Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

轻度认知障碍和阿尔茨海默病中灰质体积和定向功能连接的平衡被破坏

卷 20, 期 3, 2023

发表于: 05 July, 2023

页: [161 - 174] 页: 14

弟呕挨: 10.2174/1567205020666230602144659

open access plus

摘要

背景:阿尔茨海默氏病 (AD) 已证明功能连接发生改变,这是一种影响认知功能的随年龄进展的神经退行性疾病;然而,定向信息流从未被分析过。 目的:本研究旨在确定 AD 和轻度认知障碍 (MCI) 患者使用新方法格兰杰因果密度 (GCD) 测量的静息态定向功能连接的变化,并探索用于认知衰退检测的新型神经影像生物标志物。 方法:在本研究中,分析了 48 名阿尔茨海默病神经影像计划参与者的结构 MRI、静息态功能磁共振成像和神经心理学数据,其中包括 16 名 AD 患者、16 名 MCI 患者和 16 名正常对照。基于体积的形态测量(VBM)和 GCD 用于计算基于体素的灰质(GM)体积和大脑的定向功能连接。我们充分利用基于体素的 VBM 和 GCD 值的组间比较来识别具有显着变化的特定区域。此外,皮尔逊在定向功能连接和几个临床变量之间进行了相关性分析。此外,结合VBM和GCD进行与分类相关的受试者工作特征(ROC)分析。 结果:在认知能力下降的患者中,在默认模式网络(DMN)相关区域和小脑中观察到异常的 VBM 和 GCD(涉及 GCD 的流入和流出)。 DMN中线核心系统、海马和小脑的GCD与简易精神状态检查和功能活动问卷评分密切相关。在结合 VBM 和 GCD 的 ROC 分析中,小脑中的神经影像生物标志物最适合早期检测 MCI,而楔前叶最适合预测认知衰退进展和 AD 诊断。 结论:GM体积和定向功能连接的变化可能反映了认知能力下降的机制。这一发现可以提高我们对 AD 和 MCI 病理学的理解,并为 AD 和 MCI 的早期检测、进展和诊断提供可用的神经影像标记。

关键词: 格兰杰因果密度 (GCD)、基于体积的形态测量 (VBM)、静息状态功能磁共振成像 (rs-fMRI)、结构磁共振成像、阿尔茨海默病 (AD)、轻度认知障碍 (MCI) 痴呆。

[1]
World Alzheimer Report 2021. Journey through the diagnosis of dementia Alzheimer’s Disease International. 2021.
[2]
Querfurth HW, LaFerla FM. Alzheimer’s Disease. N Engl J Med 2010; 362(4): 329-44.
[http://dx.doi.org/10.1056/NEJMra0909142] [PMID: 20107219]
[3]
Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL. Alzheimer’s disease. Nat Rev Dis Primers 2015; 1(1): 15056.
[http://dx.doi.org/10.1038/nrdp.2015.56] [PMID: 27188934]
[4]
Soria Lopez JA, González HM, Léger GC. Alzheimer’s disease. Handb Clin Neurol 2019; 167: 231-55.
[http://dx.doi.org/10.1016/B978-0-12-804766-8.00013-3] [PMID: 31753135]
[5]
Chetelat G, Baron JC. Early diagnosis of alzheimer’s disease: Contribution of structural neuroimaging. Neuroimage 2003; 18(2): 525-41.
[http://dx.doi.org/10.1016/S1053-8119(02)00026-5] [PMID: 12595205]
[6]
Jack CR Jr, Barkhof F, Bernstein MA, et al. Steps to standardization and validation of hippocampal volumetry as a biomarker in clinical trials and diagnostic criterion for Alzheimer’s disease. Alzheimers Dement 2011; 7(4): 474-485.e4.
[http://dx.doi.org/10.1016/j.jalz.2011.04.007] [PMID: 21784356]
[7]
Matsuda H. MRI morphometry in Alzheimer’s disease. Ageing Res Rev 2016; 30: 17-24.
[http://dx.doi.org/10.1016/j.arr.2016.01.003] [PMID: 26812213]
[8]
Steen RG, Mull C, Mcclure R, Hamer RM, Lieberman JA. Brain volume in first-episode schizophrenia. Br J Psychiatry 2006; 188(6): 510-8.
[http://dx.doi.org/10.1192/bjp.188.6.510] [PMID: 16738340]
[9]
Arnone D, McIntosh AM, Ebmeier KP, Munafò MR, Anderson IM. Magnetic resonance imaging studies in unipolar depression: Systematic review and meta-regression analyses. Eur Neuropsychopharmacol 2012; 22(1): 1-16.
[http://dx.doi.org/10.1016/j.euroneuro.2011.05.003] [PMID: 21723712]
[10]
Han KM, De Berardis D, Fornaro M, Kim YK. Differentiating between bipolar and unipolar depression in functional and structural MRI studies. Prog Neuropsychopharmacol Biol Psychiatry 2019; 91: 20-7.
[http://dx.doi.org/10.1016/j.pnpbp.2018.03.022] [PMID: 29601896]
[11]
Li SJ, Li Z, Wu G, Zhang MJ, Franczak M, Antuono PG. Alzheimer Disease: Evaluation of a functional MR imaging index as a marker. Radiology 2002; 225(1): 253-9.
[http://dx.doi.org/10.1148/radiol.2251011301] [PMID: 12355013]
[12]
Andrews-Hanna JR, Reidler JS, Sepulcre J, Poulin R, Buckner RL. Functional-anatomic fractionation of the brain’s default network. Neuron 2010; 65(4): 550-62.
[http://dx.doi.org/10.1016/j.neuron.2010.02.005] [PMID: 20188659]
[13]
Anna BS, Benjamin C, Fleur G, et al. Sleep: The tip of the iceberg in the bidirectional link between alzheimer’s disease and epilepsy. Front Neurol 2022; 13: 836292.
[http://dx.doi.org/10.3389/fneur.2022.836292]
[14]
Sheline YI, Raichle ME. Resting state functional connectivity in preclinical Alzheimer’s disease. Biol Psychiatry 2013; 74(5): 340-7.
[http://dx.doi.org/10.1016/j.biopsych.2012.11.028] [PMID: 23290495]
[15]
Berron D, van Westen D, Ossenkoppele R, Strandberg O, Hansson O. Medial temporal lobe connectivity and its associations with cognition in early Alzheimer’s disease. Brain 2020; 143(4): 1233-48.
[http://dx.doi.org/10.1093/brain/awaa068] [PMID: 32252068]
[16]
Mao Y, Liao Z, Liu X, et al. Disrupted balance of long and short-range functional connectivity density in Alzheimer’s disease (AD) and mild cognitive impairment (MCI) patients: A resting-state fMRI study. Ann Transl Med 2021; 9(1): 65.
[http://dx.doi.org/10.21037/atm-20-7019] [PMID: 33553358]
[17]
Dai XJ, Xu Q, Hu J, et al. BECTS substate classification by granger causality density based support vector machine model. Front Neurol 2019; 10: 1201.
[http://dx.doi.org/10.3389/fneur.2019.01201] [PMID: 31798523]
[18]
Dai XJ, Yang Y, Wang N, Tao W, Fan J, Wang Y. Reliability and availability of granger causality density in localization of Rolandic focus in BECTS. Brain Imaging Behav 2021; 15(3): 1542-52.
[http://dx.doi.org/10.1007/s11682-020-00352-0] [PMID: 32737823]
[19]
Dai X, Yang Y, Wang Y. Interictal epileptiform discharges changed epilepsy-related brain network architecture in BECTS. Brain Imaging Behav 2022; 16(2): 909-20.
[http://dx.doi.org/10.1007/s11682-021-00566-w] [PMID: 34677785]
[20]
Gaubert S, Raimondo F, Houot M, et al. EEG evidence of compensatory mechanisms in preclinical Alzheimer’s disease. Brain 2019; 142(7): 2096-112.
[http://dx.doi.org/10.1093/brain/awz150] [PMID: 31211359]
[21]
Ashburner J, Friston KJ. Voxel-based morphometry-the methods. Neuroimage 2000; 11(6): 805-21.
[http://dx.doi.org/10.1006/nimg.2000.0582] [PMID: 10860804]
[22]
Nicastro N, Rodriguez PV, Malpetti M, et al. 18F-AV1451 PET imaging and multimodal MRI changes in progressive supranuclear palsy. J Neurol 2020; 267(2): 341-9.
[http://dx.doi.org/10.1007/s00415-019-09566-9] [PMID: 31641878]
[23]
Farokhian F, Beheshti I, Sone D, Matsuda H. Comparing CAT12 and VBM8 for detecting brain morphological abnormalities in temporal lobe epilepsy. Front Neurol 2017; 8: 428.
[http://dx.doi.org/10.3389/fneur.2017.00428] [PMID: 28883807]
[24]
Zuo XN, Di Martino A, Kelly C, et al. The oscillating brain: Complex and reliable. Neuroimage 2010; 49(2): 1432-45.
[http://dx.doi.org/10.1016/j.neuroimage.2009.09.037] [PMID: 19782143]
[25]
Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7(3): 280-92.
[http://dx.doi.org/10.1016/j.jalz.2011.03.003] [PMID: 21514248]
[26]
Gauthier CJ, Fan AP. BOLD signal physiology: Models and applications. Neuroimage 2019; 187: 116-27.
[http://dx.doi.org/10.1016/j.neuroimage.2018.03.018] [PMID: 29544818]
[27]
Halliday G. Pathology and hippocampal atrophy in Alzheimer’s disease. Lancet Neurol 2017; 16(11): 862-4.
[http://dx.doi.org/10.1016/S1474-4422(17)30343-5] [PMID: 29029840]
[28]
Li B, Zhang M, Jang I, et al. Amyloid-beta influences memory via functional connectivity during memory retrieval in alzheimer’s disease. Front Aging Neurosci 2021; 13: 721171.
[http://dx.doi.org/10.3389/fnagi.2021.721171] [PMID: 34539382]
[29]
Ward AM, Schultz AP, Huijbers W, Van Dijk KRA, Hedden T, Sperling RA. The parahippocampal gyrus links the default-mode cortical network with the medial temporal lobe memory system. Hum Brain Mapp 2014; 35(3): 1061-73.
[http://dx.doi.org/10.1002/hbm.22234] [PMID: 23404748]
[30]
Ossenkoppele R, Schonhaut DR, Schöll M, et al. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease. Brain 2016; 139(5): 1551-67.
[http://dx.doi.org/10.1093/brain/aww027] [PMID: 26962052]
[31]
Barrett DGT, Denève S, Machens CK. Optimal compensation for neuron loss. eLife 2016; 5e12454.
[32]
Ammassari-Teule M. Neural compensation in presymptomatic hAPP mouse models of Alzheimer’s disease. Learn Mem 2020; 27(9): 390-4.
[http://dx.doi.org/10.1101/lm.050401.119] [PMID: 32817305]
[33]
Salami A, Wåhlin A, Kaboodvand N, Lundquist A, Nyberg L. Longitudinal evidence for dissociation of anterior and posterior mtl resting-state connectivity in aging: Links to perfusion and memory. Cereb Cortex 2016; 26(10): 3953-63.
[http://dx.doi.org/10.1093/cercor/bhw233] [PMID: 27522073]
[34]
Sheng X, Chen H, Shao P, et al. Brain structural network compensation is associated with cognitive impairment and alzheimer’s disease pathology. Front Neurosci 2021; 15: 630278.
[http://dx.doi.org/10.3389/fnins.2021.630278] [PMID: 33716654]
[35]
Busche MA, Eichhoff G, Adelsberger H, et al. Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer’s disease. Science 2008; 321(5896): 1686-9.
[http://dx.doi.org/10.1126/science.1162844] [PMID: 18802001]
[36]
Müller L, Kirschstein T, Köhling R, Kuhla A, Teipel S. Neuronal hyperexcitability in APPSWE/PS1dE9 mouse models of alzheimer’s disease. J Alzheimers Dis 2021; 81(3): 855-69.
[http://dx.doi.org/10.3233/JAD-201540] [PMID: 33843674]
[37]
Sun JL, Stokoe SA, Roberts JP, et al. Co-activation of selective nicotinic acetylcholine receptors is required to reverse beta amyloid–induced Ca2+ hyperexcitation. Neurobiol Aging 2019; 84: 166-77.
[http://dx.doi.org/10.1016/j.neurobiolaging.2019.09.005] [PMID: 31629115]
[38]
Mattson MP. Involvement of GABAergic interneuron dysfunction and neuronal network hyperexcitability in Alzheimer’s disease: Amelioration by metabolic switching. Int Rev Neurobiol 2020; 154: 191-205.
[http://dx.doi.org/10.1016/bs.irn.2020.01.006] [PMID: 32739004]
[39]
Busche MA, Chen X, Henning HA, et al. Critical role of soluble amyloid-β for early hippocampal hyperactivity in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 2012; 109(22): 8740-5.
[http://dx.doi.org/10.1073/pnas.1206171109] [PMID: 22592800]
[40]
Salami A, Pudas S, Nyberg L. Elevated hippocampal resting-state connectivity underlies deficient neurocognitive function in aging. Proc Natl Acad Sci 2014; 111(49): 17654-9.
[http://dx.doi.org/10.1073/pnas.1410233111] [PMID: 25422457]
[41]
Pasquini L, Scherr M, Tahmasian M, et al. Link between hippocampus’ raised local and eased global intrinsic connectivity in AD. Alzheimers Dement 2015; 11(5): 475-84.
[http://dx.doi.org/10.1016/j.jalz.2014.02.007] [PMID: 25043909]
[42]
Tahmasian M, Pasquini L, Scherr M, et al. The lower hippocampus global connectivity, the higher its local metabolism in Alzheimer disease. Neurology 2015; 84(19): 1956-63.
[http://dx.doi.org/10.1212/WNL.0000000000001575] [PMID: 25878180]
[43]
Stoodley CJ. Distinct regions of the cerebellum show gray matter decreases in autism, ADHD, and developmental dyslexia. Front Syst Neurosci 2014; 8: 92.
[http://dx.doi.org/10.3389/fnsys.2014.00092] [PMID: 24904314]
[44]
Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BTT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol 2011; 106(5): 2322-45.
[http://dx.doi.org/10.1152/jn.00339.2011] [PMID: 21795627]
[45]
Ashida R, Cerminara NL, Edwards RJ, Apps R, Brooks JCW. Sensorimotor, language, and working memory representation within the human cerebellum. Hum Brain Mapp 2019; 40(16): 4732-47.
[http://dx.doi.org/10.1002/hbm.24733] [PMID: 31361075]
[46]
Singh-Bains MK, Linke V, Austria MDR, et al. Altered microglia and neurovasculature in the Alzheimer’s disease cerebellum. Neurobiol Dis 2019; 13: 2104589.
[http://dx.doi.org/10.1016/j.nbd.2019.104589] [PMID: 31454549]
[47]
Toniolo S, Serra L, Olivito G, et al. Cerebellar white matter disruption in alzheimer’s disease patients: A diffusion tensor imaging study. J Alzheimers Dis 2020; 74(2): 615-24.
[http://dx.doi.org/10.3233/JAD-191125] [PMID: 32065792]
[48]
Toniolo S, Serra L, Olivito G, Marra C, Bozzali M, Cercignani M. Patterns of cerebellar gray matter atrophy across alzheimer’s disease progression. Front Cell Neurosci 2018; 12: 430.
[http://dx.doi.org/10.3389/fncel.2018.00430] [PMID: 30515080]
[49]
Lin WY. Crossed cerebellar diaschisis: Related to lesion location or disease duration? J Nucl Med 1997; 38(12): 2006.
[PMID: 9430487]
[50]
Dennis EL, Thompson PM. Functional brain connectivity using fMRI in aging and Alzheimer’s disease. Neuropsychol Rev 2014; 24(1): 49-62.
[http://dx.doi.org/10.1007/s11065-014-9249-6] [PMID: 24562737]
[51]
Zheng W, Cui B, Han Y, et al. Disrupted regional cerebral blood flow, functional activity and connectivity in alzheimer’s disease: A combined ASL perfusion and resting state fMRI study. Front Neurosci 2019; 13: 738.
[http://dx.doi.org/10.3389/fnins.2019.00738] [PMID: 31396033]
[52]
Zhang M, Sun W, Guan Z, et al. Simultaneous PET/fMRI detects distinctive alterations in functional connectivity and glucose metabolism of precuneus subregions in alzheimer’s disease. Front Aging Neurosci 2021; 13: 737002.
[http://dx.doi.org/10.3389/fnagi.2021.737002] [PMID: 34630070]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy