Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Engineered Biosynthesis through the Adenylation Domains from Nonribosomal Peptide Synthetases

Author(s): Zhenhua Lu, Xiao-Huan Liu, Xinsong Yuan, Fei Liu and Tao Wang*

Volume 23, Issue 20, 2023

Published on: 06 June, 2023

Page: [1973 - 1984] Pages: 12

DOI: 10.2174/1568026623666230601142757

Price: $65

Abstract

Nonribosomal peptide synthetases, consisted of multiple catalytic domains, are involved in the biosynthesis of an important family of bioactive natural products in a coordinated manner. Among the functional domains, adenylation domains are specifically responsible for recognizing carboxylic acid building blocks and synthesizing aminoacyl adenylates. Given their critical roles in the biosynthesis of the growing peptide, A-domains are also referred to as the “gatekeeper”. In this review, very recent developments on the A-domains from NRPSs are reviewed to expand the fundamental knowledge of the A domain, including knowledge on the structures, functions, and molecular interactions. Several recent examples were also discussed to highlight the great potential of A-domain engineering. This study should provide a framework for the combinatorial biosynthesis or synthetic biology-driven microbial production of novel nonribosomal peptides.

Keywords: Nonribosomal peptide synthetases, Adenylation domains, Domain engineering, Biosynthesis, biosynthetic engineering, Rational design.

Graphical Abstract
[1]
Götze, S.; Stallforth, P. Structure, properties, and biological functions of nonribosomal lipopeptides from pseudomonads. Nat. Prod. Rep., 2020, 37(1), 29-54.
[http://dx.doi.org/10.1039/C9NP00022D] [PMID: 31436775]
[2]
Süssmuth, R.D.; Mainz, A. Nonribosomal peptide synthesis-principles and prospects. Angew. Chem. Int. Ed., 2017, 56(14), 3770-3821.
[http://dx.doi.org/10.1002/anie.201609079] [PMID: 28323366]
[3]
Liu, Y.; Ding, S.; Shen, J.; Zhu, K. Nonribosomal antibacterial peptides that target multidrug-resistant bacteria. Nat. Prod. Rep., 2019, 36(4), 573-592.
[http://dx.doi.org/10.1039/C8NP00031J] [PMID: 30324212]
[4]
Major, D.; Flanzbaum, L.; Lussier, L.; Davies, C.; Caldo, K.M.P.; Acedo, J.Z. Transporter protein-guided genome mining for head-to-tail cyclized bacteriocins. Molecules, 2021, 26(23), 7218.
[http://dx.doi.org/10.3390/molecules26237218] [PMID: 34885800]
[5]
Niu, X.; Thaochan, N.; Hu, Q. Diversity of linear non-ribosomal peptide in biocontrol fungi. J. Fungi, 2020, 6(2), 61.
[http://dx.doi.org/10.3390/jof6020061] [PMID: 32408496]
[6]
Zhang, S.; Chen, Y.; Zhu, J.; Lu, Q.; Cryle, M.J.; Zhang, Y.; Yan, F. Structural diversity, biosynthesis, and biological functions of lipopeptides from Streptomyces. Nat. Prod. Rep., 2022, 40(3), 557-594.
[PMID: 36484454]
[7]
McLellan, R.M.; Cameron, R.C.; Nicholson, M.J.; Parker, E.J. Aminoacylation of indole diterpenes by cluster-specific monomodular NRPS-like enzymes. Org. Lett., 2022, 24(12), 2332-2337.
[http://dx.doi.org/10.1021/acs.orglett.2c00473] [PMID: 35315670]
[8]
Reimer, J.M.; Haque, A.S.; Tarry, M.J.; Schmeing, T.M. Piecing together nonribosomal peptide synthesis. Curr. Opin. Struct. Biol., 2018, 49, 104-113.
[http://dx.doi.org/10.1016/j.sbi.2018.01.011] [PMID: 29444491]
[9]
Stevenson, L.J.; Owen, J.G.; Ackerley, D.F. Metagenome driven discovery of nonribosomal peptides. ACS Chem. Biol., 2019, 14(10), 2115-2126.
[PMID: 31508935]
[10]
Vassaux, A.; Meunier, L.; Vandenbol, M.; Baurain, D.; Fickers, P.; Jacques, P.; Leclère, V. Nonribosomal peptides in fungal cell factories: From genome mining to optimized heterologous production. Biotechnol. Adv., 2019, 37(8), 107449.
[http://dx.doi.org/10.1016/j.biotechadv.2019.107449] [PMID: 31518630]
[11]
Behsaz, B.; Bode, E.; Gurevich, A.; Shi, Y.N.; Grundmann, F.; Acharya, D.; Caraballo-Rodríguez, A.M.; Bouslimani, A.; Panitchpakdi, M.; Linck, A.; Guan, C.; Oh, J.; Dorrestein, P.C.; Bode, H.B.; Pevzner, P.A.; Mohimani, H. Integrating genomics and metabolomics for scalable non-ribosomal peptide discovery. Nat. Commun., 2021, 12(1), 3225.
[http://dx.doi.org/10.1038/s41467-021-23502-4] [PMID: 34050176]
[12]
Konanov, D.N.; Krivonos, D.V.; Ilina, E.N.; Babenko, V.V. BioCAT: Search for biosynthetic gene clusters producing nonribosomal peptides with known structure. Comput. Struct. Biotechnol. J., 2022, 20, 1218-1226.
[http://dx.doi.org/10.1016/j.csbj.2022.02.013] [PMID: 35317229]
[13]
Camus, A.; Truong, G.; Mittl, P.R.E.; Markert, G.; Hilvert, D. Reprogramming nonribosomal peptide synthetases for site-specific insertion of α-hydroxy acids. J. Am. Chem. Soc., 2022, 144(38), 17567-17575.
[http://dx.doi.org/10.1021/jacs.2c07013] [PMID: 36070491]
[14]
Alanjary, M.; Cano-Prieto, C.; Gross, H.; Medema, M.H. Computer-aided re-engineering of nonribosomal peptide and polyketide biosynthetic assembly lines. Nat. Prod. Rep., 2019, 36(9), 1249-1261.
[http://dx.doi.org/10.1039/C9NP00021F] [PMID: 31259995]
[15]
Bonhomme, S.; Dessen, A.; Macheboeuf, P. The inherent flexibility of type I non-ribosomal peptide synthetase multienzymes drives their catalytic activities. Open Biol., 2021, 11(5), 200386.
[http://dx.doi.org/10.1098/rsob.200386] [PMID: 34034506]
[16]
Jaremko, M.J.; Davis, T.D.; Corpuz, J.C.; Burkart, M.D. Type II non-ribosomal peptide synthetase proteins: structure, mechanism, and protein–protein interactions. Nat. Prod. Rep., 2020, 37(3), 355-379.
[http://dx.doi.org/10.1039/C9NP00047J] [PMID: 31593192]
[17]
Condurso, H.L.; Bruner, S.D. Structure and noncanonical chemistry of nonribosomal peptide biosynthetic machinery. Nat. Prod. Rep., 2012, 29(10), 1099-1110.
[http://dx.doi.org/10.1039/c2np20023f] [PMID: 22729219]
[18]
Koglin, A.; Mofid, M.R.; Löhr, F.; Schäfer, B.; Rogov, V.V.; Blum, M.M.; Mittag, T.; Marahiel, M.A.; Bernhard, F.; Dötsch, V. Conformational switches modulate protein interactions in peptide antibiotic synthetases. Science, 2006, 312(5771), 273-276.
[http://dx.doi.org/10.1126/science.1122928] [PMID: 16614225]
[19]
Deshpande, S.; Altermann, E.; Sarojini, V.; Lott, J.S.; Lee, T.V. Structural characterization of a PCP–R didomain from an archaeal nonribosomal peptide synthetase reveals novel interdomain interactions. J. Biol. Chem., 2021, 296, 100432.
[http://dx.doi.org/10.1016/j.jbc.2021.100432] [PMID: 33610550]
[20]
Walsh, C.T. Insights into the chemical logic and enzymatic machinery of NRPS assembly lines. Nat. Prod. Rep., 2016, 33(2), 127-135.
[http://dx.doi.org/10.1039/C5NP00035A] [PMID: 26175103]
[21]
Bozhüyük, K.A.J.; Micklefield, J.; Wilkinson, B. Engineering enzymatic assembly lines to produce new antibiotics. Curr. Opin. Microbiol., 2019, 51, 88-96.
[http://dx.doi.org/10.1016/j.mib.2019.10.007] [PMID: 31743841]
[22]
Walsh, C.T.; O’Brien, R.V.; Khosla, C. Nonproteinogenic amino acid building blocks for nonribosomal peptide and hybrid polyketide scaffolds. Angew. Chem. Int. Ed., 2013, 52(28), 7098-7124.
[http://dx.doi.org/10.1002/anie.201208344] [PMID: 23729217]
[23]
Okamoto, T.; Yamanaka, K.; Hamano, Y.; Nagano, S.; Hino, T. Crystal structure of the adenylation domain from an ε-poly-l-lysine synthetase provides molecular mechanism for substrate specificity. Biochem. Biophys. Res. Commun., 2022, 596, 43-48.
[http://dx.doi.org/10.1016/j.bbrc.2022.01.053] [PMID: 35108653]
[24]
Frueh, D.P.; Arthanari, H.; Koglin, A.; Vosburg, D.A.; Bennett, A.E.; Walsh, C.T.; Wagner, G. Dynamic thiolation–thioesterase structure of a non-ribosomal peptide synthetase. Nature, 2008, 454(7206), 903-906.
[http://dx.doi.org/10.1038/nature07162] [PMID: 18704088]
[25]
Weber, T.; Baumgartner, R.; Renner, C.; Marahiel, M.A.; Holak, T.A. Solution structure of PCP, a prototype for the peptidyl carrier domains of modular peptide synthetases. Structure, 2000, 8(4), 407-418.
[26]
Mitchell, C.A.; Shi, C.; Aldrich, C.C.; Gulick, A.M. Structure of PA1221, a nonribosomal peptide synthetase containing adenylation and peptidyl carrier protein domains. Biochemistry, 2012, 51(15), 3252-3263.
[http://dx.doi.org/10.1021/bi300112e] [PMID: 22452656]
[27]
Lundy, T.A.; Mori, S.; Thamban Chandrika, N.; Garneau-Tsodikova, S. Characterization of a unique interrupted adenylation domain that can catalyze three reactions. ACS Chem. Biol., 2020, 15(1), 282-289.
[http://dx.doi.org/10.1021/acschembio.9b00929] [PMID: 31887013]
[28]
Mori, S.; Garzan, A.; Tsodikov, O.V.; Garneau-Tsodikova, S. Deciphering Nature’s intricate way of N, S -Dimethylating L -Cysteine: Sequential action of two bifunctional adenylation domains. Biochemistry, 2017, 56(46), 6087-6097.
[http://dx.doi.org/10.1021/acs.biochem.7b00980] [PMID: 29112395]
[29]
Rouhiainen, L.; Paulin, L.; Suomalainen, S.; Hyytiäinen, H.; Buikema, W.; Haselkorn, R.; Sivonen, K. Genes encoding synthetases of cyclic depsipeptides, anabaenopeptilides, in Anabaena strain 90. Mol. Microbiol., 2000, 37(1), 156-167.
[http://dx.doi.org/10.1046/j.1365-2958.2000.01982.x] [PMID: 10931313]
[30]
Zhong, L.; Diao, X.; Zhang, N.; Li, F.; Zhou, H.; Chen, H.; Bai, X.; Ren, X.; Zhang, Y.; Wu, D.; Bian, X. Engineering and elucidation of the lipoinitiation process in nonribosomal peptide biosynthesis. Nat. Commun., 2021, 12(1), 296.
[http://dx.doi.org/10.1038/s41467-020-20548-8] [PMID: 33436600]
[31]
Wu, C.; van der Donk, W.A. Engineering of new-to-nature ribosomally synthesized and post-translationally modified peptide natural products. Curr. Opin. Biotechnol., 2021, 69, 221-231.
[http://dx.doi.org/10.1016/j.copbio.2020.12.022] [PMID: 33556835]
[32]
Bhushan, A.; Egli, P.J.; Peters, E.E.; Freeman, M.F.; Piel, J. Genome mining- and synthetic biology-enabled production of hypermodified peptides. Nat. Chem., 2019, 11(10), 931-939.
[http://dx.doi.org/10.1038/s41557-019-0323-9] [PMID: 31501509]
[33]
Wu, Z.; Li, Y.; Zhang, L.; Ding, Z.; Shi, G. Microbial production of small peptide: Pathway engineering and synthetic biology. Microb. Biotechnol., 2021, 14(6), 2257-2278.
[http://dx.doi.org/10.1111/1751-7915.13743] [PMID: 33459516]
[34]
Hara, R.; Hirai, K.; Suzuki, S.; Kino, K. A chemoenzymatic process for amide bond formation by an adenylating enzyme-mediated mechanism. Sci. Rep., 2018, 8(1), 2950.
[http://dx.doi.org/10.1038/s41598-018-21408-8] [PMID: 29440726]
[35]
Abe, T.; Kobayashi, K.; Kawamura, S.; Sakaguchi, T.; Shiiba, K.; Kobayashi, M. Dipeptide synthesis by internal adenylation domains of a multidomain enzyme involved in nonribosomal peptide synthesis. J. Gen. Appl. Microbiol., 2019, 65(1), 1-10.
[http://dx.doi.org/10.2323/jgam.2018.03.001] [PMID: 29899192]
[36]
Kano, S.; Suzuki, S.; Hara, R.; Kino, K. Synthesis of D -amino acid-containing dipeptides using the adenylation domains of nonribosomal peptide synthetase. Appl. Environ. Microbiol., 2019, 85(13), e00120-e19.
[http://dx.doi.org/10.1128/AEM.00120-19] [PMID: 31003981]
[37]
Villiers, B.; Hollfelder, F. Directed evolution of a gatekeeper domain in nonribosomal peptide synthesis. Chem. Biol., 2011, 18(10), 1290-1299.
[http://dx.doi.org/10.1016/j.chembiol.2011.06.014] [PMID: 22035798]
[38]
Wu, Z.; Li, Y.; Fang, Y.; Zhang, J.; Yang, T.; Zhu, H.; Tao, G.; Ding, Z.; Zhang, L.; Shi, G. Adenylation domains of nonribosomal peptide synthetase: A potential biocatalyst for synthesis of dipeptides and their derivatives. Enzyme Microb. Technol., 2022, 160, 110089.
[http://dx.doi.org/10.1016/j.enzmictec.2022.110089] [PMID: 35777194]
[39]
Calcott, M.J.; Owen, J.G.; Ackerley, D.F. Efficient rational modification of non-ribosomal peptides by adenylation domain substitution. Nat. Commun., 2020, 11(1), 4554.
[http://dx.doi.org/10.1038/s41467-020-18365-0] [PMID: 32917865]
[40]
Zhang, J.M.; Wang, H.H.; Liu, X.; Hu, C.H.; Zou, Y. Heterologous and engineered biosynthesis of nematocidal polyketide–nonribosomal peptide hybrid macrolactone from extreme thermophilic fungi. J. Am. Chem. Soc., 2020, 142(4), 1957-1965.
[http://dx.doi.org/10.1021/jacs.9b11410] [PMID: 31904941]
[41]
Tietze, A.; Shi, Y.N.; Kronenwerth, M.; Bode, H.B. Nonribosomal peptides produced by minimal and engineered synthetases with terminal reductase domains. ChemBioChem, 2020, 21(19), 2750-2754.
[http://dx.doi.org/10.1002/cbic.202000176] [PMID: 32378773]
[42]
Brown, A.S.; Calcott, M.J.; Owen, J.G.; Ackerley, D.F. Structural, functional and evolutionary perspectives on effective re-engineering of non-ribosomal peptide synthetase assembly lines. Nat. Prod. Rep., 2018, 35(11), 1210-1228.
[http://dx.doi.org/10.1039/C8NP00036K] [PMID: 30069573]
[43]
Barajas, J.F.; Phelan, R.M.; Schaub, A.J.; Kliewer, J.T.; Kelly, P.J.; Jackson, D.R.; Luo, R.; Keasling, J.D.; Tsai, S.C. Comprehensive structural and biochemical analysis of the terminal myxalamid reductase domain for the engineered production of primary alcohols. Chem. Biol., 2015, 22(8), 1018-1029.
[http://dx.doi.org/10.1016/j.chembiol.2015.06.022] [PMID: 26235055]
[44]
Hara, R.; Suzuki, R.; Kino, K. Hydroxamate-based colorimetric assay to assess amide bond formation by adenylation domain of nonribosomal peptide synthetases. Anal. Biochem., 2015, 477, 89-91.
[http://dx.doi.org/10.1016/j.ab.2015.01.006] [PMID: 25615416]
[45]
Karakama, S.; Suzuki, S.; Kino, K. One-pot synthesis of 2,5-diketopiperazine with high titer and versatility using adenylation enzyme. Appl. Microbiol. Biotechnol., 2022, 106(12), 4469-4479.
[http://dx.doi.org/10.1007/s00253-022-12004-y] [PMID: 35687158]
[46]
Niquille, D.L.; Hansen, D.A.; Mori, T.; Fercher, D.; Kries, H.; Hilvert, D. Nonribosomal biosynthesis of backbone-modified peptides. Nat. Chem., 2018, 10(3), 282-287.
[http://dx.doi.org/10.1038/nchem.2891] [PMID: 29461527]
[47]
Miyanaga, A.; Kudo, F.; Eguchi, T. Mechanisms of β-amino acid incorporation in polyketide macrolactam biosynthesis. Curr. Opin. Chem. Biol., 2016, 35, 58-64.
[http://dx.doi.org/10.1016/j.cbpa.2016.08.030] [PMID: 27619002]
[48]
Choi, S.K.; Park, S.Y.; Kim, R.; Lee, C.H.; Kim, J.F.; Park, S.H. Identification and functional analysis of the fusaricidin biosynthetic gene of Paenibacillus polymyxa E681. Biochem. Biophys. Res. Commun., 2008, 365(1), 89-95.
[http://dx.doi.org/10.1016/j.bbrc.2007.10.147] [PMID: 17980146]
[49]
Li, J.; Jensen, S.E. Nonribosomal biosynthesis of fusaricidins by Paenibacillus polymyxa PKB1 involves direct activation of a D-amino acid. Chem. Biol., 2008, 15(2), 118-127.
[http://dx.doi.org/10.1016/j.chembiol.2007.12.014] [PMID: 18291316]
[50]
Han, J.W.; Kim, E.Y.; Lee, J.M.; Kim, Y.S.; Bang, E.; Kim, B.S. Site-directed modification of the adenylation domain of the fusaricidin nonribosomal peptide synthetase for enhanced production of fusaricidin analogs. Biotechnol. Lett., 2012, 34(7), 1327-1334.
[http://dx.doi.org/10.1007/s10529-012-0913-8] [PMID: 22450515]
[51]
Kim, E.; Shin, Y.H.; Kim, T.H.; Byun, W.S.; Cui, J.; Du, Y.E.; Lim, H.J.; Song, M.C.; Kwon, A.S.; Kang, S.H.; Shin, J.; Lee, S.K.; Jang, J.; Oh, D.C.; Yoon, Y.J. Characterization of the Ohmyungsamycin biosynthetic pathway and generation of derivatives with improved antituberculosis activity. Biomolecules, 2019, 9(11), 672.
[http://dx.doi.org/10.3390/biom9110672] [PMID: 31671649]
[52]
Byun, W.S.; Kim, S.; Shin, Y.H.; Kim, W.K.; Oh, D.C.; Lee, S.K. Antitumor activity of ohmyungsamycin a through the regulation of the Skp2-p27 axis and MCM4 in human colorectal cancer cells. J. Nat. Prod., 2020, 83(1), 118-126.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00918] [PMID: 31894983]
[53]
Stachelhaus, T.; Mootz, H.D.; Marahiel, M.A. The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem. Biol., 1999, 6(8), 493-505.
[http://dx.doi.org/10.1016/S1074-5521(99)80082-9] [PMID: 10421756]
[54]
Kim, E.; Du, Y.E.; Ban, Y.H.; Shin, Y.H.; Oh, D.C.; Yoon, Y.J. Enhanced Ohmyungsamycin A production via adenylation domain engineering and optimization of culture conditions. Front. Microbiol., 2021, 12, 626881.
[http://dx.doi.org/10.3389/fmicb.2021.626881] [PMID: 33679647]
[55]
Xu, F.; Butler, R.; May, K.; Rexhepaj, M.; Yu, D.; Zi, J.; Chen, Y.; Liang, Y.; Zeng, J.; Hevel, J.; Zhan, J. Modified substrate specificity of a methyltransferase domain by protein insertion into an adenylation domain of the bassianolide synthetase. J. Biol. Eng., 2019, 13(1), 65.
[http://dx.doi.org/10.1186/s13036-019-0195-y] [PMID: 31388353]
[56]
Tippelt, A.; Nett, M. Saccharomyces cerevisiae as host for the recombinant production of polyketides and nonribosomal peptides. Microb. Cell Fact., 2021, 20(1), 161.
[http://dx.doi.org/10.1186/s12934-021-01650-y] [PMID: 34412657]
[57]
Zhang, L.; Wang, C.; Chen, K.; Zhong, W.; Xu, Y.; Molnár, I. Engineering the biosynthesis of fungal nonribosomal peptides. Nat. Prod. Rep., 2023, 40(1), 62-88.
[http://dx.doi.org/10.1039/d2np00036a] [PMID: 35796260]
[58]
Kalkreuter, E.; Williams, G.J. Engineering enzymatic assembly lines for the production of new antimicrobials. Curr. Opin. Microbiol., 2018, 45, 140-148.
[http://dx.doi.org/10.1016/j.mib.2018.04.005] [PMID: 29733997]
[59]
Katsuyama, Y.; Miyanaga, A. Recent advances in the structural biology of modular polyketide synthases and nonribosomal peptide synthetases. Curr. Opin. Chem. Biol., 2022, 71, 102223.
[http://dx.doi.org/10.1016/j.cbpa.2022.102223] [PMID: 36265331]
[60]
Reimer, J.M.; Eivaskhani, M.; Harb, I.; Guarné, A.; Weigt, M.; Schmeing, T.M. Structures of a dimodular nonribosomal peptide synthetase reveal conformational flexibility. Science, 2019, 366(6466), eaaw4388.
[http://dx.doi.org/10.1126/science.aaw4388] [PMID: 31699907]
[61]
Shelton, C.L.; Meneely, K.M.; Ronnebaum, T.A.; Chilton, A.S.; Riley, A.P.; Prisinzano, T.E.; Lamb, A.L. Rational inhibitor design for Pseudomonas aeruginosa salicylate adenylation enzyme PchD. J. Biol. Inorg. Chem., 2022, 27(6), 541-551.
[62]
Bloudoff, K.; Fage, C.D.; Marahiel, M.A.; Schmeing, T.M. Structural and mutational analysis of the nonribosomal peptide synthetase heterocyclization domain provides insight into catalysis. Proc. Natl. Acad. Sci. USA, 2017, 114(1), 95-100.
[http://dx.doi.org/10.1073/pnas.1614191114] [PMID: 27994138]
[63]
Chu Yuan Kee, M.J.; Bharath, S.R.; Wee, S.; Bowler, M.W.; Gunaratne, J.; Pan, S.; Zhang, L.; Song, H. Structural insights into the substrate-bound condensation domains of non-ribosomal peptide synthetase AmbB. Sci. Rep., 2022, 12(1), 5353.
[http://dx.doi.org/10.1038/s41598-022-09188-8] [PMID: 35354859]
[64]
Kaniusaite, M.; Tailhades, J.; Marschall, E.A.; Goode, R.J.A.; Schittenhelm, R.B.; Cryle, M.J. A proof-reading mechanism for non-proteinogenic amino acid incorporation into glycopeptide antibiotics. Chem. Sci., 2019, 10(41), 9466-9482.
[http://dx.doi.org/10.1039/C9SC03678D] [PMID: 32055321]
[65]
Leaf-nosed bat, Encyclopædia Britannica; Encyclopædia Britannica Online, 2009.
[66]
Cook, T.B.; Jacobson, T.B.; Venkataraman, M.V.; Hofstetter, H.; Amador-Noguez, D.; Thomas, M.G.; Pfleger, B.F. Stepwise genetic engineering of Pseudomonas putida enables robust heterologous production of prodigiosin and glidobactin A. Metab. Eng., 2021, 67, 112-124.
[http://dx.doi.org/10.1016/j.ymben.2021.06.004] [PMID: 34175462]
[67]
Pourmasoumi, F.; De, S.; Peng, H.; Trottmann, F.; Hertweck, C.; Kries, H. Proof-reading thioesterase boosts activity of engineered nonribosomal peptide synthetase. ACS Chem. Biol., 2022, 17(9), 2382-2388.
[http://dx.doi.org/10.1021/acschembio.2c00341] [PMID: 36044980]
[68]
Kegler, C.; Bode, H.B. Artificial splitting of a non‐ribosomal peptide synthetase by inserting natural docking domains. Angew. Chem. Int. Ed., 2020, 59(32), 13463-13467.
[http://dx.doi.org/10.1002/anie.201915989] [PMID: 32329545]
[69]
Bozhueyuek, K.A.J.; Watzel, J.; Abbood, N.; Bode, H.B. Synthetic zippers as an enabling tool for engineering of non‐ribosomal peptide synthetases*. Angew. Chem. Int. Ed., 2021, 60(32), 17531-17538.
[http://dx.doi.org/10.1002/anie.202102859] [PMID: 34015175]
[70]
Kramer, L.; Le, X.; Hankore, E.D.; Wilson, M.A.; Guo, J.; Niu, W. Engineering and characterization of hybrid carboxylic acid reductases. J. Biotechnol., 2019, 304, 52-56.
[http://dx.doi.org/10.1016/j.jbiotec.2019.08.008] [PMID: 31430496]
[71]
Hühner, E.; Öqvist, K.; Li, S.M. Design of α-Keto carboxylic acid dimers by domain recombination of nonribosomal peptide synthetase (NRPS)-like enzymes. Org. Lett., 2019, 21(2), 498-502.
[http://dx.doi.org/10.1021/acs.orglett.8b03793] [PMID: 30601016]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy