang, J. Green preparation of carbon dots with papaya as carbon source for effective fluorescent sensing of Iron (III) and Escherichia coli. Biosens. Bioelectron., 2016, 85, 68-75.
[http://dx.doi.org/10.1016/j.bios.2016.04.089] [PMID: 27155118]
[21]
Liao, J.; Cheng, Z.; Zhou, L. Nitrogen-doping enhanced fluorescent carbon dots: Green synthesis and their applications for bioimaging and label-free detection of Au3+ ions. ACS Sustain. Chem. Eng., 2016, 4(6), 3053-3061.
[http://dx.doi.org/10.1021/acssuschemeng.6b00018]
[22]
Arul, V.; Edison, T.N.J.I.; Lee, Y.R.; Sethuraman, M.G. Biological and catalytic applications of green synthesized fluorescent N-doped carbon dots using Hylocereus undatus. J. Photochem. Photobiol. B, 2017, 168, 142-148.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.02.007] [PMID: 28222361]
[23]
Arul, V.; Sethuraman, M.G. Facile green synthesis of fluorescent N-doped carbon dots from Actinidia deliciosa and their catalytic activity and cytotoxicity applications. Opt. Mater., 2018, 78, 181-190.
[http://dx.doi.org/10.1016/j.optmat.2018.02.029]
[24]
He, M.; Zhang, J.; Wang, H.; Kong, Y.; Xiao, Y.; Xu, W. Material and optical properties of fluorescent carbon quantum dots fabricated from lemon juice via hydrothermal reaction. Nanoscale Res. Lett., 2018, 13(1), 175.
[http://dx.doi.org/10.1186/s11671-018-2581-7] [PMID: 29882047]
[25]
Ahmadian-Fard-Fini, S.; Salavati-Niasari, M.; Ghanbari, D. Hydrothermal green synthesis of magnetic Fe3O4-carbon dots by lemon and grape fruit extracts and as a photoluminescence sensor for detecting of E. coli bacteria. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 203, 481-493.
[http://dx.doi.org/10.1016/j.saa.2018.06.021] [PMID: 29898431]
[26]
Guo, X.; Zhu, Y.; Zhou, L.; Zhang, L.; You, Y.; Zhang, H.; Hao, J. A facile and green approach to prepare carbon dots with pH-dependent fluorescence for patterning and bioimaging. RSC Advances, 2018, 8(66), 38091-38099.
[http://dx.doi.org/10.1039/C8RA07584K] [PMID: 35558597]
[27]
Monte-Filho, S.S.; Andrade, S.I.E.; Lima, M.B.; Araujo, M.C.U. Synthesis of highly fluorescent carbon dots from lemon and onion juices for determination of riboflavin in multivitamin/mineral supplements. J. Pharm. Anal., 2019, 9(3), 209-216.
[http://dx.doi.org/10.1016/j.jpha.2019.02.003] [PMID: 31297299]
[28]
Zulfajri, M.; Dayalan, S.; Li, W.Y.; Chang, C.J.; Chang, Y.P.; Huang, G.G. Nitrogen-doped carbon dots from Averrhoa carambola fruit extract as a fluorescent probe for methyl orange. Sensors, 2019, 19(22), 5008.
[http://dx.doi.org/10.3390/s19225008] [PMID: 31744145]
[29]
Desai, M.L.; Jha, S.; Basu, H.; Singhal, R.K.; Park, T.J.; Kailasa, S.K. Acid oxidation of muskmelon fruit for the fabrication of carbon dots with specific emission colours for recognition of Hg2+ ions and cell imaging. ACS Omega, 2019, 4(21), 19332-19340.
[http://dx.doi.org/10.1021/acsomega.9b02730] [PMID: 31763557]
[30]
Dias, C.; Vasimalai, N.; P Sárria, M.; Pinheiro, I.; Vilas-Boas, V.; Peixoto, J.; Espiña, B. Biocompatibility and bioimaging potential of fruit-based carbon dots. Nanomaterials, 2019, 9(2), 199-208.
[http://dx.doi.org/10.3390/nano9020199] [PMID: 30717497]
[31]
Atchudan, R.; Jebakumar Immanuel Edison, T.N.; Perumal, S.; Lee, Y.R. Indian gooseberry-derived tunable fluorescent carbon dots as a promise for in vitro/in vivo multicolor bioimaging and fluorescent ink. ACS Omega, 2018, 3(12), 17590-17601.
[http://dx.doi.org/10.1021/acsomega.8b02463]
[32]
Ma, H.; Sun, C.; Xue, G.; Wu, G.; Zhang, X.; Han, X.; Qi, X.; Lv, X.; Sun, H.; Zhang, J. Facile synthesis of fluorescent carbon dots from Prunus cerasifera fruits for fluorescent ink, Fe3+ ion detection and cell imaging. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 213, 281-287.
[http://dx.doi.org/10.1016/j.saa.2019.01.079] [PMID: 30703711]
[33]
Bhamore, J.R.; Jha, S.; Park, T.J.; Kailasa, S.K. Green synthesis of multi-color emissive carbon dots from Manilkara zapota fruits for bioimaging of bacterial and fungal cells. J. Photochem. Photobiol. B, 2019, 191, 150-155.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.12.023] [PMID: 30639997]
[34]
Sangubotla, R.; Kim, J. A facile enzymatic approach for selective detection of γ-aminobutyric acid using corn-derived fluorescent carbon dots. Appl. Surf. Sci., 2019, 490, 61-69.
[http://dx.doi.org/10.1016/j.apsusc.2019.05.320]
[35]
Gupta, D.A.; Desai, M.L.; Malek, N.I.; Kailasa, S.K. Fluorescence detection of Fe3+ ion using ultra-small fluorescent carbon dots derived from pineapple (Ananas comosus): Development of miniaturized analytical method. J. Mol. Struct., 2020, 1216(1216), 128343.
[http://dx.doi.org/10.1016/j.molstruc.2020.128343]
[36]
Liu, W.; Diao, H.; Chang, H.; Wang, H.; Li, T.; Wei, W. Green synthesis of carbon dots from rose-heart radish and application for Fe3+ detection and cell imaging. Sens. Actuators B Chem., 2017, 241, 190-198.
[http://dx.doi.org/10.1016/j.snb.2016.10.068]
[37]
Shen, J.; Shang, S.; Chen, X.; Wang, D.; Cai, Y. Facile synthesis of fluorescence carbon dots from sweet potato for Fe3+ sensing and cell imaging. Mater. Sci. Eng. C, 2017, 76, 856-864.
[http://dx.doi.org/10.1016/j.msec.2017.03.178] [PMID: 28482600]
[38]
Romero, V.; Vila, V.; de la Calle, I.; Lavilla, I.; Bendicho, C. Turn–on fluorescent sensor for the detection of periodate anion following photochemical synthesis of nitrogen and sulphur co–doped carbon dots from vegetables. Sens. Actuators B Chem., 2019, 280, 290-297.
[http://dx.doi.org/10.1016/j.snb.2018.10.064]
[39]
Ashrafi Tafreshi, F.; Fatahi, Z.; Ghasemi, S.F.; Taherian, A.; Esfandiari, N. Ultrasensitive fluorescent detection of pesticides in real sample by using green carbon dots. PLoS One, 2020, 15(3), e0230646.
[http://dx.doi.org/10.1371/journal.pone.0230646] [PMID: 32208468]
[40]
Hu, Y.; Zhang, L.; Li, X.; Liu, R.; Lin, L.; Zhao, S. Green preparation of S and N Co-doped carbon dots from water chestnut and onion as well as their use as an off–on fluorescent probe for the quantification and imaging of coenzyme A. ACS Sustain. Chem. Eng., 2017, 5(6), 4992-5000.
[http://dx.doi.org/10.1021/acssuschemeng.7b00393]
[41]
Lai, Z.; Guo, X.; Cheng, Z.; Ruan, G.; Du, F. Green synthesis of fluorescent carbon dots from cherry tomatoes for highly effective detection of trifluralin herbicide in soil samples. ChemistrySelect, 2020, 5(6), 1956-1960.
[http://dx.doi.org/10.1002/slct.201904517]
[42]
Konwar, A.; Deb, A.; Kar, A.; Chowdhury, D. Dual emission carbon dots from carotenoids: Converting a single emission to dual emission. Luminescence, 2019, 34(8), 790-795.
[http://dx.doi.org/10.1002/bio.3685] [PMID: 31397062]
[43]
Zhang, Z.; Hu, B.; Zhuang, Q.; Wang, Y.; Luo, X.; Xie, Y.; Zhou, D. Green synthesis of fluorescent nitrogen–sulfur Co-doped carbon dots from scallion leaves for hemin sensing. Anal. Lett., 2020, 53(11), 1704-1718.
[http://dx.doi.org/10.1080/00032719.2020.1716782]
[44]
Tyagi, A.; Tripathi, K.M.; Singh, N.; Choudhary, S.; Gupta, R.K. Green synthesis of carbon quantum dots from lemon peel waste: Applications in sensing and photocatalysis. RSC Advances, 2016, 6(76), 72423-72432.
[http://dx.doi.org/10.1039/C6RA10488F]
[45]
Chatzimitakos, T.; Kasouni, A.; Sygellou, L.; Avgeropoulos, A.; Troganis, A.; Stalikas, C. Two of a kind but different: Luminescent carbon quantum dots from Citrus peels for iron and tartrazine sensing and cell imaging. Talanta, 2017, 175, 305-312.
[http://dx.doi.org/10.1016/j.talanta.2017.07.053] [PMID: 28841995]
[46]
Gudimella, K.K.; Appidi, T.; Wu, H.F.; Battula, V.; Jogdand, A.; Rengan, A.K.; Gedda, G. Sand bath assisted green synthesis of carbon dots from citrus fruit peels for free radical scavenging and cell imaging. Colloids Surf. B Biointerfaces, 2021, 197, 111362.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111362] [PMID: 33038604]
[47]
Wang, M.; Shi, R.; Gao, M.; Zhang, K.; Deng, L.; Fu, Q.; Wang, L.; Gao, D. Sensitivity fluorescent switching sensor for Cr (VI) and ascorbic acid detection based on orange peels-derived carbon dots modified with EDTA. Food Chem., 2020, 318, 126506-126517.
[http://dx.doi.org/10.1016/j.foodchem.2020.126506] [PMID: 32126473]
[48]
Vandarkuzhali, S.A.A.; Natarajan, S.; Jeyabalan, S.; Sivaraman, G.; Singaravadivel, S.; Muthusubramanian, S.; Viswanathan, B. Pineapple peel-derived carbon dots: Applications as sensor, molecular keypad lock, and memory device. ACS Omega, 2018, 3(10), 12584-12592.
[http://dx.doi.org/10.1021/acsomega.8b01146] [PMID: 30411011]
[49]
Atchudan, R.; Edison, T.N.J.I.; Perumal, S.; Muthuchamy, N.; Lee, Y.R. Hydrophilic nitrogen-doped carbon dots from biowaste using dwarf banana peel for environmental and biological applications. Fuel, 2020, 275, 117821-117831.
[http://dx.doi.org/10.1016/j.fuel.2020.117821]
[50]
Muktha, H.; Sharath, R.; Kottam, N.; Smrithi, S.P.; Samrat, K.; Ankitha, P. Green synthesis of carbon dots and evaluation of its pharmacological activities. Bionanoscience, 2020, 10(3), 731-744.
[http://dx.doi.org/10.1007/s12668-020-00741-1]
[51]
Jiao, X.Y.; Li, L.S.; Qin, S.; Zhang, Y.; Huang, K.; Xu, L. The synthesis of fluorescent carbon dots from mango peel and their multiple applications. Colloids Surf. A Physicochem. Eng., 2019, 577, 306-314.
[52]
Sahoo, N.K.; Jana, G.C.; Aktara, M.N.; Das, S.; Nayim, S.; Patra, A.; Bhattacharjee, P.; Bhadra, K.; Hossain, M. Carbon dots derived from lychee waste: Application for Fe3+ ions sensing in real water and multicolor cell imaging of skin melanoma cells. Mater. Sci. Eng. C, 2020, 108, 110429.
[http://dx.doi.org/10.1016/j.msec.2019.110429] [PMID: 31923934]
[53]
Liu, H.; Ding, L.; Chen, L.; Chen, Y.; Zhou, T.; Li, H.; Xu, Y.; Zhao, L.; Huang, N. A facile, green synthesis of biomass carbon dots coupled with molecularly imprinted polymers for highly selective detection of oxytetracycline. J. Ind. Eng. Chem., 2019, 69, 455-463.
[http://dx.doi.org/10.1016/j.jiec.2018.10.007]
[54]
Jayaweera, S.; Yin, K.; Ng, W.J. Nitrogen-doped durian shell derived carbon dots for inner filter effect mediated sensing of tetracycline and fluorescent ink. J. Fluoresc., 2019, 29(1), 221-229.
[http://dx.doi.org/10.1007/s10895-018-2331-3] [PMID: 30565002]
[55]
Amin, N.; Afkhami, A.; Hosseinzadeh, L.; Madrakian, T. Green and cost-effective synthesis of carbon dots from date kernel and their application as a novel switchable fluorescence probe for sensitive assay of Zoledronic acid drug in human serum and cellular imaging. Anal. Chim. Acta, 2018, 1030, 183-193.
[http://dx.doi.org/10.1016/j.aca.2018.05.014] [PMID: 30032768]
[56]
Chandra, S.; Singh, V.K.; Yadav, P.K.; Bano, D.; Kumar, V.; Pandey, V.K.; Talat, M.; Hasan, S.H. Mustard seeds derived fluorescent carbon quantum dots and their peroxidase-like activity for colorimetric detection of H2O2 and ascorbic acid in a real sample. Anal. Chim. Acta, 2019, 1054, 145-156.
[http://dx.doi.org/10.1016/j.aca.2018.12.024] [PMID: 30712585]
[57]
Raji, K.; Ramanan, V.; Ramamurthy, P. Facile and green synthesis of highly fluorescent nitrogen-doped carbon dots from jackfruit seeds and its applications towards the fluorimetric detection of Au3+ ions in aqueous medium and in in vitro multicolor cell imaging. New J. Chem., 2019, 43(29), 11710-11719.
[http://dx.doi.org/10.1039/C9NJ02590A]
[58]
v, R.; Misra, S.; Santra, M.K.; Ottoor, D. One pot green synthesis of C-dots from groundnuts and its application as Cr(VI) sensor and in vitro bioimaging agent. J. Photochem. Photobiol. Chem., 2019, 373, 28-36.
[http://dx.doi.org/10.1016/j.jphotochem.2018.12.028]
[59]
Li, K.; Xu, J.; Arsalan, M.; Cheng, N.; Sheng, Q.; Zheng, J.; Cao, W.; Yue, T. Nitrogen doped carbon dots derived from natural seeds and their application for electrochemical sensing. J. Electrochem. Soc., 2019, 166(2), B56-B62.
[http://dx.doi.org/10.1149/2.0501902jes]
[60]
Vasimalai, N.; Vilas-Boas, V.; Gallo, J.; Cerqueira, M.F.; Menéndez-Miranda, M.; Costa-Fernández, J.M.; Diéguez, L.; Espiña, B.; Fernández-Argüelles, M.T. Green synthesis of fluorescent carbon dots from spices for in vitro imaging and tumour cell growth inhibition. Beilstein J. Nanotechnol., 2018, 9(1), 530-544.
[http://dx.doi.org/10.3762/bjnano.9.51] [PMID: 29527430]
[61]
Long, R.; Guo, Y.; Xie, L.; Shi, S.; Xu, J.; Tong, C.; Lin, Q.; Li, T. White pepper-derived ratiometric carbon dots for highly selective detection and imaging of coenzyme A. Food Chem., 2020, 315, 126171-126177.
[http://dx.doi.org/10.1016/j.foodchem.2020.126171] [PMID: 31991253]
[62]
Shahshahanipour, M.; Rezaei, B.; Ensafi, A.A.; Etemadifar, Z. An ancient plant for the synthesis of a novel carbon dot and its applications as an antibacterial agent and probe for sensing of an anti-cancer drug. Mater. Sci. Eng. C, 2019, 98, 826-833.
[http://dx.doi.org/10.1016/j.msec.2019.01.041] [PMID: 30813088]
[63]
Prathumsuwan, T.; Jaiyong, P.; In, I.; Paoprasert, P. Label-free carbon dots from water hyacinth leaves as a highly fluorescent probe for selective and sensitive detection of borax. Sens. Actuators B Chem., 2019, 299, 126936-126947.
[http://dx.doi.org/10.1016/j.snb.2019.126936]
[64]
Jiang, X.; Qin, D.; Mo, G.; Feng, J.; Yu, C.; Mo, W.; Deng, B. Ginkgo leaf-based synthesis of nitrogen-doped carbon quantum dots for highly sensitive detection of salazosulfapyridine in mouse plasma. J. Pharm. Biomed. Anal., 2019, 164, 514-519.
[http://dx.doi.org/10.1016/j.jpba.2018.11.025] [PMID: 30453158]
[65]
Raveendran, V.; Suresh Babu, A.R.; Renuka, N.K. Mint leaf derived carbon dots for dual analyte detection of Fe(III) and ascorbic acid. RSC Advances, 2019, 9(21), 12070-12077.
[http://dx.doi.org/10.1039/C9RA02120E] [PMID: 35517017]
[66]
Yadav, P.K.; Singh, V.K.; Chandra, S.; Bano, D.; Kumar, V.; Talat, M.; Hasan, S.H. Green synthesis of fluorescent carbon quantum dots from Azadirachta indica leaves and their peroxidase-mimetic activity for the detection of H2O2 and ascorbic acid in common fresh fruits. ACS Biomater. Sci. Eng., 2019, 5(2), 623-632.
[http://dx.doi.org/10.1021/acsbiomaterials.8b01528] [PMID: 33405826]
[67]
Deb, A.; Saikia, R.; Chowdhury, D. Nano-bioconjugate film from Aloe vera to detect hazardous chemicals used in cosmetics. ACS Omega, 2019, 4(23), 20394-20401.
[http://dx.doi.org/10.1021/acsomega.9b03280] [PMID: 31815243]
[68]
Ran, Y.; Wang, S.; Yin, Q.; Wen, A.; Peng, X.; Long, Y.; Chen, S. Green synthesis of fluorescent carbon dots using chloroplast dispersions as precursors and application for Fe3+ ion sensing. Luminescence, 2020, 35(6), 870-876.
[http://dx.doi.org/10.1002/bio.3794] [PMID: 32142218]
[69]
Zhang, Y.P.; Ma, J.M.; Yang, Y.S.; Ru, J.X.; Liu, X.Y.; Ma, Y.; Guo, H.C. Synthesis of nitrogen-doped graphene quantum dots (N-GQDs) from marigold for detection of Fe3+ ion and bioimaging. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 217, 60-67.
[http://dx.doi.org/10.1016/j.saa.2019.03.044] [PMID: 30927572]
[70]
Ensafi, A.A.; Hghighat Sefat, S.; Kazemifard, N.; Rezaei, B.; Moradi, F. A novel one-step and green synthesis of highly fluorescent carbon dots from saffron for cell imaging and sensing of prilocaine. Sens. Actuators B Chem., 2017, 253, 451-460.
[http://dx.doi.org/10.1016/j.snb.2017.06.163]
[71]
Huang, Q.; Li, Q.; Chen, Y.; Tong, L.; Lin, X.; Zhu, J.; Tong, Q. High quantum yield nitrogen-doped carbon dots: Green synthesis and application as “off-on” fluorescent sensors for the determination of Fe3+ and adenosine triphosphate in biological samples. Sens. Actuators B Chem., 2018, 276, 82-88.
[http://dx.doi.org/10.1016/j.snb.2018.08.089]
[72]
Shukla, D.; Pandey, F.P.; Kumari, P.; Basu, N.; Tiwari, M.K.; Lahiri, J.; Kharwar, R.N.; Parmar, A.S. Label-free fluorometric detection of adulterant malachite green using carbon dots derived from the medicinal plant source Ocimum tenuiflorum. ChemistrySelect, 2019, 4(17), 4839-4847.
[http://dx.doi.org/10.1002/slct.201900530]
[73]
Naik, G.G.; Alam, M.B.; Pandey, V.; Mohapatra, D.; Dubey, P.K.; Parmar, A.S.; Sahu, A.N. Multi-functional carbon dots from an ayurvedic medicinal plant for cancer cell bioimaging applications. J. Fluoresc., 2020, 30(2), 407-418.
[http://dx.doi.org/10.1007/s10895-020-02515-0] [PMID: 32088852]
[74]
Guo, Y.; Zhang, L.; Cao, F.; Leng, Y. Thermal treatment of hair for the synthesis of sustainable carbon quantum dots and the applications for sensing Hg2+. Sci. Rep., 2016, 6(1), 35795.
[http://dx.doi.org/10.1038/srep35795] [PMID: 27762342]
[75]
Chatzimitakos, T.; Kasouni, A.; Sygellou, L.; Leonardos, I.; Troganis, A.; Stalikas, C. Human fingernails as an intriguing precursor for the synthesis of nitrogen and sulfur-doped carbon dots with strong fluorescent properties: Analytical and bioimaging applications. Sens. Actuators B Chem., 2018, 267, 494-501.
[http://dx.doi.org/10.1016/j.snb.2018.04.059]
[76]
Hua, X.W.; Bao, Y.W.; Wang, H.Y.; Chen, Z.; Wu, F.G. Bacteria-derived fluorescent carbon dots for microbial live/dead differentiation. Nanoscale, 2017, 9(6), 2150-2161.
[http://dx.doi.org/10.1039/C6NR06558A] [PMID: 27874123]
[77]
Lin, F.; Li, C.; Dong, L.; Fu, D.; Chen, Z. Imaging biofilm-encased microorganisms using carbon dots derived from L. plantarum. Nanoscale, 2017, 9(26), 9056-9064.
[http://dx.doi.org/10.1039/C7NR01975K] [PMID: 28639672]
[78]
Zhang, S.; Zhang, D.; Ding, Y.; Hua, J.; Tang, B.; Ji, X.; Zhang, Q.; Wei, Y.; Qin, K.; Li, B. Bacteria-derived fluorescent carbon dots for highly selective detection of p-nitrophenol and bioimaging. Analyst, 2019, 144(18), 5497-5503.
[http://dx.doi.org/10.1039/C9AN01103J] [PMID: 31386712]
[79]
Yu, Y.; Li, C.; Chen, C.; Huang, H.; Liang, C.; Lou, Y.; Chen, X.B.; Shi, Z.; Feng, S. Saccharomyces-derived carbon dots for biosensing pH and vitamin B12. Talanta, 2019, 195, 117-126.
[http://dx.doi.org/10.1016/j.talanta.2018.11.010] [PMID: 30625521]
[80]
Singh, A.K.; Singh, V.K.; Singh, M.; Singh, P.; Khadim, S.R.; Singh, U.; Koch, B.; Hasan, S.H.; Asthana, R.K. One pot hydrothermal synthesis of fluorescent NP-carbon dots derived from Dunaliella salina biomass and its application in on-off sensing of Hg (II), Cr (VI) and live cell imaging. J. Photochem. Photobiol. Chem., 2019, 376, 63-72.
[http://dx.doi.org/10.1016/j.jphotochem.2019.02.023]
[81]
Bandi, R.; Gangapuram, B.R.; Dadigala, R.; Eslavath, R.; Singh, S.S.; Guttena, V. Facile and green synthesis of fluorescent carbon dots from onion waste and their potential applications as sensor and multicolour imaging agents. RSC Advances, 2016, 6(34), 28633-28639.
[http://dx.doi.org/10.1039/C6RA01669C]
[82]
Feng, J.; Wang, W.J.; Hai, X.; Yu, Y.L.; Wang, J.H. Green preparation of nitrogen-doped carbon dots derived from silkworm chrysalis for cell imaging. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(3), 387-393.
[http://dx.doi.org/10.1039/C5TB01999K] [PMID: 32263205]
[83]
Yao, Y.Y.; Gedda, G.; Girma, W.M.; Yen, C.L.; Ling, Y.C.; Chang, J.Y. Magnetofluorescent carbon dots derived from crab shell for targeted dual-modality bioimaging and drug delivery. ACS Appl. Mater. Interfaces, 2017, 9(16), 13887-13899.
[http://dx.doi.org/10.1021/acsami.7b01599] [PMID: 28388048]
[84]
Huang, G.; Chen, X.; Wang, C.; Zheng, H.; Huang, Z.; Chen, D.; Xie, H. Photoluminescent carbon dots derived from sugarcane molasses: Synthesis, properties, and applications. RSC Advances, 2017, 7(75), 47840-47847.
[http://dx.doi.org/10.1039/C7RA09002A]
[85]
Thongsai, N.; Tanawannapong, N.; Praneerad, J.; Kladsomboon, S.; Jaiyong, P.; Paoprasert, P. Real-time detection of alcohol vapors and volatile organic compounds via optical electronic nose using carbon dots prepared from rice husk and density functional theory calculation. Colloids Surf. A Physicochem. Eng. Asp., 2019, 560, 278-287.
[http://dx.doi.org/10.1016/j.colsurfa.2018.09.077]
[86]
Picard, M.; Thakur, S.; Misra, M.; Mohanty, A.K. Miscanthus grass-derived carbon dots to selectively detect Fe3+ ions. RSC Advances, 2019, 9(15), 8628-8637.
[http://dx.doi.org/10.1039/C8RA10051A] [PMID: 35518702]
[87]
Deb, A.; Konwar, A.; Chowdhury, D. pH-responsive hybrid jute carbon dot-cotton patch. ACS Sustain. Chem. Eng., 2020, 8(19), 7394-7402.
[http://dx.doi.org/10.1021/acssuschemeng.0c01221]
[88]
Pramanik, S.; Chatterjee, S.; Suresh Kumar, G.; Sujatha Devi, P. Egg-shell derived carbon dots for base pair selective DNA binding and recognition. Phys. Chem. Chem. Phys., 2018, 20(31), 20476-20488.
[http://dx.doi.org/10.1039/C8CP02872A] [PMID: 30043811]
[89]
Venkatesan, G.; Rajagopalan, V.; Chakravarthula, S.N. Boswellia ovalifoliolata bark extract derived carbon dots for selective fluorescent sensing of Fe3+. J. Environ. Chem. Eng., 2019, 7(2), 103013.
[http://dx.doi.org/10.1016/j.jece.2019.103013]
[90]
Tiwari, P.; Kaur, N.; Sharma, V.; Kang, H.; Uddin, J.; Mobin, S.M. Cannabis sativa -derived carbon dots co-doped with N–S: Highly efficient nanosensors for temperature and vitamin B12. New J. Chem., 2019, 43(43), 17058-17068.
[http://dx.doi.org/10.1039/C9NJ04061G]
[91]
Zulfajri, M.; Gedda, G.; Chang, C.J.; Chang, Y.P.; Huang, G.G. Cranberry beans derived carbon dots as a potential fluorescence sensor for selective detection of Fe3+ ions in aqueous solution. ACS Omega, 2019, 4(13), 15382-15392.
[http://dx.doi.org/10.1021/acsomega.9b01333] [PMID: 31572837]
[92]
Wei, X.; Li, L.; Liu, J.; Yu, L.; Li, H.; Cheng, F.; Yi, X.; He, J.; Li, B. Green synthesis of fluorescent carbon dots from gynostemma for bioimaging and antioxidant in zebrafish. ACS Appl. Mater. Interfaces, 2019, 11(10), 9832-9840.
[http://dx.doi.org/10.1021/acsami.9b00074] [PMID: 30758177]
[93]
Chen, K.; Qing, W.; Hu, W.; Lu, M.; Wang, Y.; Liu, X. On-off-on fluorescent carbon dots from waste tea: Their properties, antioxidant and selective detection of CrO42−, Fe3+, ascorbic acid and L-cysteine in real samples. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 213, 228-234.
[http://dx.doi.org/10.1016/j.saa.2019.01.066] [PMID: 30695741]
[94]
Shukla, D.; Das, M.; Kasade, D.; Pandey, M.; Dubey, A.K.; Yadav, S.K.; Parmar, A.S. Sandalwood-derived carbon quantum dots as bioimaging tools to investigate the toxicological effects of malachite green in model organisms. Chemosphere, 2020, 248, 125998.
[http://dx.doi.org/10.1016/j.chemosphere.2020.125998] [PMID: 32006833]
[95]
Newman Monday, Y.; Abdullah, J.; Yusof, N.A.; Abdul Rashid, S.; Shueb, R.H. Facile hydrothermal and solvothermal synthesis and characterization of nitrogen-doped carbon dots from palm kernel shell precursor. Appl. Sci., 2021, 11(4), 1630.
[http://dx.doi.org/10.3390/app11041630]
[96]
Huang, C.; Dong, H.; Su, Y.; Wu, Y.; Narron, R.; Yong, Q. Synthesis of carbon quantum dot nanoparticles derived from byproducts in bio-refinery process for cell imaging and in vivo bioimaging. Nanomaterials, 2019, 9(3), 387.
[http://dx.doi.org/10.3390/nano9030387] [PMID: 30866423]
[97]
Zhu, S.; Song, Y.; Zhao, X.; Shao, J.; Zhang, J.; Yang, B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Res., 2015, 8(2), 355-381.
[http://dx.doi.org/10.1007/s12274-014-0644-3]
[98]
Liu, M.L.; Chen, B.B.; Li, C.M.; Huang, C.Z. Carbon dots: Synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chem., 2019, 21(3), 449-471.
[http://dx.doi.org/10.1039/C8GC02736F]
[99]
Jiang, K.; Sun, S.; Zhang, L.; Lu, Y.; Wu, A.; Cai, C.; Lin, H. Red, green, and blue luminescence by carbon dots: Full-color emission tuning and multicolor cellular imaging. Angew. Chem. Int. Ed., 2015, 54(18), 5360-5363.
[http://dx.doi.org/10.1002/anie.201501193] [PMID: 25832292]
[100]
Li, H.; He, X.; Kang, Z.; Huang, H.; Liu, Y.; Liu, J.; Lian, S.; Tsang, C.H.A.; Yang, X.; Lee, S.T. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem. Int. Ed., 2010, 49(26), 4430-4434.
[http://dx.doi.org/10.1002/anie.200906154] [PMID: 20461744]
[101]
Zhang, Y.; Yuan, R.; He, M.; Hu, G.; Jiang, J.; Xu, T.; Zhou, L.; Chen, W.; Xiang, W.; Liang, X. Multicolour nitrogen-doped carbon dots: Tunable photoluminescence and sandwich fluorescent glass-based light-emitting diodes. Nanoscale, 2017, 9(45), 17849-17858.
[http://dx.doi.org/10.1039/C7NR05363K] [PMID: 29116274]
[102]
Ding, H.; Yu, S.B.; Wei, J.S.; Xiong, H.M. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano, 2016, 10(1), 484-491.
[http://dx.doi.org/10.1021/acsnano.5b05406] [PMID: 26646584]
[103]
Guo, Y.; Wang, Z.; Shao, H.; Jiang, X. Hydrothermal synthesis of highly fluorescent carbon nanoparticles from sodium citrate and their use for the detection of mercury ions. Carbon, 2013, 52, 583-589.
[http://dx.doi.org/10.1016/j.carbon.2012.10.028]
[104]
Shibata, K.; Nakai, T.; Fukuwatari, T. Simultaneous high-performance liquid chromatography determination of coenzyme A, dephospho-coenzyme A, and acetyl-coenzyme A in normal and pantothenic acid-deficient rats. Anal. Biochem., 2012, 430(2), 151-155.
[http://dx.doi.org/10.1016/j.ab.2012.08.010] [PMID: 22922385]
[105]
Miller, A.; Korem, M.; Almog, R.; Galboiz, Y. Vitamin B12, demyelination, remyelination and repair in multiple sclerosis. J. Neurol. Sci., 2005, 233(1-2), 93-97.
[http://dx.doi.org/10.1016/j.jns.2005.03.009] [PMID: 15896807]
[106]
Sun, X.Y.; Yuan, M.J.; Liu, B.; Shen, J.S. Carbon dots as fluorescent probes for detection of VB12 based on the inner filter effect. RSC Advances, 2018, 8(35), 19786-19790.
[http://dx.doi.org/10.1039/C8RA03070G] [PMID: 35540996]
[107]
Ding, L.; Yang, H.; Ge, S.; Yu, J. Fluorescent carbon dots nanosensor for label-free determination of vitamin B12 based on inner filter effect. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 193, 305-309.
[http://dx.doi.org/10.1016/j.saa.2017.12.015] [PMID: 29258025]
[108]
Cho, I.H.; Kim, D.H.; Park, S. Electrochemical biosensors: Perspective on functional nanomaterials for on-site analysis. Biomater. Res., 2020, 24(1), 6.
[http://dx.doi.org/10.1186/s40824-019-0181-y] [PMID: 32042441]
[109]
Farzin, M.A.; Abdoos, H. A critical review on quantum dots: From synthesis toward applications in electrochemical biosensors for determination of disease-related biomolecules. Talanta, 2021, 224, 121828.
[http://dx.doi.org/10.1016/j.talanta.2020.121828] [PMID: 33379046]
[110]
Ji, C.; Zhou, Y.; Leblanc, R.M.; Peng, Z. Recent developments of carbon dots in biosensing: A review. ACS Sens., 2020, 5(9), 2724-2741.
[http://dx.doi.org/10.1021/acssensors.0c01556] [PMID: 32812427]
[111]
Speed, N.K.; Matthies, H.J.G.; Kennedy, J.P.; Vaughan, R.A.; Javitch, J.A.; Russo, S.J.; Lindsley, C.W.; Niswender, K.; Galli, A. Akt-dependent and isoform-specific regulation of dopamine transporter cell surface expression. ACS Chem. Neurosci., 2010, 1(7), 476-481.
[http://dx.doi.org/10.1021/cn100031t] [PMID: 22778840]
[112]
Zhou, J.; Wang, W.; Yu, P.; Xiong, E.; Zhang, X.; Chen, J. A simple label-free electrochemical aptasensor for dopamine detection. RSC Advances, 2014, 4(94), 52250-52255.
[http://dx.doi.org/10.1039/C4RA08090D]
[113]
Wang, X.; You, Z.; Sha, H.; Cheng, Y.; Zhu, H.; Sun, W. Sensitive electrochemical detection of dopamine with a DNA/graphene bi-layer modified carbon ionic liquid electrode. Talanta, 2014, 128, 373-378.
[http://dx.doi.org/10.1016/j.talanta.2014.04.078] [PMID: 25059174]
[114]
Jiang, G.; Jiang, T.; Zhou, H.; Yao, J.; Kong, X. Preparation of N-doped carbon quantum dots for highly sensitive detection of dopamine by an electrochemical method. RSC Advances, 2015, 5(12), 9064-9068.
[http://dx.doi.org/10.1039/C4RA16773B]
[115]
Asad, M.; Zulfiqar, A.; Raza, R.; Yang, M.; Hayat, A.; Akhtar, N. Orange peel derived C-dots decorated CuO nanorods for the selective monitoring of dopamine from deboned chicken. Electroanalysis, 2020, 32(1), 11-18.
[http://dx.doi.org/10.1002/elan.201900468]
[116]
Huang, Q.; Lin, X.; Zhu, J.J.; Tong, Q.X. Pd-Au@carbon dots nanocomposite: Facile synthesis and application as an ultrasensitive electrochemical biosensor for determination of colitoxin DNA in human serum. Biosens. Bioelectron., 2017, 94, 507-512.
[http://dx.doi.org/10.1016/j.bios.2017.03.048] [PMID: 28343103]
[117]
Ghodsi, J.; Rafati, A.A.; Shoja, Y. First report on electrocatalytic oxidation of oxytetracycline by horse radish peroxidase: Application in developing a biosensor to oxytetracycline determination. Sens. Actuators B Chem., 2016, 224, 692-699.
[http://dx.doi.org/10.1016/j.snb.2015.10.091]
[118]
Johari-Ahar, M.; Barar, J.; Alizadeh, A.M.; Davaran, S.; Omidi, Y.; Rashidi, M.R. Methotrexate-conjugated quantum dots: Synthesis, characterisation and cytotoxicity in drug resistant cancer cells. J. Drug Target., 2016, 24(2), 120-133.
[http://dx.doi.org/10.3109/1061186X.2015.1058801] [PMID: 26176269]
[119]
Olivieri, A.C.; Arancibia, J.A.; Muñoz de la Peña, A.; Durán-Merás, I.; Espinosa Mansilla, A. Second-order advantage achieved with four-way fluorescence excitation-emission-kinetic data processed by parallel factor analysis and trilinear least-squares. Determination of methotrexate and leucovorin in human urine. Anal. Chem., 2004, 76(19), 5657-5666.
[http://dx.doi.org/10.1021/ac0493065] [PMID: 15456283]
[120]
Nudelman, J.; Taylor, B.; Evans, N.; Rizzo, J.; Gray, J.; Engel, C.; Walker, M. Policy and research recommendations emerging from the scientific evidence connecting environmental factors and breast cancer. Int. J. Occup. Environ. Health, 2009, 15(1), 79-101.
[http://dx.doi.org/10.1179/oeh.2009.15.1.79] [PMID: 19267127]
[121]
Atchudan, R.; Jebakumar Immanuel Edison, T.N.; Shanmugam, M.; Perumal, S.; Somanathan, T.; Lee, Y.R. Sustainable synthesis of carbon quantum dots from banana peel waste using hydrothermal process for in vivo bioimaging. Physica E, 2021, 126, 114417.
[http://dx.doi.org/10.1016/j.physe.2020.114417]
[122]
Qin, K.; Zhang, D.; Ding, Y.; Zheng, X.; Xiang, Y.; Hua, J.; Zhang, Q.; Ji, X.; Li, B.; Wei, Y. Applications of hydrothermal synthesis of Escherichia coli derived carbon dots in in vitro and in vivo imaging and p -nitrophenol detection. Analyst, 2020, 145(1), 177-183.
[http://dx.doi.org/10.1039/C9AN01753D] [PMID: 31729506]
[123]
Xue, M.; Zhao, J.; Zhan, Z.; Zhao, S.; Lan, C.; Ye, F.; Liang, H. Dual functionalized natural biomass carbon dots from lychee exocarp for cancer cell targetable near-infrared fluorescence imaging and photodynamic therapy. Nanoscale, 2018, 10(38), 18124-18130.
[http://dx.doi.org/10.1039/C8NR05017A] [PMID: 30255925]
[124]
Esim, O.; Kurbanoglu, S.; Savaser, A.; Ozkan, S.A.; Ozkan, Y. Nanomaterials for drug delivery systems. New developments in nanosensors for pharmaceutical analysis; Academic Press, 2019, pp. 273-301.
[http://dx.doi.org/10.1016/B978-0-12-816144-9.00009-2]
[125]
Koutsogiannis, P.; Thomou, E.; Stamatis, H.; Gournis, D.; Rudolf, P. Advances in fluorescent carbon dots for biomedical applications. Adv. Phys. X, 2020, 5(1), 1758592.
[http://dx.doi.org/10.1080/23746149.2020.1758592]
[126]
Fahmi, M.Z.; Haris, A.; Permana, A.J.; Nor Wibowo, D.L.; Purwanto, B.; Nikmah, Y.L.; Idris, A. Bamboo leaf-based carbon dots for efficient tumor imaging and therapy. RSC Advances, 2018, 8(67), 38376-38383.
[http://dx.doi.org/10.1039/C8RA07944G] [PMID: 35559085]
[127]
Liang, L.; Liu, Z. A self-assembled molecular team of boronic acids at the gold surface for specific capture of cis-diol biomolecules at neutral pH. Chem. Commun., 2011, 47(8), 2255-2257.
[http://dx.doi.org/10.1039/c0cc02540b] [PMID: 21258740]
[128]
D’souza, S.L.; Chettiar, S.S.; Koduru, J.R.; Kailasa, S.K. Synthesis of fluorescent carbon dots using Daucus carota subsp. sativus roots for mitomycin drug delivery. Optik, 2018, 158, 893-900.
[http://dx.doi.org/10.1016/j.ijleo.2017.12.200]
[129]
Shao, Y.; Zhu, C.; Fu, Z.; Lin, K.; Wang, Y.; Chang, Y.; Han, L.; Yu, H.; Tian, F. Green synthesis of multifunctional fluorescent carbon dots from mulberry leaves (Morus alba L.) residues for simultaneous intracellular imaging and drug delivery. J. Nanopart. Res., 2020, 22(8), 229.
[http://dx.doi.org/10.1007/s11051-020-04917-4]
[130]
Ankireddy, S.R.; Vo, V.G.; An, S.S.A.; Kim, J. Solvent-free synthesis of fluorescent carbon dots: An ecofriendly approach for the bioimaging and screening of anticancer activity via caspase-induced apoptosis. ACS Appl. Bio Mater., 2020, 3(8), 4873-4882.
[http://dx.doi.org/10.1021/acsabm.0c00377] [PMID: 35021731]
[131]
Zhu, C.; Zhai, J.; Dong, S. Bifunctional fluorescent carbon nanodots: Green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction. Chem. Commun., 2012, 48(75), 9367-9369.
[http://dx.doi.org/10.1039/c2cc33844k] [PMID: 22911246]
[132]
Zhang, H.; Wang, Y.; Wang, D.; Li, Y.; Liu, X.; Liu, P.; Yang, H.; An, T.; Tang, Z.; Zhao, H. Hydrothermal transformation of dried grass into graphitic carbon-based high performance electrocatalyst for oxygen reduction reaction. Small, 2014, 10(16), 3371-3378.
[http://dx.doi.org/10.1002/smll.201400781] [PMID: 24729520]
[133]
Liu, R.; Zhang, H.; Liu, S.; Zhang, X.; Wu, T.; Ge, X.; Zang, Y.; Zhao, H.; Wang, G. Shrimp-shell derived carbon nanodots as carbon and nitrogen sources to fabricate three-dimensional N-doped porous carbon electrocatalysts for the oxygen reduction reaction. Phys. Chem. Chem. Phys., 2016, 18(5), 4095-4101.
[http://dx.doi.org/10.1039/C5CP06970J] [PMID: 26778836]
[134]
Li, X.; Rui, M.; Song, J.; Shen, Z.; Zeng, H. Carbon and graphene quantum dots for optoelectronic and energy devices: A review. Adv. Funct. Mater., 2015, 25(31), 4929-4947.
[http://dx.doi.org/10.1002/adfm.201501250]
[135]
Unnikrishnan, B.; Wu, C.W.; Chen, I.W.P.; Chang, H.T.; Lin, C.H.; Huang, C.C. Carbon dot-mediated synthesis of manganese oxide decorated graphene nanosheets for supercapacitor application. ACS Sustain. Chem.& Eng., 2016, 4(6), 3008-3016.
[http://dx.doi.org/10.1021/acssuschemeng.5b01700]
[136]
Xu, L.; Wang, H.; Gao, J.; Jin, X. Electrochemical performance enhancement of flexible graphene supercapacitor electrodes by carbon dots modification and NiCo2S4 electrodeposition. J. Alloys Compd., 2019, 809, 151802.
[http://dx.doi.org/10.1016/j.jallcom.2019.151802]
[137]
Li, W.; Liu, Y.; Wu, M.; Feng, X.; Redfern, S.A.; Shang, Y.; Yang, B. Carbon-quantum-dots-loaded ruthenium nanoparticles as an efficient electrocatalyst for hydrogen production in alkaline media. Adv. Mater., 2018, 30(31), 1800676.
[http://dx.doi.org/10.1002/adma.201800676]
[138]
Unnikrishnan, B.; Wu, C.W.; Chen, I.W.P.; Chang, H.T.; Lin, C.H.; Huang, C.C. Carbon dot-mediated synthesis of manganese oxide decorated graphene nanosheets for supercapacitor application. ACS Sustain. Chem. Eng., 2016, 4(6), 3008-3016.
[139]
Xu, L.; Wang, H.; Gao, J.; Jin, X. Electrochemical performance enhancement of flexible graphene supercapacitor electrodes by carbon dots modification and NiCo 2 S 4 electrodeposition. J. Alloys Compd., 2019, 809, 151802.
[140]
Hoang, V.C.; Nguyen, L.H.; Gomes, V.G. High efficiency supercapacitor derived from biomass based carbon dots and reduced graphene oxide composite. J. Electroanal. Chem., 2019, 832, 87-96.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy