Review Article

DNA和蛋白质甲基转移酶和去甲基化酶在人类疾病中的意义:从分子机制到新的治疗方法

卷 31, 期 23, 2024

发表于: 07 August, 2023

页: [3550 - 3587] 页: 38

弟呕挨: 10.2174/0929867330666230607124803

价格: $65

Open Access Journals Promotions 2
摘要

表观遗传机制是调控基因表达的关键。这些机制包括DNA甲基化和组蛋白修饰,如甲基化、乙酰化和磷酸化。DNA甲基化与基因表达抑制有关;然而,组蛋白甲基化可以刺激或抑制基因表达,这取决于组蛋白上赖氨酸或精氨酸残基的甲基化模式。这些修饰是介导环境对基因表达调控的关键因素。因此,它们的异常活动与各种疾病的发生有关。目前的研究旨在回顾DNA和组蛋白甲基转移酶和去甲基化酶在发展各种疾病中的意义,如心血管疾病、肌病、糖尿病、肥胖、骨质疏松症、癌症、衰老和中枢神经系统疾病。更好地了解表观遗传学在疾病发展中的作用可以为开发新的治疗方法铺平道路。

关键词: 表观遗传学,DNA甲基化,组蛋白甲基化,甲基转移酶,去甲基化酶,人类疾病。

[1]
Greer, E.L.; Shi, Y. Histone methylation: A dynamic mark in health, disease and inheritance. Nat. Rev. Genet., 2012, 13(5), 343-357.
[http://dx.doi.org/10.1038/nrg3173] [PMID: 22473383]
[2]
Parkel, S.; Lopez-Atalaya, J.P.; Barco, A. Histone H3 lysine methylation in cognition and intellectual disability disorders. Learn. Mem., 2013, 20(10), 570-579.
[http://dx.doi.org/10.1101/lm.029363.112] [PMID: 24045506]
[3]
Faundes, V.; Newman, W.G.; Bernardini, L.; Canham, N.; Clayton-Smith, J.; Dallapiccola, B.; Davies, S.J.; Demos, M.K.; Goldman, A.; Gill, H.; Horton, R.; Kerr, B.; Kumar, D.; Lehman, A.; McKee, S.; Morton, J.; Parker, M.J.; Rankin, J.; Robertson, L.; Temple, I.K.; Banka, S. Histone lysine methylases and demethylases in the landscape of human developmental disorders. Am. J. Hum. Genet., 2018, 102(1), 175-187.
[http://dx.doi.org/10.1016/j.ajhg.2017.11.013] [PMID: 29276005]
[4]
Bannister, A.J.; Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res., 2011, 21(3), 381-395.
[http://dx.doi.org/10.1038/cr.2011.22] [PMID: 21321607]
[5]
Barski, A.; Cuddapah, S.; Cui, K.; Roh, T.Y.; Schones, D.E.; Wang, Z.; Wei, G.; Chepelev, I.; Zhao, K. High-resolution profiling of histone methylations in the human genome. Cell, 2007, 129(4), 823-837.
[http://dx.doi.org/10.1016/j.cell.2007.05.009] [PMID: 17512414]
[6]
Zhang, J.; Jing, L.; Li, M.; He, L.; Guo, Z. Regulation of histone arginine methylation/demethylation by methylase and demethylase. Mol. Med. Rep., 2019, 19(5), 3963-3971.
[http://dx.doi.org/10.3892/mmr.2019.10111] [PMID: 30942418]
[7]
Rao, V.K.; Pal, A.; Taneja, R. A drive in SUVs: From development to disease. Epigenetics, 2017, 12(3), 177-186.
[http://dx.doi.org/10.1080/15592294.2017.1281502] [PMID: 28106510]
[8]
Bedford, M.T.; Richard, S. Arginine methylation. Mol. Cell, 2005, 18(3), 263-272.
[http://dx.doi.org/10.1016/j.molcel.2005.04.003] [PMID: 15866169]
[9]
Hwang, J.W.; Cho, Y.; Bae, G.U.; Kim, S.N.; Kim, Y.K. Protein arginine methyltransferases: Promising targets for cancer therapy. Exp. Mol. Med., 2021, 53(5), 788-808.
[http://dx.doi.org/10.1038/s12276-021-00613-y] [PMID: 34006904]
[10]
Tewary, S.K.; Zheng, Y.G.; Ho, M.C. Protein arginine methyltransferases: Insights into the enzyme structure and mechanism at the atomic level. Cell. Mol. Life Sci., 2019, 76(15), 2917-2932.
[http://dx.doi.org/10.1007/s00018-019-03145-x] [PMID: 31123777]
[11]
Zurita-Lopez, C.I.; Sandberg, T.; Kelly, R.; Clarke, S.G. Human protein arginine methyltransferase 7 (PRMT7) is a type III enzyme forming ω-NG-monomethylated arginine residues. J. Biol. Chem., 2012, 287(11), 7859-7870.
[http://dx.doi.org/10.1074/jbc.M111.336271] [PMID: 22241471]
[12]
Lee, Y.H.; Stallcup, M.R. Minireview: Protein arginine methylation of nonhistone proteins in transcriptional regulation. Mol. Endocrinol., 2009, 23(4), 425-433.
[http://dx.doi.org/10.1210/me.2008-0380] [PMID: 19164444]
[13]
Lukinović, V.; Casanova, A.G.; Roth, G.S.; Chuffart, F.; Reynoird, N. Lysine methyltransferases signaling: Histones are just the tip of the iceberg. Curr. Protein Pept. Sci., 2020, 21(7), 655-674.
[http://dx.doi.org/10.2174/1871527319666200102101608] [PMID: 31894745]
[14]
Morera, L.; Lübbert, M.; Jung, M. Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy. Clin. Epigenetics, 2016, 8(1), 57.
[http://dx.doi.org/10.1186/s13148-016-0223-4] [PMID: 27222667]
[15]
Shi, J.; Xu, J.; Chen, Y.E.; Li, J.S.; Cui, Y.; Shen, L.; Li, J.J.; Li, W. The concurrence of DNA methylation and demethylation is associated with transcription regulation. Nat. Commun., 2021, 12(1), 5285.
[http://dx.doi.org/10.1038/s41467-021-25521-7] [PMID: 34489442]
[16]
Bergmann, O.; Bhardwaj, R.D.; Bernard, S.; Zdunek, S.; Barnabé-Heider, F.; Walsh, S.; Zupicich, J.; Alkass, K.; Buchholz, B.A.; Druid, H.; Jovinge, S.; Frisén, J. Evidence for cardiomyocyte renewal in humans. Science, 2009, 324(5923), 98-102.
[http://dx.doi.org/10.1126/science.1164680] [PMID: 19342590]
[17]
Ai, S.; Yu, X.; Li, Y.; Peng, Y.; Li, C.; Yue, Y.; Tao, G.; Li, C.; Pu, W.T.; He, A. Divergent requirements for EZH1 in heart development versus regeneration. Circ. Res., 2017, 121(2), 106-112.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.311212] [PMID: 28512107]
[18]
Cao, R.; Wang, L.; Wang, H.; Xia, L.; Erdjument-Bromage, H.; Tempst, P.; Jones, R.S.; Zhang, Y. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science, 2002, 298(5595), 1039-1043.
[http://dx.doi.org/10.1126/science.1076997] [PMID: 12351676]
[19]
Yang, J.; Kaur, K.; Edwards, J.G.; Eisenberg, C.A.; Eisenberg, L.M. Inhibition of histone methyltransferase, histone deacetylase, and β-catenin synergistically enhance the cardiac potential of bone marrow cells. Stem Cells Int., 2017, 2017, 3464953.
[20]
Warren, J.S.; Tracy, C.M.; Miller, M.R.; Makaju, A.; Szulik, M.W.; Oka, S.; Yuzyuk, T.N.; Cox, J.E.; Kumar, A.; Lozier, B.K.; Wang, L.; Llana, J.G.; Sabry, A.D.; Cawley, K.M.; Barton, D.W.; Han, Y.H.; Boudina, S.; Fiehn, O.; Tucker, H.O.; Zaitsev, A.V.; Franklin, S. Histone methyltransferase Smyd1 regulates mitochondrial energetics in the heart. Proc. Natl. Acad. Sci. , 2018, 115(33), E7871-E7880.
[http://dx.doi.org/10.1073/pnas.1800680115] [PMID: 30061404]
[21]
Ono, T.; Kamimura, N.; Matsuhashi, T.; Nagai, T.; Nishiyama, T.; Endo, J.; Hishiki, T.; Nakanishi, T.; Shimizu, N.; Tanaka, H.; Ohta, S.; Suematsu, M.; Ieda, M.; Sano, M.; Fukuda, K.; Kaneda, R. The histone 3 lysine 9 methyltransferase inhibitor chaetocin improves prognosis in a rat model of high salt diet-induced heart failure. Sci. Rep., 2017, 7(1), 39752.
[http://dx.doi.org/10.1038/srep39752] [PMID: 28051130]
[22]
Steffensen, T.S.; Spicer, D.E. Congenital coronary artery anomalies for the pathologist. Fetal Pediatr. Pathol., 2014, 33(5-6), 268-288.
[http://dx.doi.org/10.3109/15513815.2014.966182] [PMID: 25329249]
[23]
Yi, X.; Jiang, X.; Li, X.; Jiang, D.S. Histone lysine methylation and congenital heart disease: From bench to bedside. Int. J. Mol. Med., 2017, 40(4), 953-964.
[http://dx.doi.org/10.3892/ijmm.2017.3115] [PMID: 28902362]
[24]
Schwenty-Lara, J.; Nürnberger, A.; Borchers, A. Loss of function of Kmt2d, a gene mutated in Kabuki syndrome, affects heart development in Xenopus laevis. Dev. Dyn., 2019, 248(6), 465-476.
[http://dx.doi.org/10.1002/dvdy.39] [PMID: 30980591]
[25]
Chen, L.; Fulcoli, F.G.; Ferrentino, R.; Martucciello, S.; Illingworth, E.A.; Baldini, A. Transcriptional control in cardiac progenitors: Tbx1 interacts with the BAF chromatin remodeling complex and regulates Wnt5a. PLoS Genet., 2012, 8(3), e1002571.
[http://dx.doi.org/10.1371/journal.pgen.1002571] [PMID: 22438823]
[26]
Caprio, C.; Baldini, A. p53 suppression partially rescues the mutant phenotype in mouse models of DiGeorge syndrome. Proc. Natl. Acad. Sci. , 2014, 111(37), 13385-13390.
[http://dx.doi.org/10.1073/pnas.1401923111] [PMID: 25197075]
[27]
Park, S.H.; Lee, J.E.; Sohn, Y.B.; Ko, J.M. First identified Korean family with Sotos syndrome caused by a novel intragenic mutation in NSD1. Ann. Clin. Lab. Sci., 2014, 44(2), 228-231.
[PMID: 24795065]
[28]
Nicholson, T.B.; Singh, A.K.; Su, H.; Hevi, S.; Wang, J.; Bajko, J.; Li, M.; Valdez, R.; Goetschkes, M.; Capodieci, P.; Loureiro, J.; Cheng, X.; Li, E.; Kinzel, B.; Labow, M.; Chen, T. A hypomorphic lsd1 allele results in heart development defects in mice. PLoS One, 2013, 8(4), e60913.
[http://dx.doi.org/10.1371/journal.pone.0060913] [PMID: 23637775]
[29]
Mokou, M.; Klein, J.; Makridakis, M.; Bitsika, V.; Bascands, J.L.; Saulnier-Blache, J.S.; Mullen, W.; Sacherer, M.; Zoidakis, J.; Pieske, B.; Mischak, H.; Roubelakis, M.G.; Schanstra, J.P.; Vlahou, A. Proteomics based identification of KDM5 histone demethylases associated with cardiovascular disease. EBioMedicine, 2019, 41, 91-104.
[http://dx.doi.org/10.1016/j.ebiom.2019.02.040] [PMID: 30826357]
[30]
de Vries, M.R.; Quax, P.H.A. Plaque angiogenesis and its relation to inflammation and atherosclerotic plaque destabilization. Curr. Opin. Lipidol., 2016, 27(5), 499-506.
[http://dx.doi.org/10.1097/MOL.0000000000000339] [PMID: 27472406]
[31]
Zhang, Q.J.; Tran, T.A.T.; Wang, M.; Ranek, M.J.; Kokkonen-Simon, K.M.; Gao, J.; Luo, X.; Tan, W.; Kyrychenko, V.; Liao, L.; Xu, J.; Hill, J.A.; Olson, E.N.; Kass, D.A.; Martinez, E.D.; Liu, Z.P. Histone lysine dimethyl-demethylase KDM3A controls pathological cardiac hypertrophy and fibrosis. Nat. Commun., 2018, 9(1), 5230.
[http://dx.doi.org/10.1038/s41467-018-07173-2] [PMID: 30531796]
[32]
Xu, J.; Wang, J.; Long, F.; Zhong, W.; Su, H.; Su, Z.; Liu, X. Inhibition of the cardiac fibroblast-enriched histone methyltransferase Dot1L prevents cardiac fibrosis and cardiac dysfunction. Cell Biosci., 2022, 12(1), 134.
[http://dx.doi.org/10.1186/s13578-022-00877-5] [PMID: 35986422]
[33]
Li, F.; Li, L.; Zhang, J.; Yang, X.; Liu, Y. Histone methyltransferase DOT1L mediates the TGF-β1/Smad3 signaling pathway through epigenetic modification of SYK in myocardial infarction. Hum. Cell, 2022, 35(1), 98-110.
[http://dx.doi.org/10.1007/s13577-021-00625-w] [PMID: 34635982]
[34]
Murata, K.; Lu, W.; Hashimoto, M.; Ono, N.; Muratani, M.; Nishikata, K.; Kim, J.D.; Ebihara, S.; Ishida, J.; Fukamizu, A. PRMT1 deficiency in mouse juvenile heart induces dilated cardiomyopathy and reveals cryptic alternative splicing products. iScience, 2018, 8, 200-213.
[http://dx.doi.org/10.1016/j.isci.2018.09.023] [PMID: 30321814]
[35]
Pyun, J.H.; Kim, H.J.; Jeong, M.H.; Ahn, B.Y.; Vuong, T.A.; Lee, D.I.; Choi, S.; Koo, S.H.; Cho, H.; Kang, J.S. Cardiac specific PRMT1 ablation causes heart failure through CaMKII dysregulation. Nat. Commun., 2018, 9(1), 5107.
[http://dx.doi.org/10.1038/s41467-018-07606-y] [PMID: 30504773]
[36]
Cai, S.; Liu, R.; Wang, P.; Li, J.; Xie, T.; Wang, M.; Cao, Y.; Li, Z.; Liu, P. PRMT5 prevents cardiomyocyte hypertrophy via symmetric dimethylating HoxA9 and repressing HoxA9 expression. Front. Pharmacol., 2020, 11, 600627.
[http://dx.doi.org/10.3389/fphar.2020.600627] [PMID: 33424610]
[37]
Talens, R.P.; Jukema, J.W.; Trompet, S.; Kremer, D.; Westendorp, R.G.J.; Lumey, L.H.; Sattar, N.; Putter, H.; Slagboom, P.E.; Heijmans, B.T. Hypermethylation at loci sensitive to the prenatal environment is associated with increased incidence of myocardial infarction. Int. J. Epidemiol., 2012, 41(1), 106-115.
[http://dx.doi.org/10.1093/ije/dyr153] [PMID: 22101166]
[38]
Zhu, H.; Wang, X.; Meng, X.; Kong, Y.; Li, Y.; Yang, C.; Guo, Y.; Wang, X.; Yang, H.; Liu, Z. Selenium supplementation improved cardiac functions by suppressing DNMT2-Mediated GPX1 promoter DNA methylation in AGE-induced heart failure. Oxid. Med. Cell. Longev., 2022, 2022, 5402997.
[http://dx.doi.org/10.1155/2022/5402997]
[39]
Judson, R.N.; Quarta, M.; Oudhoff, M.J.; Soliman, H.; Yi, L.; Chang, C.K.; Loi, G.; Vander Werff, R.; Cait, A.; Hamer, M. Inhibition of methyltransferase setd7 allows the in vitro expansion of myogenic stem cells with improved therapeutic potential. Cell Stem Cell, 2018, 22(2), 177-190.
[http://dx.doi.org/10.1016/j.stem.2017.12.010]
[40]
Zhao, M.J.; Xie, J.; Shu, W.J.; Wang, H.Y.; Bi, J.; Jiang, W.; Du, H.N. MiR-15b and miR-322 inhibit SETD3 expression to repress muscle cell differentiation. Cell Death Dis., 2019, 10(3), 183.
[http://dx.doi.org/10.1038/s41419-019-1432-5] [PMID: 30796205]
[41]
Zhong, X.; Wang, Q.Q.; Li, J.W.; Zhang, Y.M.; An, X.R.; Hou, J. Ten-eleven translocation-2 (Tet2) is involved in myogenic differentiation of skeletal myoblast cells in vitro. Sci. Rep., 2017, 7(1), 43539.
[http://dx.doi.org/10.1038/srep43539] [PMID: 28272491]
[42]
Hon, G.C.; Song, C.X.; Du, T.; Jin, F.; Selvaraj, S.; Lee, A.Y.; Yen, C.; Ye, Z.; Mao, S.Q.; Wang, B.A.; Kuan, S.; Edsall, L.E.; Zhao, B.S.; Xu, G.L.; He, C.; Ren, B. 5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation. Mol. Cell, 2014, 56(2), 286-297.
[http://dx.doi.org/10.1016/j.molcel.2014.08.026] [PMID: 25263596]
[43]
Zhang, H.; Wang, S.; Zhou, Q.; Liao, Y.; Luo, W.; Peng, Z.; Ren, R.; Wang, H. Disturbance of calcium homeostasis and myogenesis caused by TET2 deletion in muscle stem cells. Cell Death Discov., 2022, 8(1), 236.
[http://dx.doi.org/10.1038/s41420-022-01041-1] [PMID: 35490157]
[44]
Shi, K.; Lu, Y.; Chen, X.; Li, D.; Du, W.; Yu, M. Effects of Ten-Eleven Translocation-2 (Tet2) on myogenic differentiation of chicken myoblasts. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2021, 252, 110540.
[http://dx.doi.org/10.1016/j.cbpb.2020.110540] [PMID: 33242661]
[45]
Tracy, C.M.; Warren, J.S.; Szulik, M.; Wang, L.; Garcia, J.; Makaju, A.; Russell, K.; Miller, M.; Franklin, S. The Smyd family of methyltransferases: Role in cardiac and skeletal muscle physiology and pathology. Curr. Opin. Physiol., 2018, 1, 140-152.
[http://dx.doi.org/10.1016/j.cophys.2017.10.001] [PMID: 29435515]
[46]
Stewart, M.D.; Lopez, S.; Nagandla, H.; Soibam, B.; Benham, A.; Nguyen, J.; Valenzuela, N.; Wu, H.J.; Burns, A.R.; Rasmussen, T.L.; Tucker, H.O.; Schwartz, R.J. Mouse myofibers lacking the SMYD1 methyltransferase are susceptible to atrophy, internalization of nuclei and myofibrillar disarray. Dis. Model. Mech., 2016, 9(3), 347-359.
[http://dx.doi.org/10.1242/dmm.022491] [PMID: 26935107]
[47]
Fujii, T.; Tsunesumi, S.; Yamaguchi, K.; Watanabe, S.; Furukawa, Y. Smyd3 is required for the development of cardiac and skeletal muscle in zebrafish. PLoS One, 2011, 6(8), e23491.
[http://dx.doi.org/10.1371/journal.pone.0023491] [PMID: 21887258]
[48]
Proserpio, V.; Fittipaldi, R.; Ryall, J.G.; Sartorelli, V.; Caretti, G. The methyltransferase SMYD3 mediates the recruitment of transcriptional cofactors at the myostatin and c-Met genes and regulates skeletal muscle atrophy. Genes Dev., 2013, 27(11), 1299-1312.
[http://dx.doi.org/10.1101/gad.217240.113] [PMID: 23752591]
[49]
Caretti, G.; Di Padova, M.; Micales, B.; Lyons, G.E.; Sartorelli, V. The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation. Genes Dev., 2004, 18(21), 2627-2638.
[http://dx.doi.org/10.1101/gad.1241904] [PMID: 15520282]
[50]
Bordoni, V.; Bagella, L. Long noncoding RNA SYISL: The crucial interaction with EZH2 in skeletal muscle differentiation and disorders. Non-coding RNA Investig., 2019, 3, 7.
[http://dx.doi.org/10.21037/ncri.2019.01.05]
[51]
Marchesi, I.; Fiorentino, F.P.; Rizzolio, F.; Giordano, A.; Bagella, L. The ablation of EZH2 uncovers its crucial role in rhabdomyosarcoma formation. Cell Cycle, 2012, 11(20), 3828-3836.
[http://dx.doi.org/10.4161/cc.22025] [PMID: 22983009]
[52]
Lanzuolo, C. Epigenetic alterations in muscular disorders. Comp. Funct. Genomics, 2012, 2012, 256892.
[http://dx.doi.org/10.1155/2012/256892]
[53]
Bhagwat, A.S.; Vakoc, C.R. A new bump in the epigenetic landscape. Mol. Cell, 2014, 53(6), 857-858.
[http://dx.doi.org/10.1016/j.molcel.2014.03.001] [PMID: 24656126]
[54]
Cheng, J.; Blum, R.; Bowman, C.; Hu, D.; Shilatifard, A.; Shen, S.; Dynlacht, B.D. A role for H3K4 monomethylation in gene repression and partitioning of chromatin readers. Mol. Cell, 2014, 53(6), 979-992.
[http://dx.doi.org/10.1016/j.molcel.2014.02.032] [PMID: 24656132]
[55]
Villivalam, S.D.; You, D.; Ebert, S.M.; Kim, J.; Xiao, H.; Palacios, H.H.; Adams, C.M.; Kang, S. Skeletal muscle DNMT3A plays a necessary role in endurance exercise by regulating oxidative capacity of red muscles. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.05.18.102400]
[56]
Vanlieshout, T.L.; Stouth, D.W.; Tajik, T.; Ljubicic, V. Exercise-induced protein arginine methyltransferase expression in skeletal muscle. Med. Sci. Sports Exerc., 2018, 50(3), 447-457.
[http://dx.doi.org/10.1249/MSS.0000000000001476] [PMID: 29112628]
[57]
Advani, A.; Gilbert, R.E.; Thai, K.; Gow, R.M.; Langham, R.G.; Cox, A.J.; Connelly, K.A.; Zhang, Y.; Herzenberg, A.M.; Christensen, P.K.; Pollock, C.A.; Qi, W.; Tan, S.M.; Parving, H.H.; Kelly, D.J. Expression, localization, and function of the thioredoxin system in diabetic nephropathy. J. Am. Soc. Nephrol., 2009, 20(4), 730-741.
[http://dx.doi.org/10.1681/ASN.2008020142] [PMID: 19211714]
[58]
Siddiqi, F.S.; Majumder, S.; Thai, K.; Abdalla, M.; Hu, P.; Advani, S.L.; White, K.E.; Bowskill, B.B.; Guarna, G.; dos Santos, C.C.; Connelly, K.A.; Advani, A. The histone methyltransferase enzyme enhancer of zeste homolog 2 protects against podocyte oxidative stress and renal injury in diabetes. J. Am. Soc. Nephrol., 2016, 27(7), 2021-2034.
[http://dx.doi.org/10.1681/ASN.2014090898] [PMID: 26534922]
[59]
Floris, I.; Descamps, B.; Vardeu, A.; Mitić, T.; Posadino, A.M.; Shantikumar, S.; Sala-Newby, G.; Capobianco, G.; Mangialardi, G.; Howard, L.; Dessole, S.; Urrutia, R.; Pintus, G.; Emanueli, C. Gestational diabetes mellitus impairs fetal endothelial cell functions through a mechanism involving microRNA-101 and histone methyltransferase enhancer of zester homolog-2. Arterioscler. Thromb. Vasc. Biol., 2015, 35(3), 664-674.
[http://dx.doi.org/10.1161/ATVBAHA.114.304730] [PMID: 25614281]
[60]
Zhao, Z.; Ukidve, A.; Kim, J.; Mitragotri, S. Targeting strategies for tissue-specific drug delivery. Cell, 2020, 181(1), 151-167.
[http://dx.doi.org/10.1016/j.cell.2020.02.001] [PMID: 32243788]
[61]
Paneni, F.; Costantino, S.; Battista, R.; Castello, L.; Capretti, G.; Chiandotto, S.; Scavone, G.; Villano, A.; Pitocco, D.; Lanza, G.; Volpe, M.; Lüscher, T.F.; Cosentino, F. Adverse epigenetic signatures by histone methyltransferase Set7 contribute to vascular dysfunction in patients with type 2 diabetes mellitus. Circ. Cardiovasc. Genet., 2015, 8(1), 150-158.
[http://dx.doi.org/10.1161/CIRCGENETICS.114.000671] [PMID: 25472959]
[62]
Kimball, A.S.; Joshi, A.; Carson, W.F., IV; Boniakowski, A.E.; Schaller, M.; Allen, R.; Bermick, J.; Davis, F.M.; Henke, P.K.; Burant, C.F.; Kunkel, S.L.; Gallagher, K.A. The histone methyltransferase MLL1 directs macrophage-mediated inflammation in wound healing and is altered in a murine model of obesity and type 2 diabetes. Diabetes, 2017, 66(9), 2459-2471.
[http://dx.doi.org/10.2337/db17-0194] [PMID: 28663191]
[63]
Lee, K-C.; Lee, J.S.; Jo, S.; Kim, D.; Han, S.Y. High glucose induces inflammatory reactions and changes in histonemodifying enzymes in rat mesangial cells. Biomed. Res. , 2018, 29(6), 1103-1109.
[64]
Balaji, S.; Napolitano, T.; Silvano, S.; Friano, M.; Garrido-Utrilla, A.; Atlija, J.; Collombat, P. Epigenetic control of pancreatic regeneration in diabetes. Genes, 2018, 9(9), 448.
[http://dx.doi.org/10.3390/genes9090448] [PMID: 30205460]
[65]
Lu, T.T-H.; Heyne, S.; Dror, E.; Casas, E.; Leonhardt, L.; Boenke, T.; Yang, C-H.; Arrigoni, L.; Dalgaard, K.; Teperino, R. The polycomb-dependent epigenome controls β cell dysfunction, dedifferentiation, and diabetes. Cell Metab., 2018, 27(6), 1294-1308.
[http://dx.doi.org/10.1016/j.cmet.2018.04.013]
[66]
Santalucía, T.; Moreno, H.; Palacín, M.; Yacoub, M.H.; Brand, N.J.; Zorzano, A. A novel functional co-operation between MyoD, MEF2 and TRα1 is sufficient for the induction of GLUT4 gene transcription. J. Mol. Biol., 2001, 314(2), 195-204.
[http://dx.doi.org/10.1006/jmbi.2001.5091] [PMID: 11718554]
[67]
Yonamine, C.Y.; Alves-Wagner, A.B.; Esteves, J.V.; Okamoto, M.M.; Correa-Giannella, M.L.; Giannella-Neto, D.; Machado, U.F. Diabetes induces tri-methylation at lysine 9 of histone 3 at Slc2a4 gene in skeletal muscle: A new target to improve glycemic control. Mol. Cell. Endocrinol., 2019, 481, 26-34.
[http://dx.doi.org/10.1016/j.mce.2018.11.006] [PMID: 30528377]
[68]
Cheng, Y.; Yuan, Q.; Vergnes, L.; Rong, X.; Youn, J.Y.; Li, J.; Yu, Y.; Liu, W.; Cai, H.; Lin, J.D.; Tontonoz, P.; Hong, C.; Reue, K.; Wang, C.Y. KDM4B protects against obesity and metabolic dysfunction. Proc. Natl. Acad. Sci. , 2018, 115(24), E5566-E5575.
[http://dx.doi.org/10.1073/pnas.1721814115] [PMID: 29844188]
[69]
Kesharwani, D.; Kumar, A.; Rizvi, A.; Datta, M. miR-539-5p regulates Srebf1 transcription in the skeletal muscle of diabetic mice by targeting DNA methyltransferase 3b. Mol. Ther. Nucleic Acids, 2022, 29, 718-732.
[http://dx.doi.org/10.1016/j.omtn.2022.08.013] [PMID: 36090753]
[70]
Kesharwani, D.; Kumar, A.; Poojary, M.; Scaria, V.; Datta, M. RNA sequencing reveals potential interacting networks between the altered transcriptome and ncRNome in the skeletal muscle of diabetic mice. Biosci. Rep., 2021, 41(7), BSR20210495.
[http://dx.doi.org/10.1042/BSR20210495] [PMID: 34190986]
[71]
Eroglu, N.; Yerlikaya, F.H.; Onmaz, D.E.; Colakoglu, M.C. Role of ChREBP and SREBP-1c in gestational diabetes: Two key players in glucose and lipid metabolism. Int. J. Diabetes Dev. Ctries., 2022, 1-5.
[http://dx.doi.org/10.1007/s13410-022-01050-x]
[72]
Wan, D.; Liu, C.; Sun, Y.; Wang, W.; Huang, K.; Zheng, L. MacroH2A1.1 cooperates with EZH2 to promote adipogenesis by regulating Wnt signaling. J. Mol. Cell Biol., 2017, 9(4), 325-337.
[http://dx.doi.org/10.1093/jmcb/mjx027] [PMID: 28992292]
[73]
Wu, X.; Wang, Y.; Wang, Y.; Wang, X.; Li, J.; Chang, K.; Sun, C.; Jia, Z.; Gao, S.; Wei, J.; Xu, J.; Xu, Y.; Li, Q. GSK126 alleviates the obesity phenotype by promoting the differentiation of thermogenic beige adipocytes in diet-induced obese mice. Biochem. Biophys. Res. Commun., 2018, 501(1), 9-15.
[http://dx.doi.org/10.1016/j.bbrc.2018.04.073] [PMID: 29654753]
[74]
Yang, Q.Y.; Liang, J.F.; Rogers, C.J.; Zhao, J.X.; Zhu, M.J.; Du, M. Maternal obesity induces epigenetic modifications to facilitate Zfp423 expression and enhance adipogenic differentiation in fetal mice. Diabetes, 2013, 62(11), 3727-3735.
[http://dx.doi.org/10.2337/db13-0433] [PMID: 23884886]
[75]
Gupta, R.K.; Arany, Z.; Seale, P.; Mepani, R.J.; Ye, L.; Conroe, H.M.; Roby, Y.A.; Kulaga, H.; Reed, R.R.; Spiegelman, B.M. Transcriptional control of preadipocyte determination by Zfp423. Nature, 2010, 464(7288), 619-623.
[http://dx.doi.org/10.1038/nature08816] [PMID: 20200519]
[76]
Wang, L.; Xu, S.; Lee, J.E.; Baldridge, A.; Grullon, S.; Peng, W.; Ge, K. Histone H3K9 methyltransferase G9a represses PPARγ expression and adipogenesis. EMBO J., 2012, 32(1), 45-59.
[http://dx.doi.org/10.1038/emboj.2012.306] [PMID: 23178591]
[77]
Jang, M.K.; Kim, J.H.; Jung, M.H. Histone H3K9 demethylase JMJD2B activates adipogenesis by regulating H3K9 methylation on PPARγ and C/EBPα during adipogenesis. PLoS One, 2017, 12(1), e0168185.
[http://dx.doi.org/10.1371/journal.pone.0168185] [PMID: 28060835]
[78]
Kang, C.; Saso, K.; Ota, K.; Kawazu, M.; Ueda, T.; Okada, H. JMJD2B/KDM4B inactivation in adipose tissues accelerates obesity and systemic metabolic abnormalities. Genes Cells, 2018, 23(9), 767-777.
[http://dx.doi.org/10.1111/gtc.12627] [PMID: 30073721]
[79]
Ghanbari, M.; Momen Maragheh, S.; Aghazadeh, A.; Mehrjuyan, S.R.; Hussen, B.M.; Abdoli Shadbad, M.; Dastmalchi, N.; Safaralizadeh, R. Interleukin-1 in obesity-related low-grade inflammation: From molecular mechanisms to therapeutic strategies. Int. Immunopharmacol., 2021, 96, 107765.
[http://dx.doi.org/10.1016/j.intimp.2021.107765] [PMID: 34015596]
[80]
Pan, D.; Huang, L.; Zhu, L.J.; Zou, T.; Ou, J.; Zhou, W.; Wang, Y.X. Jmjd3-mediated H3K27me3 dynamics orchestrate brown fat development and regulate white fat plasticity. Dev. Cell, 2015, 35(5), 568-583.
[http://dx.doi.org/10.1016/j.devcel.2015.11.002] [PMID: 26625958]
[81]
Zha, L.; Li, F.; Wu, R.; Artinian, L.; Rehder, V.; Yu, L.; Liang, H.; Xue, B.; Shi, H. The histone demethylase UTX promotes brown adipocyte thermogenic program via coordinated regulation of H3K27 demethylation and acetylation. J. Biol. Chem., 2015, 290(41), 25151-25163.
[http://dx.doi.org/10.1074/jbc.M115.662650] [PMID: 26306033]
[82]
Zhuang, L.; Jang, Y.; Park, Y.K.; Lee, J.E.; Jain, S.; Froimchuk, E.; Broun, A.; Liu, C.; Gavrilova, O.; Ge, K. Depletion of Nsd2-mediated histone H3K36 methylation impairs adipose tissue development and function. Nat. Commun., 2018, 9(1), 1796.
[http://dx.doi.org/10.1038/s41467-018-04127-6] [PMID: 29728617]
[83]
Lee, J.; Saha, P.K.; Yang, Q.H.; Lee, S.; Park, J.Y.; Suh, Y.; Lee, S.K.; Chan, L.; Roeder, R.G.; Lee, J.W. Targeted inactivation of MLL3 histone H3–Lys-4 methyltransferase activity in the mouse reveals vital roles for MLL3 in adipogenesis. Proc. Natl. Acad. Sci. , 2008, 105(49), 19229-19234.
[http://dx.doi.org/10.1073/pnas.0810100105] [PMID: 19047629]
[84]
Kim, D.H.; Kim, J.; Kwon, J.S.; Sandhu, J.; Tontonoz, P.; Lee, S.K.; Lee, S.; Lee, J.W. Critical roles of the histone methyltransferase MLL4/KMT2D in murine hepatic steatosis directed by ABL1 and PPARγ2. Cell Rep., 2016, 17(6), 1671-1682.
[http://dx.doi.org/10.1016/j.celrep.2016.10.023] [PMID: 27806304]
[85]
Wang, J.; Zhang, Y.; Zhuo, Q.; Tseng, Y.; Wang, J.; Ma, Y.; Zhang, J.; Liu, J. TET1 promotes fatty acid oxidation and inhibits NAFLD progression by hydroxymethylation of PPARα promoter. Nutr. Metab. , 2020, 17(1), 46.
[http://dx.doi.org/10.1186/s12986-020-00466-8] [PMID: 33292305]
[86]
Qian, H.; Zhao, J.; Yang, X.; Wu, S.; An, Y.; Qu, Y.; Li, Z.; Ge, H.; Li, E.; Qi, W. TET1 promotes RXRα expression and adipogenesis through DNA demethylation. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2021, 1866(6), 158919.
[http://dx.doi.org/10.1016/j.bbalip.2021.158919] [PMID: 33684567]
[87]
Damal Villivalam, S.; You, D.; Kim, J.; Lim, H.W.; Xiao, H.; Zushin, P.J.H.; Oguri, Y.; Amin, P.; Kang, S. TET1 is a beige adipocyte-selective epigenetic suppressor of thermogenesis. Nat. Commun., 2020, 11(1), 4313.
[http://dx.doi.org/10.1038/s41467-020-18054-y] [PMID: 32855402]
[88]
D’Ippolito, G.; Schiller, P.C.; Ricordi, C.; Roos, B.A.; Howard, G.A. Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. J. Bone Miner. Res., 1999, 14(7), 1115-1122.
[http://dx.doi.org/10.1359/jbmr.1999.14.7.1115] [PMID: 10404011]
[89]
Jing, H.; Liao, L.; An, Y.; Su, X.; Liu, S.; Shuai, Y.; Zhang, X.; Jin, Y. Suppression of EZH2 prevents the shift of osteoporotic MSC fate to adipocyte and enhances bone formation during osteoporosis. Mol. Ther., 2016, 24(2), 217-229.
[http://dx.doi.org/10.1038/mt.2015.152] [PMID: 26307668]
[90]
Dudakovic, A.; Camilleri, E.T.; Xu, F.; Riester, S.M.; McGee-Lawrence, M.E.; Bradley, E.W.; Paradise, C.R.; Lewallen, E.A.; Thaler, R.; Deyle, D.R.; Larson, A.N.; Lewallen, D.G.; Dietz, A.B.; Stein, G.S.; Montecino, M.A.; Westendorf, J.J.; van Wijnen, A.J. Epigenetic control of skeletal development by the histone methyltransferase Ezh2. J. Biol. Chem., 2015, 290(46), 27604-27617.
[http://dx.doi.org/10.1074/jbc.M115.672345] [PMID: 26424790]
[91]
Yin, B.; Yu, F.; Wang, C.; Li, B.; Liu, M.; Ye, L. Epigenetic control of mesenchymal stem cell fate decision via histone methyltransferase Ash1l. Stem Cells, 2019, 37(1), 115-127.
[http://dx.doi.org/10.1002/stem.2918] [PMID: 30270478]
[92]
Sun, J.; Li, J.; Li, C.; Yu, Y. Role of bone morphogenetic protein-2 in osteogenic differentiation of mesenchymal stem cells. Mol. Med. Rep., 2015, 12(3), 4230-4237.
[http://dx.doi.org/10.3892/mmr.2015.3954] [PMID: 26096280]
[93]
Wang, C.; Wang, J.; Li, J.; Hu, G.; Shan, S.; Li, Q.; Zhang, X. KDM5A controls bone morphogenic protein 2-induced osteogenic differentiation of bone mesenchymal stem cells during osteoporosis. Cell Death Dis., 2016, 7(8), e2335-e2335.
[http://dx.doi.org/10.1038/cddis.2016.238] [PMID: 27512956]
[94]
Yang, D.; Yu, B.; Sun, H.; Qiu, L. The roles of histone demethylase Jmjd3 in osteoblast differentiation and apoptosis. J. Clin. Med., 2017, 6(3), 24.
[http://dx.doi.org/10.3390/jcm6030024] [PMID: 28241471]
[95]
Sun, J.; Ermann, J.; Niu, N.; Yan, G.; Yang, Y.; Shi, Y.; Zou, W. Histone demethylase LSD1 regulates bone mass by controlling WNT7B and BMP2 signaling in osteoblasts. Bone Res., 2018, 6(1), 14.
[http://dx.doi.org/10.1038/s41413-018-0015-x] [PMID: 29707403]
[96]
Yang, X.; Wang, G.; Wang, Y.; Zhou, J.; Yuan, H.; Li, X.; Liu, Y.; Wang, B. Histone demethylase KDM7A reciprocally regulates adipogenic and osteogenic differentiation via regulation of C/EBPα and canonical Wnt signalling. J. Cell. Mol. Med., 2019, 23(3), 2149-2162.
[http://dx.doi.org/10.1111/jcmm.14126] [PMID: 30614617]
[97]
Bartl, R.; Bartl, C. Bone disorders: Biology, diagnosis, prevention, therapy; Springer, 2016.
[98]
Takayanagi, H.; Kim, S.; Koga, T.; Nishina, H.; Isshiki, M.; Yoshida, H.; Saiura, A.; Isobe, M.; Yokochi, T.; Inoue, J.; Wagner, E.F.; Mak, T.W.; Kodama, T.; Taniguchi, T. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell, 2002, 3(6), 889-901.
[http://dx.doi.org/10.1016/S1534-5807(02)00369-6] [PMID: 12479813]
[99]
Soysa, N.S.; Alles, N. NF-κB functions in osteoclasts. Biochem. Biophys. Res. Commun., 2009, 378(1), 1-5.
[http://dx.doi.org/10.1016/j.bbrc.2008.10.146] [PMID: 18992710]
[100]
Gao, Y.; Ge, W. The histone methyltransferase DOT1L inhibits osteoclastogenesis and protects against osteoporosis. Cell Death Dis., 2018, 9(2), 33.
[http://dx.doi.org/10.1038/s41419-017-0040-5] [PMID: 29348610]
[101]
Tsuda, H.; Zhao, N.; Imai, K.; Ochiai, K.; Yang, P.; Suzuki, N. BIX01294 suppresses osteoclast differentiation on mouse macrophage-like Raw264.7 cells. Bosn. J. Basic Med. Sci., 2013, 13(4), 271-275.
[http://dx.doi.org/10.17305/bjbms.2013.2339] [PMID: 24289765]
[102]
Lu, L.; Wang, L.; Wu, J.; Yang, M.; Chen, B.; Wang, H.; Gan, K. DNMT3a promotes osteoblast differentiation and alleviates osteoporosis via the PPARγ/SCD1/GLUT1 axis. Epigenomics, 2022, 14(12), 777-792.
[http://dx.doi.org/10.2217/epi-2021-0391] [PMID: 35765985]
[103]
Nishikawa, K.; Iwamoto, Y.; Kobayashi, Y.; Katsuoka, F.; Kawaguchi, S.; Tsujita, T.; Nakamura, T.; Kato, S.; Yamamoto, M.; Takayanagi, H.; Ishii, M. DNA methyltransferase 3a regulates osteoclast differentiation by coupling to an S-adenosylmethionine–producing metabolic pathway. Nat. Med., 2015, 21(3), 281-287.
[http://dx.doi.org/10.1038/nm.3774] [PMID: 25706873]
[104]
Zhang, M.; Gao, Y.; Li, Q.; Cao, H.; Yang, J.; Cai, X.; Xiao, J. Downregulation of DNA methyltransferase-3a ameliorates the osteogenic differentiation ability of adipose-derived stem cells in diabetic osteoporosis; Preprint, 2022.
[http://dx.doi.org/10.21203/rs.3.rs-1431482/v1]
[105]
Wahl, H.W.; Iwarsson, S.; Oswald, F. Aging well and the environment: Toward an integrative model and research agenda for the future. Gerontologist, 2012, 52(3), 306-316.
[http://dx.doi.org/10.1093/geront/gnr154] [PMID: 22419248]
[106]
Su, L.; Li, H.; Huang, C.; Zhao, T.; Zhang, Y.; Ba, X.; Li, Z.; Zhang, Y.; Huang, B.; Lu, J.; Zhao, Y.; Li, X. Muscle-specific histone H3K36 dimethyltransferase SET-18 shortens lifespan of Caenorhabditis elegans by repressing daf-16a expression. Cell Rep., 2018, 22(10), 2716-2729.
[http://dx.doi.org/10.1016/j.celrep.2018.02.029] [PMID: 29514099]
[107]
Bartke, A. Insulin and aging. Cell Cycle, 2008, 7(21), 3338-3343.
[http://dx.doi.org/10.4161/cc.7.21.7012] [PMID: 18948730]
[108]
Sen, P.; Dang, W.; Donahue, G.; Dai, J.; Dorsey, J.; Cao, X.; Liu, W.; Cao, K.; Perry, R.; Lee, J.Y.; Wasko, B.M.; Carr, D.T.; He, C.; Robison, B.; Wagner, J.; Gregory, B.D.; Kaeberlein, M.; Kennedy, B.K.; Boeke, J.D.; Berger, S.L. H3K36 methylation promotes longevity by enhancing transcriptional fidelity. Genes Dev., 2015, 29(13), 1362-1376.
[http://dx.doi.org/10.1101/gad.263707.115] [PMID: 26159996]
[109]
Pu, M.; Ni, Z.; Wang, M.; Wang, X.; Wood, J.G.; Helfand, S.L.; Yu, H.; Lee, S.S. Trimethylation of Lys36 on H3 restricts gene expression change during aging and impacts life span. Genes Dev., 2015, 29(7), 718-731.
[http://dx.doi.org/10.1101/gad.254144.114] [PMID: 25838541]
[110]
Choufani, S.; Cytrynbaum, C.; Chung, B.H.Y.; Turinsky, A.L.; Grafodatskaya, D.; Chen, Y.A.; Cohen, A.S.A.; Dupuis, L.; Butcher, D.T.; Siu, M.T.; Luk, H.M.; Lo, I.F.M.; Lam, S.T.S.; Caluseriu, O.; Stavropoulos, D.J.; Reardon, W.; Mendoza-Londono, R.; Brudno, M.; Gibson, W.T.; Chitayat, D.; Weksberg, R. NSD1 mutations generate a genome-wide DNA methylation signature. Nat. Commun., 2015, 6(1), 10207.
[http://dx.doi.org/10.1038/ncomms10207] [PMID: 26690673]
[111]
Martin-Herranz, D.E.; Aref-Eshghi, E.; Bonder, M.J.; Stubbs, T.M.; Choufani, S.; Weksberg, R.; Stegle, O.; Sadikovic, B.; Reik, W.; Thornton, J.M. Screening for genes that accelerate the epigenetic aging clock in humans reveals a role for the H3K36 methyltransferase NSD1. Genome Biol., 2019, 20(1), 146.
[http://dx.doi.org/10.1186/s13059-019-1753-9] [PMID: 31409373]
[112]
Rondelet, G.; Dal Maso, T.; Willems, L.; Wouters, J. Structural basis for recognition of histone H3K36me3 nucleosome by human de novo DNA methyltransferases 3A and 3B. J. Struct. Biol., 2016, 194(3), 357-367.
[http://dx.doi.org/10.1016/j.jsb.2016.03.013] [PMID: 26993463]
[113]
Rinaldi, L.; Datta, D.; Serrat, J.; Morey, L.; Solanas, G.; Avgustinova, A.; Blanco, E.; Pons, J.I.; Matallanas, D.; Von Kriegsheim, A.; Di Croce, L.; Benitah, S.A. Dnmt3a and Dnmt3b associate with enhancers to regulate human epidermal stem cell homeostasis. Cell Stem Cell, 2016, 19(4), 491-501.
[http://dx.doi.org/10.1016/j.stem.2016.06.020] [PMID: 27476967]
[114]
Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol., 2013, 14(10), R115.
[http://dx.doi.org/10.1186/gb-2013-14-10-r115] [PMID: 24138928]
[115]
Greer, E.L.; Maures, T.J.; Hauswirth, A.G.; Green, E.M.; Leeman, D.S.; Maro, G.S.; Han, S.; Banko, M.R.; Gozani, O.; Brunet, A. Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans. Nature, 2010, 466(7304), 383-387.
[http://dx.doi.org/10.1038/nature09195] [PMID: 20555324]
[116]
Han, S.; Brunet, A. Histone methylation makes its mark on longevity. Trends Cell Biol., 2012, 22(1), 42-49.
[http://dx.doi.org/10.1016/j.tcb.2011.11.001] [PMID: 22177962]
[117]
Cruz, C.; Della Rosa, M.; Krueger, C.; Gao, Q.; Horkai, D.; King, M.; Field, L.; Houseley, J. Tri-methylation of histone H3 lysine 4 facilitates gene expression in ageing cells. eLife, 2018, 7, e34081.
[http://dx.doi.org/10.7554/eLife.34081] [PMID: 30274593]
[118]
Li, L.; Greer, C.; Eisenman, R.N.; Secombe, J. Essential functions of the histone demethylase lid. PLoS Genet., 2010, 6(11), e1001221.
[http://dx.doi.org/10.1371/journal.pgen.1001221] [PMID: 21124823]
[119]
Mei, Q.; Xu, C.; Gogol, M.; Tang, J.; Chen, W.; Yu, X.; Workman, J.L.; Li, S. Set1-catalyzed H3K4 trimethylation antagonizes the HIR/Asf1/Rtt106 repressor complex to promote histone gene expression and chronological life span. Nucleic Acids Res., 2019, 47(7), 3434-3449.
[http://dx.doi.org/10.1093/nar/gkz101] [PMID: 30759223]
[120]
Liu, L.; Cheung, T.H.; Charville, G.W.; Hurgo, B.M.C.; Leavitt, T.; Shih, J.; Brunet, A.; Rando, T.A. Chromatin modifications as determinants of muscle stem cell quiescence and chronological aging. Cell Rep., 2013, 4(1), 189-204.
[http://dx.doi.org/10.1016/j.celrep.2013.05.043] [PMID: 23810552]
[121]
Maures, T.J.; Greer, E.L.; Hauswirth, A.G.; Brunet, A. The H3K27 demethylase UTX-1 regulates C. elegans lifespan in a germline-independent, insulin-dependent manner. Aging Cell, 2011, 10(6), 980-990.
[http://dx.doi.org/10.1111/j.1474-9726.2011.00738.x] [PMID: 21834846]
[122]
Siebold, A.P.; Banerjee, R.; Tie, F.; Kiss, D.L.; Moskowitz, J.; Harte, P.J. Polycomb repressive complex 2 and trithorax modulate Drosophila longevity and stress resistance. Proc. Natl. Acad. Sci. USA, 2010, 107(1), 169-174.
[http://dx.doi.org/10.1073/pnas.0907739107] [PMID: 20018689]
[123]
Orioli, D.; Dellambra, E. Epigenetic regulation of skin cells in natural aging and premature aging diseases. Cells, 2018, 7(12), 268.
[http://dx.doi.org/10.3390/cells7120268] [PMID: 30545089]
[124]
McCauley, B.S.; Dang, W. Histone methylation and aging: Lessons learned from model systems. Biochimica et Biophysica Acta (BBA),, 2014, 1839(12), 1454-1462.
[125]
Wang, J.; Jia, S.T.; Jia, S. New insights into the regulation of heterochromatin. Trends Genet., 2016, 32(5), 284-294.
[http://dx.doi.org/10.1016/j.tig.2016.02.005] [PMID: 27005444]
[126]
Shumaker, D.K.; Dechat, T.; Kohlmaier, A.; Adam, S.A.; Bozovsky, M.R.; Erdos, M.R.; Eriksson, M.; Goldman, A.E.; Khuon, S.; Collins, F.S.; Jenuwein, T.; Goldman, R.D. Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc. Natl. Acad. Sci. , 2006, 103(23), 8703-8708.
[http://dx.doi.org/10.1073/pnas.0602569103] [PMID: 16738054]
[127]
Camozzi, D.; Capanni, C.; Cenni, V.; Mattioli, E.; Columbaro, M.; Squarzoni, S.; Lattanzi, G. Diverse lamin-dependent mechanisms interact to control chromatin dynamics. Nucleus, 2014, 5(5), 427-440.
[http://dx.doi.org/10.4161/nucl.36289] [PMID: 25482195]
[128]
Lee, J.H.; Kim, E.W.; Croteau, D.L.; Bohr, V.A. Heterochromatin: An epigenetic point of view in aging. Exp. Mol. Med., 2020, 52(9), 1466-1474.
[http://dx.doi.org/10.1038/s12276-020-00497-4] [PMID: 32887933]
[129]
Zhang, W.; Li, J.; Suzuki, K.; Qu, J.; Wang, P.; Zhou, J.; Liu, X.; Ren, R.; Xu, X.; Ocampo, A.; Yuan, T.; Yang, J.; Li, Y.; Shi, L.; Guan, D.; Pan, H.; Duan, S.; Ding, Z.; Li, M.; Yi, F.; Bai, R.; Wang, Y.; Chen, C.; Yang, F.; Li, X.; Wang, Z.; Aizawa, E.; Goebl, A.; Soligalla, R.D.; Reddy, P.; Esteban, C.R.; Tang, F.; Liu, G.H.; Belmonte, J.C.I. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science, 2015, 348(6239), 1160-1163.
[http://dx.doi.org/10.1126/science.aaa1356] [PMID: 25931448]
[130]
Gao, Q.; Chen, F.; Zhang, L.; Wei, A.; Wang, Y.; Wu, Z.; Cao, W. Inhibition of DNA methyltransferase aberrations reinstates antioxidant aging suppressors and ameliorates renal aging. Aging Cell, 2022, 21(1), e13526.
[http://dx.doi.org/10.1111/acel.13526] [PMID: 34874096]
[131]
Lian, W.S.; Wu, R.W.; Chen, Y.S.; Ko, J.Y.; Wang, S.Y.; Jahr, H.; Wang, F.S. MicroRNA-29a mitigates osteoblast senescence and counteracts bone loss through oxidation resistance-1 control of FoxO3 methylation. Antioxidants, 2021, 10(8), 1248.
[http://dx.doi.org/10.3390/antiox10081248] [PMID: 34439496]
[132]
Nebbioso, A.; Tambaro, F.P.; Dell’Aversana, C.; Altucci, L. Cancer epigenetics: Moving forward. PLoS Genet., 2018, 14(6), e1007362.
[http://dx.doi.org/10.1371/journal.pgen.1007362] [PMID: 29879107]
[133]
Yokoyama, A. Molecular mechanisms of MLL-associated leukemia. Int. J. Hematol., 2015, 101(4), 352-361.
[http://dx.doi.org/10.1007/s12185-015-1774-4] [PMID: 25773519]
[134]
Rao, R.C.; Dou, Y. Hijacked in cancer: the KMT2 (MLL) family of methyltransferases. Nat. Rev. Cancer, 2015, 15(6), 334-346.
[http://dx.doi.org/10.1038/nrc3929] [PMID: 25998713]
[135]
Krivtsov, A.V.; Twomey, D.; Feng, Z.; Stubbs, M.C.; Wang, Y.; Faber, J.; Levine, J.E.; Wang, J.; Hahn, W.C.; Gilliland, D.G.; Golub, T.R.; Armstrong, S.A. Transformation from committed progenitor to leukaemia stem cell initiated by MLL–AF9. Nature, 2006, 442(7104), 818-822.
[http://dx.doi.org/10.1038/nature04980] [PMID: 16862118]
[136]
Cao, F.; Townsend, E.C.; Karatas, H.; Xu, J.; Li, L.; Lee, S.; Liu, L.; Chen, Y.; Ouillette, P.; Zhu, J.; Hess, J.L.; Atadja, P.; Lei, M.; Qin, Z.S.; Malek, S.; Wang, S.; Dou, Y. Targeting MLL1 H3K4 methyltransferase activity in mixed-lineage leukemia. Mol. Cell, 2014, 53(2), 247-261.
[http://dx.doi.org/10.1016/j.molcel.2013.12.001] [PMID: 24389101]
[137]
Dong, Y.; Van Tine, B.A.; Oyama, T.; Wang, P.I.; Cheng, E.H.; Hsieh, J.J. Taspase1 cleaves MLL1 to activate cyclin E for HER2/neu breast tumorigenesis. Cell Res., 2014, 24(11), 1354-1366.
[http://dx.doi.org/10.1038/cr.2014.129] [PMID: 25267403]
[138]
Ansari, K.I.; Kasiri, S.; Mandal, S.S. Histone methylase MLL1 has critical roles in tumor growth and angiogenesis and its knockdown suppresses tumor growth in vivo. Oncogene, 2013, 32(28), 3359-3370.
[http://dx.doi.org/10.1038/onc.2012.352] [PMID: 22926525]
[139]
Ansari, K.I.; Kasiri, S.; Mishra, B.P.; Mandal, S.S. Mixed lineage leukaemia-4 regulates cell-cycle progression and cell viability and its depletion suppresses growth of xenografted tumour in vivo. Br. J. Cancer, 2012, 107(2), 315-324.
[http://dx.doi.org/10.1038/bjc.2012.263] [PMID: 22713656]
[140]
Rabello, D.D.A.; De Moura, C.A.; De Andrade, R.V.; Motoyama, A.B.; Silva, F.P. Altered expression of MLL methyltransferase family genes in breast cancer. Int. J. Oncol., 2013, 43(2), 653-660.
[http://dx.doi.org/10.3892/ijo.2013.1981] [PMID: 23754336]
[141]
Ghanbari, M.; Hosseinpour-Feizi, M.; Safaralizadeh, R.; Aghazadeh, A.; Montazeri, V. Study of KMT2B (MLL2) gene expression changes in patients with breast cancer. Breast Cancer Manag., 2019, 8(2), BMT24.
[http://dx.doi.org/10.2217/bmt-2018-0016]
[142]
Ladopoulos, V.; Hofemeister, H.; Hoogenkamp, M.; Riggs, A.D.; Stewart, A.F.; Bonifer, C. The histone methyltransferase KMT2B is required for RNA polymerase II association and protection from DNA methylation at the MagohB CpG island promoter. Mol. Cell. Biol., 2013, 33(7), 1383-1393.
[http://dx.doi.org/10.1128/MCB.01721-12] [PMID: 23358417]
[143]
Weirich, S.; Kudithipudi, S.; Kycia, I.; Jeltsch, A. Somatic cancer mutations in the MLL3-SET domain alter the catalytic properties of the enzyme. Clin. Epigenet., 2015, 7(1), 36.
[http://dx.doi.org/10.1186/s13148-015-0075-3] [PMID: 25829971]
[144]
Kantidakis, T.; Saponaro, M.; Mitter, R.; Horswell, S.; Kranz, A.; Boeing, S.; Aygün, O.; Kelly, G.P.; Matthews, N.; Stewart, A.; Stewart, A.F.; Svejstrup, J.Q. Mutation of cancer driver MLL2 results in transcription stress and genome instability. Genes Dev., 2016, 30(4), 408-420.
[http://dx.doi.org/10.1101/gad.275453.115] [PMID: 26883360]
[145]
Mo, R.; Rao, S.M.; Zhu, Y.J. Identification of the MLL2 complex as a coactivator for estrogen receptor α. J. Biol. Chem., 2006, 281(23), 15714-15720.
[http://dx.doi.org/10.1074/jbc.M513245200] [PMID: 16603732]
[146]
Wang, X.; Chen, C.W.; Armstrong, S.A. The role of DOT1L in the maintenance of leukemia gene expression. Curr. Opin. Genet. Dev., 2016, 36, 68-72.
[http://dx.doi.org/10.1016/j.gde.2016.03.015] [PMID: 27151433]
[147]
Daigle, S.R.; Olhava, E.J.; Therkelsen, C.A.; Basavapathruni, A.; Jin, L.; Boriack-Sjodin, P.A.; Allain, C.J.; Klaus, C.R.; Raimondi, A.; Scott, M.P.; Waters, N.J.; Chesworth, R.; Moyer, M.P.; Copeland, R.A.; Richon, V.M.; Pollock, R.M. Potent inhibition of DOT1L as treatment of MLL-fusion leukemia. Blood, 2013, 122(6), 1017-1025.
[http://dx.doi.org/10.1182/blood-2013-04-497644] [PMID: 23801631]
[148]
Rodrigues, C.; Pattabiraman, C.; Vijaykumar, A.; Arora, R.; Narayana, S.M.; Kumar, R.V.; Notani, D.; Varga-Weisz, P.; Krishna, S.A. SUV39H1-low chromatin state characterises and promotes migratory properties of cervical cancer cells. Exp. Cell Res., 2019, 378(2), 206-216.
[http://dx.doi.org/10.1016/j.yexcr.2019.02.010] [PMID: 30772380]
[149]
Casciello, F.; Windloch, K.; Gannon, F.; Lee, J.S. Functional role of G9a histone methyltransferase in cancer. Front. Immunol., 2015, 6, 487.
[http://dx.doi.org/10.3389/fimmu.2015.00487] [PMID: 26441991]
[150]
Zhang, J.; Wang, Y.; Shen, Y.; He, P.; Ding, J.; Chen, Y. G9a stimulates CRC growth by inducing p53 Lys373 dimethylation-dependent activation of Plk1. Theranostics, 2018, 8(10), 2884-2895.
[http://dx.doi.org/10.7150/thno.23824] [PMID: 29774081]
[151]
Chen, R.J.; Shun, C.T.; Yen, M.L.; Chou, C.H.; Lin, M.C. Methyltransferase G9a promotes cervical cancer angiogenesis and decreases patient survival. Oncotarget, 2017, 8(37), 62081-62098.
[http://dx.doi.org/10.18632/oncotarget.19060] [PMID: 28977928]
[152]
Nakagawa, M.; Kitabayashi, I. Oncogenic roles of enhancer of zeste homolog 1/2 in hematological malignancies. Cancer Sci., 2018, 109(8), 2342-2348.
[http://dx.doi.org/10.1111/cas.13655] [PMID: 29845708]
[153]
Marchesi, I.; Bagella, L. Targeting enhancer of zeste homolog 2 as a promising strategy for cancer treatment. World J. Clin. Oncol., 2016, 7(2), 135-148.
[http://dx.doi.org/10.5306/wjco.v7.i2.135] [PMID: 27081636]
[154]
Honma, D.; Kanno, O.; Watanabe, J.; Kinoshita, J.; Hirasawa, M.; Nosaka, E.; Shiroishi, M.; Takizawa, T.; Yasumatsu, I.; Horiuchi, T.; Nakao, A.; Suzuki, K.; Yamasaki, T.; Nakajima, K.; Hayakawa, M.; Yamazaki, T.; Yadav, A.S.; Adachi, N. Novel orally bioavailable EZH1/2 dual inhibitors with greater antitumor efficacy than an EZH2 selective inhibitor. Cancer Sci., 2017, 108(10), 2069-2078.
[http://dx.doi.org/10.1111/cas.13326] [PMID: 28741798]
[155]
Yan, M.; Yang, X.; Wang, H.; Shao, Q. The critical role of histone lysine demethylase KDM2B in cancer. Am. J. Transl. Res., 2018, 10(8), 2222-2233.
[PMID: 30210666]
[156]
Wang, H.Y.; Long, Q.Y.; Tang, S.B.; Xiao, Q.; Gao, C.; Zhao, Q.Y.; Li, Q.L.; Ye, M.; Zhang, L.; Li, L.Y.; Wu, M. Histone demethylase KDM3A is required for enhancer activation of hippo target genes in colorectal cancer. Nucleic Acids Res., 2019, 47(5), 2349-2364.
[http://dx.doi.org/10.1093/nar/gky1317] [PMID: 30649550]
[157]
Hayami, S.; Yoshimatsu, M.; Veerakumarasivam, A.; Unoki, M.; Iwai, Y.; Tsunoda, T.; Field, H.I.; Kelly, J.D.; Neal, D.E.; Yamaue, H.; Ponder, B.A.J.; Nakamura, Y.; Hamamoto, R. Overexpression of the JmjC histone demethylase KDM5B in human carcinogenesis: Involvement in the proliferation of cancer cells through the E2F/RB pathway. Mol. Cancer, 2010, 9(1), 59.
[http://dx.doi.org/10.1186/1476-4598-9-59] [PMID: 20226085]
[158]
Yamane, K.; Tateishi, K.; Klose, R.J.; Fang, J.; Fabrizio, L.A.; Erdjument-Bromage, H.; Taylor-Papadimitriou, J.; Tempst, P.; Zhang, Y. PLU-1 is an H3K4 demethylase involved in transcriptional repression and breast cancer cell proliferation. Mol. Cell, 2007, 25(6), 801-812.
[http://dx.doi.org/10.1016/j.molcel.2007.03.001] [PMID: 17363312]
[159]
Xiang, Y.; Zhu, Z.; Han, G.; Ye, X.; Xu, B.; Peng, Z.; Ma, Y.; Yu, Y.; Lin, H.; Chen, A.P.; Chen, C.D. JARID1B is a histone H3 lysine 4 demethylase up-regulated in prostate cancer. Proc. Natl. Acad. Sci. , 2007, 104(49), 19226-19231.
[http://dx.doi.org/10.1073/pnas.0700735104] [PMID: 18048344]
[160]
Shigekawa, Y.; Hayami, S.; Ueno, M.; Miyamoto, A.; Suzaki, N.; Kawai, M.; Hirono, S.; Okada, K.; Hamamoto, R.; Yamaue, H. Overexpression of KDM5B/JARID1B is associated with poor prognosis in hepatocellular carcinoma. Oncotarget, 2018, 9(76), 34320-34335.
[http://dx.doi.org/10.18632/oncotarget.26144] [PMID: 30344945]
[161]
Yang, L.; Zha, Y.; Ding, J.; Ye, B.; Liu, M.; Yan, C.; Dong, Z.; Cui, H.; Ding, H.F. Histone demethylase KDM6B has an anti-tumorigenic function in neuroblastoma by promoting differentiation. Oncogenesis, 2019, 8(1), 3.
[http://dx.doi.org/10.1038/s41389-018-0112-0] [PMID: 30631055]
[162]
Bae, S.C.; Choi, J.K. Tumor suppressor activity of RUNX3. Oncogene, 2004, 23(24), 4336-4340.
[http://dx.doi.org/10.1038/sj.onc.1207286] [PMID: 15156190]
[163]
Lau, Q.C.; Raja, E.; Salto-Tellez, M.; Liu, Q.; Ito, K.; Inoue, M.; Putti, T.C.; Loh, M.; Ko, T.K.; Huang, C.; Bhalla, K.N.; Zhu, T.; Ito, Y.; Sukumar, S. RUNX3 is frequently inactivated by dual mechanisms of protein mislocalization and promoter hypermethylation in breast cancer. Cancer Res., 2006, 66(13), 6512-6520.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0369] [PMID: 16818622]
[164]
Zheng, J.; Mei, Y.; Zhai, G.; Zhao, N.; Jia, D.; Fan, Y. Downregulation of RUNX3 has a poor prognosis and promotes tumor progress in kidney cancer. Urol. Oncol., 2020, 38(9), 740.
[165]
Liu, W.; Tan, S.; Bai, X.; Ma, S.; Chen, X. Long non-coding RNA LINC01215 promotes epithelial-mesenchymal transition and lymph node metastasis in epithelial ovarian cancer through RUNX3 promoter methylation. Transl. Oncol., 2021, 14(8), 101135.
[http://dx.doi.org/10.1016/j.tranon.2021.101135] [PMID: 34052627]
[166]
Lee, S.H.; Hyeon, D.Y.; Yoon, S.H.; Jeong, J.H.; Han, S.M.; Jang, J.W.; Nguyen, M.P.; Chi, X.Z.; An, S.; Hyun, K.; Jung, H.J.; Song, J.J.; Bae, S.C.; Kim, W.H.; Hwang, D.; Lee, Y.M. RUNX3 methylation drives hypoxia-induced cell proliferation and antiapoptosis in early tumorigenesis. Cell Death Differ., 2021, 28(4), 1251-1269.
[http://dx.doi.org/10.1038/s41418-020-00647-1] [PMID: 33116296]
[167]
Kerimoglu, C.; Agis-Balboa, R.C.; Kranz, A.; Stilling, R.; Bahari-Javan, S.; Benito-Garagorri, E.; Halder, R.; Burkhardt, S.; Stewart, A.F.; Fischer, A. Histone-methyltransferase MLL2 (KMT2B) is required for memory formation in mice. J. Neurosci., 2013, 33(8), 3452-3464.
[http://dx.doi.org/10.1523/JNEUROSCI.3356-12.2013] [PMID: 23426673]
[168]
Lim, D.A.; Huang, Y.C.; Swigut, T.; Mirick, A.L.; Garcia-Verdugo, J.M.; Wysocka, J.; Ernst, P.; Alvarez-Buylla, A. Chromatin remodelling factor Mll1 is essential for neurogenesis from postnatal neural stem cells. Nature, 2009, 458(7237), 529-533.
[http://dx.doi.org/10.1038/nature07726] [PMID: 19212323]
[169]
Huang, H.S.; Matevossian, A.; Whittle, C.; Kim, S.Y.; Schumacher, A.; Baker, S.P.; Akbarian, S. Prefrontal dysfunction in schizophrenia involves mixed-lineage leukemia 1-regulated histone methylation at GABAergic gene promoters. J. Neurosci., 2007, 27(42), 11254-11262.
[http://dx.doi.org/10.1523/JNEUROSCI.3272-07.2007] [PMID: 17942719]
[170]
Tan, S.L.; Nishi, M.; Ohtsuka, T.; Matsui, T.; Takemoto, K.; Kamio-Miura, A.; Aburatani, H.; Shinkai, Y.; Kageyama, R. Essential roles of the histone methyltransferase ESET in the epigenetic control of neural progenitor cells during development. Development, 2012, 139(20), 3806-3816.
[http://dx.doi.org/10.1242/dev.082198] [PMID: 22991445]
[171]
Stolt, C.C.; Lommes, P.; Sock, E.; Chaboissier, M.C.; Schedl, A.; Wegner, M. The Sox9 transcription factor determines glial fate choice in the developing spinal cord. Genes Dev., 2003, 17(13), 1677-1689.
[http://dx.doi.org/10.1101/gad.259003] [PMID: 12842915]
[172]
Koemans, T.S.; Kleefstra, T.; Chubak, M.C.; Stone, M.H.; Reijnders, M.R.F.; de Munnik, S.; Willemsen, M.H.; Fenckova, M.; Stumpel, C.T.R.M.; Bok, L.A.; Sifuentes Saenz, M.; Byerly, K.A.; Baughn, L.B.; Stegmann, A.P.A.; Pfundt, R.; Zhou, H.; van Bokhoven, H.; Schenck, A.; Kramer, J.M. Functional convergence of histone methyltransferases EHMT1 and KMT2C involved in intellectual disability and autism spectrum disorder. PLoS Genet., 2017, 13(10), e1006864.
[http://dx.doi.org/10.1371/journal.pgen.1006864] [PMID: 29069077]
[173]
Kramer, J.M.; Kochinke, K.; Oortveld, M.A.W.; Marks, H.; Kramer, D.; de Jong, E.K.; Asztalos, Z.; Westwood, J.T.; Stunnenberg, H.G.; Sokolowski, M.B.; Keleman, K.; Zhou, H.; van Bokhoven, H.; Schenck, A. Epigenetic regulation of learning and memory by Drosophila EHMT/G9a. PLoS Biol., 2011, 9(1), e1000569.
[http://dx.doi.org/10.1371/journal.pbio.1000569] [PMID: 21245904]
[174]
Balemans, M.C.M.; Ansar, M.; Oudakker, A.R.; van Caam, A.P.M.; Bakker, B.; Vitters, E.L.; van der Kraan, P.M.; de Bruijn, D.R.H.; Janssen, S.M.; Kuipers, A.J.; Huibers, M.M.H.; Maliepaard, E.M.; Walboomers, X.F.; Benevento, M.; Nadif Kasri, N.; Kleefstra, T.; Zhou, H.; van der Zee, C.E.E.M.; van Bokhoven, H. Reduced Euchromatin histone methyltransferase 1 causes developmental delay, hypotonia, and cranial abnormalities associated with increased bone gene expression in Kleefstra syndrome mice. Dev. Biol., 2014, 386(2), 395-407.
[http://dx.doi.org/10.1016/j.ydbio.2013.12.016] [PMID: 24362066]
[175]
Zheng, Y.; Liu, A.; Wang, Z.J.; Cao, Q.; Wang, W.; Lin, L.; Ma, K.; Zhang, F.; Wei, J.; Matas, E.; Cheng, J.; Chen, G.J.; Wang, X.; Yan, Z. Inhibition of EHMT1/2 rescues synaptic and cognitive functions for Alzheimer’s disease. Brain, 2019, 142(3), 787-807.
[http://dx.doi.org/10.1093/brain/awy354] [PMID: 30668640]
[176]
Chang, E.H.; Savage, M.J.; Flood, D.G.; Thomas, J.M.; Levy, R.B.; Mahadomrongkul, V.; Shirao, T.; Aoki, C.; Huerta, P.T. AMPA receptor downscaling at the onset of Alzheimer’s disease pathology in double knockin mice. Proc. Natl. Acad. Sci. USA, 2006, 103(9), 3410-3415.
[http://dx.doi.org/10.1073/pnas.0507313103] [PMID: 16492745]
[177]
Liu, J.; Chang, L.; Song, Y.; Li, H.; Wu, Y. The role of NMDA receptors in Alzheimer’s disease. Front. Neurosci., 2019, 13, 43.
[http://dx.doi.org/10.3389/fnins.2019.00043] [PMID: 30800052]
[178]
Wang, W.; Cao, Q.; Tan, T.; Yang, F.; Williams, J.B.; Yan, Z. Epigenetic treatment of behavioral and physiological deficits in a tauopathy mouse model. Aging Cell, 2021, 20(10), e13456.
[http://dx.doi.org/10.1111/acel.13456] [PMID: 34547169]
[179]
Li, H.; Wang, F.; Guo, X.; Jiang, Y. Decreased MEF2A expression regulated by its enhancer methylation inhibits autophagy and may play an important role in the progression of Alzheimer’s disease. Front. Neurosci., 2021, 15, 682247.
[http://dx.doi.org/10.3389/fnins.2021.682247] [PMID: 34220439]
[180]
Chase, K.A.; Gavin, D.P.; Guidotti, A.; Sharma, R.P. Histone methylation at H3K9: Evidence for a restrictive epigenome in schizophrenia. Schizophr. Res., 2013, 149(1-3), 15-20.
[http://dx.doi.org/10.1016/j.schres.2013.06.021] [PMID: 23815974]
[181]
Ryu, H.; Lee, J.; Hagerty, S.W.; Soh, B.Y.; McAlpin, S.E.; Cormier, K.A.; Smith, K.M.; Ferrante, R.J. ESET/SETDB1 gene expression and histone H3 (K9) trimethylation in Huntington’s disease. Proc. Natl. Acad. Sci. USA, 2006, 103(50), 19176-19181.
[http://dx.doi.org/10.1073/pnas.0606373103] [PMID: 17142323]
[182]
Ravache, M.; Weber, C.; Mérienne, K.; Trottier, Y. Transcriptional activation of REST by Sp1 in Huntington’s disease models. PLoS One, 2010, 5(12), e14311.
[http://dx.doi.org/10.1371/journal.pone.0014311] [PMID: 21179468]
[183]
Cameron, D.; Blake, D.J.; Bray, N.J.; Hill, M.J. Transcriptional changes following cellular knockdown of the schizophrenia risk gene SETD1A are enriched for common variant association with the disorder. Mol. Neuropsychiatry, 2019, 5(2), 109-114.
[PMID: 31192223]
[184]
Pereira, J.D.; Sansom, S.N.; Smith, J.; Dobenecker, M.W.; Tarakhovsky, A.; Livesey, F.J. Ezh2, the histone methyltransferase of PRC2, regulates the balance between self-renewal and differentiation in the cerebral cortex. Proc. Natl. Acad. Sci. USA, 2010, 107(36), 15957-15962.
[http://dx.doi.org/10.1073/pnas.1002530107] [PMID: 20798045]
[185]
Park, D.H.; Hong, S.J.; Salinas, R.D.; Liu, S.J.; Sun, S.W.; Sgualdino, J.; Testa, G.; Matzuk, M.M.; Iwamori, N.; Lim, D.A. Activation of neuronal gene expression by the JMJD3 demethylase is required for postnatal and adult brain neurogenesis. Cell Rep., 2014, 8(5), 1290-1299.
[http://dx.doi.org/10.1016/j.celrep.2014.07.060] [PMID: 25176653]
[186]
Zhou, Q.; Obana, E.A.; Radomski, K.L.; Sukumar, G.; Wynder, C.; Dalgard, C.L.; Doughty, M.L. Inhibition of the histone demethylase Kdm5b promotes neurogenesis and derepresses Reln (reelin) in neural stem cells from the adult subventricular zone of mice. Mol. Biol. Cell, 2016, 27(4), 627-639.
[http://dx.doi.org/10.1091/mbc.E15-07-0513] [PMID: 26739753]
[187]
Ambrosio, S.; Majello, B. Targeting histone demethylase LSD1/KDM1a in neurodegenerative diseases. J. Exp. Neurosci., 2018, 12.
[http://dx.doi.org/10.1177/1179069518765743] [PMID: 29581704]
[188]
Marsit, C.J. Influence of environmental exposure on human epigenetic regulation. J. Exp. Biol., 2015, 218(1), 71-79.
[http://dx.doi.org/10.1242/jeb.106971] [PMID: 25568453]
[189]
Perera, F.; Herbstman, J. Prenatal environmental exposures, epigenetics, and disease. Reprod. Toxicol., 2011, 31(3), 363-373.
[http://dx.doi.org/10.1016/j.reprotox.2010.12.055] [PMID: 21256208]
[190]
Dhimolea, E.; Wadia, P.R.; Murray, T.J.; Settles, M.L.; Treitman, J.D.; Sonnenschein, C.; Shioda, T.; Soto, A.M. Prenatal exposure to BPA alters the epigenome of the rat mammary gland and increases the propensity to neoplastic development. PLoS One, 2014, 9(7), e99800.
[http://dx.doi.org/10.1371/journal.pone.0099800] [PMID: 24988533]
[191]
Bacalini, M.G.; Friso, S.; Olivieri, F.; Pirazzini, C.; Giuliani, C.; Capri, M.; Santoro, A.; Franceschi, C.; Garagnani, P. Present and future of anti-ageing epigenetic diets. Mech. Ageing Dev., 2014, 136-137, 101-115.
[http://dx.doi.org/10.1016/j.mad.2013.12.006] [PMID: 24388875]
[192]
Rönn, T.; Volkov, P.; Davegårdh, C.; Dayeh, T.; Hall, E.; Olsson, A.H.; Nilsson, E.; Tornberg, Å.; Dekker Nitert, M.; Eriksson, K.F.; Jones, H.A.; Groop, L.; Ling, C. A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue. PLoS Genet., 2013, 9(6), e1003572.
[http://dx.doi.org/10.1371/journal.pgen.1003572] [PMID: 23825961]
[193]
Kanherkar, R.R.; Bhatia-Dey, N.; Csoka, A.B. Epigenetics across the human lifespan. Front. Cell Dev. Biol., 2014, 2, 49.
[http://dx.doi.org/10.3389/fcell.2014.00049] [PMID: 25364756]
[194]
Dzobo, K. Epigenomics-guided drug development: recent advances in solving the cancer treatment “jigsaw puzzle”. OMICS, 2019, 23(2), 70-85.
[http://dx.doi.org/10.1089/omi.2018.0206] [PMID: 30767728]
[195]
Chen, G.; Wang, X.; Zhang, Y.; Ru, X.; Zhou, L.; Tian, Y. H3K9 histone methyltransferase G9a ameliorates dilated cardiomyopathy via the downregulation of cell adhesion molecules. Mol. Med. Rep., 2015, 11(5), 3872-3879.
[http://dx.doi.org/10.3892/mmr.2015.3218] [PMID: 25607239]
[196]
Madsen, A.; Höppner, G.; Krause, J.; Hirt, M.N.; Laufer, S.D.; Schweizer, M.; Tan, W.L.W.; Mosqueira, D.; Anene-Nzelu, C.G.; Lim, I.; Foo, R.S.Y.; Eschenhagen, T.; Stenzig, J.; Stenzig, J. An important role for DNMT3A-mediated DNA methylation in cardiomyocyte metabolism and contractility. Circulation, 2020, 142(16), 1562-1578.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.119.044444] [PMID: 32885664]
[197]
Dai, X.; Liu, S.; Cheng, L.; Huang, T.; Guo, H.; Wang, D.; Xia, M.; Ling, W.; Xiao, Y. Epigenetic upregulation of H19 and AMPK inhibition concurrently contribute to S-adenosylhomocysteine hydrolase deficiency-promoted atherosclerotic calcification. Circ. Res., 2022, 130(10), 1565-1582.
[http://dx.doi.org/10.1161/CIRCRESAHA.121.320251] [PMID: 35410483]
[198]
Lan, Y.; Banks, K.M.; Pan, H.; Verma, N.; Dixon, G.R.; Zhou, T.; Ding, B.; Elemento, O.; Chen, S.; Huangfu, D.; Evans, T. Stage-specific regulation of DNA methylation by TET enzymes during human cardiac differentiation. Cell Rep., 2021, 37(10), 110095.
[http://dx.doi.org/10.1016/j.celrep.2021.110095] [PMID: 34879277]
[199]
Fuster, J.J.; MacLauchlan, S.; Zuriaga, M.A.; Polackal, M.N.; Ostriker, A.C.; Chakraborty, R.; Wu, C.L.; Sano, S.; Muralidharan, S.; Rius, C.; Vuong, J.; Jacob, S.; Muralidhar, V.; Robertson, A.A.B.; Cooper, M.A.; Andrés, V.; Hirschi, K.K.; Martin, K.A.; Walsh, K. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science, 2017, 355(6327), 842-847.
[http://dx.doi.org/10.1126/science.aag1381] [PMID: 28104796]
[200]
Zhang, P.; Chen, X.; Zhang, Y.; Su, H.; Zhang, Y.; Zhou, X.; Sun, M.; Li, L.; Xu, Z. Tet3 enhances IL-6 expression through up-regulation of 5-hmC in IL-6 promoter in chronic hypoxia induced atherosclerosis in offspring rats. Life Sci., 2019, 232, 116601.
[http://dx.doi.org/10.1016/j.lfs.2019.116601] [PMID: 31252000]
[201]
Blanc, R.S.; Vogel, G.; Li, X.; Yu, Z.; Li, S.; Richard, S. Arginine methylation by PRMT1 regulates muscle stem cell fate. Mol. Cell. Biol., 2017, 37(3), e00457-e16.
[http://dx.doi.org/10.1128/MCB.00457-16] [PMID: 27849571]
[202]
Choi, S.; Jeong, H.J.; Kim, H.; Choi, D.; Cho, S.C.; Seong, J.K.; Koo, S.H.; Kang, J.S. Skeletal muscle-specific Prmt1 deletion causes muscle atrophy via deregulation of the PRMT6-FOXO3 axis. Autophagy, 2019, 15(6), 1069-1081.
[http://dx.doi.org/10.1080/15548627.2019.1569931] [PMID: 30653406]
[203]
Zhang, T.; Günther, S.; Looso, M.; Künne, C.; Krüger, M.; Kim, J.; Zhou, Y.; Braun, T. Prmt5 is a regulator of muscle stem cell expansion in adult mice. Nat. Commun., 2015, 6(1), 7140.
[http://dx.doi.org/10.1038/ncomms8140] [PMID: 26028225]
[204]
Martin, L.J.; Adams, D.A.; Niedzwiecki, M.V.; Wong, M. Aberrant DNA and RNA methylation occur in spinal cord and skeletal muscle of human SOD1 mouse models of ALS and in human ALS: Targeting DNA methylation is therapeutic. Cells, 2022, 11(21), 3448.
[http://dx.doi.org/10.3390/cells11213448] [PMID: 36359844]
[205]
Choi, D.; Oh, K.J.; Han, H.S.; Yoon, Y.S.; Jung, C.Y.; Kim, S.T.; Koo, S.H. Protein arginine methyltransferase 1 regulates hepatic glucose production in a FoxO1-dependent manner. Hepatology, 2012, 56(4), 1546-1556.
[http://dx.doi.org/10.1002/hep.25809] [PMID: 22532369]
[206]
Ma, Y.; Liu, S.; Jun, H.; Wang, J.; Fan, X.; Li, G.; Yin, L.; Rui, L.; Weinman, S.A.; Gong, J. A critical role for hepatic protein arginine methyltransferase 1 isoform 2 in glycemic control. FASEB J., 2020, 34(11), 14863.
[http://dx.doi.org/10.1096/fj.202001061R]
[207]
Vurusaner, B.; Thevkar-Nages, P.; Kaur, R.; Giannarelli, C.; Garabedian, M.J.; Fisher, E.A. Loss of PRMT2 in myeloid cells in normoglycemic mice phenocopies impaired regression of atherosclerosis in diabetic mice. Sci. Rep., 2022, 12(1), 12031.
[http://dx.doi.org/10.1038/s41598-022-15349-6] [PMID: 35835907]
[208]
Li, Y.; Peng, M.; Zeng, T.; Zheng, J.; Liao, Y.; Zhang, H.; Yang, S.; Chen, L. Protein arginine methyltransferase 4 regulates adipose tissue lipolysis in type 1 diabetic mice. Diabetes Metab. Syndr. Obes., 2020, 13, 535-544.
[http://dx.doi.org/10.2147/DMSO.S235869] [PMID: 32161480]
[209]
Chen, Y.T.; Liao, J.W.; Tsai, Y.C.; Tsai, F.J. Inhibition of DNA methyltransferase 1 increases nuclear receptor subfamily 4 group A member 1 expression and decreases blood glucose in type 2 diabetes. Oncotarget, 2016, 7(26), 39162-39170.
[http://dx.doi.org/10.18632/oncotarget.10043] [PMID: 27322146]
[210]
Tan, Y.; Cao, H.; Li, Q.; Sun, J. The role of transcription factor Ap1 in the activation of the Nrf2/ARE pathway through TET1 in diabetic nephropathy. Cell Biol. Int., 2021, 45(8), 1654-1665.
[http://dx.doi.org/10.1002/cbin.11599] [PMID: 33760331]
[211]
Villivalam, S.D.; Kim, J.; Kang, S. DNMT3a and TET2 in adipocyte insulin sensitivity. Oncotarget, 2018, 9(82), 35289-35290.
[http://dx.doi.org/10.18632/oncotarget.26246] [PMID: 30450156]
[212]
Da Li,; Cao, T.; Sun, X.; Jin, S.; Di Xie; Huang, X.; Yang, X.; Carmichael, G.G.; Taylor, H.S.; Diano, S.; Huang, Y. Hepatic TET3 contributes to type-2 diabetes by inducing the HNF4α fetal isoform. Nat. Commun., 2020, 11(1), 342.
[http://dx.doi.org/10.1038/s41467-019-14185-z] [PMID: 31953394]
[213]
Jia, Z.; Yue, F.; Chen, X.; Narayanan, N.; Qiu, J.; Syed, S.A.; Imbalzano, A.N.; Deng, M.; Yu, P.; Hu, C.; Kuang, S. Protein arginine methyltransferase PRMT5 regulates fatty acid metabolism and lipid droplet biogenesis in white adipose tissues. Adv. Sci. (Weinh.), 2020, 7(23), 2002602.
[http://dx.doi.org/10.1002/advs.202002602] [PMID: 33304767]
[214]
Zhu, Q.; Wang, D.; Liang, F.; Tong, X.; Liang, Z.; Wang, X.; Chen, Y.; Mo, D. Protein arginine methyltransferase PRMT1 promotes adipogenesis by modulating transcription factors C/EBPβ and PPARγ. J. Biol. Chem., 2022, 298(9), 102309.
[http://dx.doi.org/10.1016/j.jbc.2022.102309]
[215]
Zhang, Y.; Verwilligen, R.A.F.; de Boer, M.; Sijsenaar, T.J.P.; Van Eck, M.; Hoekstra, M. PRMT4 inhibitor TP-064 impacts both inflammatory and metabolic processes without changing the susceptibility for early atherosclerotic lesions in male apolipoprotein E knockout mice. Atherosclerosis, 2021, 338, 23-29.
[http://dx.doi.org/10.1016/j.atherosclerosis.2021.11.001] [PMID: 34785428]
[216]
Kamei, Y.; Suganami, T.; Ehara, T.; Kanai, S.; Hayashi, K.; Yamamoto, Y.; Miura, S.; Ezaki, O.; Okano, M.; Ogawa, Y. Increased expression of DNA methyltransferase 3a in obese adipose tissue: studies with transgenic mice. Obesity (Silver Spring), 2010, 18(2), 314-321.
[http://dx.doi.org/10.1038/oby.2009.246] [PMID: 19680236]
[217]
Yang, X.; Wang, X.; Liu, D.; Yu, L.; Xue, B.; Shi, H. Epigenetic regulation of macrophage polarization by DNA methyltransferase 3b. Mol. Endocrinol., 2014, 28(4), 565-574.
[http://dx.doi.org/10.1210/me.2013-1293] [PMID: 24597547]
[218]
Wang, X.; Cao, Q.; Yu, L.; Shi, H.; Xue, B.; Shi, H. Epigenetic regulation of macrophage polarization and inflammation by DNA methylation in obesity. JCI Insight, 2016, 1(19), e87748.
[http://dx.doi.org/10.1172/jci.insight.87748] [PMID: 27882346]
[219]
Choi, J.H.; Jang, A.R.; Kim, D.; Park, M.J.; Lim, S.K.; Kim, M.S.; Park, J.H. PRMT1 mediates RANKL-induced osteoclastogenesis and contributes to bone loss in ovariectomized mice. Exp. Mol. Med., 2018, 50(8), 1-15.
[http://dx.doi.org/10.1038/s12276-018-0134-x] [PMID: 30154485]
[220]
Min, Z.; Xiaomeng, L.; Zheng, L.; Yangge, D.; Xuejiao, L.; Longwei, L.; Xiao, Z.; Yunsong, L.; Ping, Z.; Yongsheng, Z. Asymmetrical methyltransferase PRMT3 regulates human mesenchymal stem cell osteogenesis via miR-3648. Cell Death Dis., 2019, 10(8), 581.
[http://dx.doi.org/10.1038/s41419-019-1815-7] [PMID: 31378783]
[221]
Dong, Y.; Song, C.; Wang, Y.; Lei, Z.; Xu, F.; Guan, H.; Chen, A.; Li, F. Inhibition of PRMT5 suppresses osteoclast differentiation and partially protects against ovariectomy-induced bone loss through downregulation of CXCL10 and RSAD2. Cell. Signal., 2017, 34, 55-65.
[http://dx.doi.org/10.1016/j.cellsig.2017.03.004] [PMID: 28302565]
[222]
Ye, L.; Fan, Z.; Yu, B.; Chang, J.; Al Hezaimi, K.; Zhou, X.; Park, N.H.; Wang, C.Y. Histone demethylases KDM4B and KDM6B promotes osteogenic differentiation of human MSCs. Cell Stem Cell, 2012, 11(1), 50-61.
[http://dx.doi.org/10.1016/j.stem.2012.04.009] [PMID: 22770241]
[223]
Li, B.; Zhao, J.; Ma, J.; Li, G.; Zhang, Y.; Xing, G.; Liu, J.; Ma, X. Overexpression of DNMT1 leads to hypermethylation of H19 promoter and inhibition of Erk signaling pathway in disuse osteoporosis. Bone, 2018, 111, 82-91.
[http://dx.doi.org/10.1016/j.bone.2018.03.017] [PMID: 29555308]
[224]
Yang, C.; Tao, H.; Zhang, H.; Xia, Y.; Bai, J.; Ge, G.; Li, W.; Zhang, W.; Xiao, L.; Xu, Y.; Wang, Z.; Gu, Y.; Yang, H.; Liu, Y.; Geng, D. TET2 regulates osteoclastogenesis by modulating autophagy in OVX-induced bone loss. Autophagy, 2022, 18(12), 2817-2829.
[http://dx.doi.org/10.1080/15548627.2022.2048432] [PMID: 35255774]
[225]
Lee, S.Y.; Vuong, T.A.; So, H.K.; Kim, H.J.; Kim, Y.B.; Kang, J.S.; Kwon, I.; Cho, H. PRMT7 deficiency causes dysregulation of the HCN channels in the CA1 pyramidal cells and impairment of social behaviors. Exp. Mol. Med., 2020, 52(4), 604-614.
[http://dx.doi.org/10.1038/s12276-020-0417-x] [PMID: 32269286]
[226]
Quan, X.; Yue, W.; Luo, Y.; Cao, J.; Wang, H.; Wang, Y.; Lu, Z. The protein arginine methyltransferase PRMT5 regulates Aβ-induced toxicity in human cells and Caenorhabditis elegans models of Alzheimer’s disease. J. Neurochem., 2015, 134(5), 969-977.
[http://dx.doi.org/10.1111/jnc.13191] [PMID: 26086249]
[227]
Hahn, A.; Pensold, D.; Bayer, C.; Tittelmeier, J.; González-Bermúdez, L.; Marx-Blümel, L.; Linde, J.; Groß, J.; Salinas-Riester, G.; Lingner, T.; von Maltzahn, J.; Spehr, M.; Pieler, T.; Urbach, A.; Zimmer-Bensch, G. DNA methyltransferase 1 (DNMT1) function is implicated in the age-related loss of cortical interneurons. Front. Cell Dev. Biol., 2020, 8, 639.
[http://dx.doi.org/10.3389/fcell.2020.00639] [PMID: 32793592]
[228]
Dong, E.; Gavin, D.P.; Chen, Y.; Davis, J. Upregulation of TET1 and downregulation of APOBEC3A and APOBEC3C in the parietal cortex of psychotic patients. Transl. Psychiatry, 2012, 2(9), e159-e159.
[http://dx.doi.org/10.1038/tp.2012.86] [PMID: 22948384]
[229]
Carrillo-Jimenez, A.; Deniz, Ö.; Niklison-Chirou, M.V.; Ruiz, R.; Bezerra-Salomao, K.; Stratoulias, V.; Amouroux, R.; Yip, P.K.; Vilalta, A.; Cheray, M. TET2 regulates the neuroinflammatory response in microglia. Cell Rep., 2019, 29(3), 697-713.
[http://dx.doi.org/10.1016/j.celrep.2019.09.013]
[230]
Sager, S.G.; Turkyilmaz, A.; Gunbey, H.P.; Karatoprak, E.Y.; Aslan, E.S.; Akın, Y. A novel de novo TET3 loss-of-function variant in a Turkish boy presenting with neurodevelopmental delay and electrical status epilepticus during slow-wave sleep. Brain Dev., 2023, 45(2), 140-145.
[http://dx.doi.org/10.1016/j.braindev.2022.09.004] [PMID: 36192301]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy