Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

The Role of Non-coding RNAs in Alzheimer’s Disease: Pathogenesis, Novel Biomarkers, and Potential Therapeutic Targets

Author(s): Othman Saleh*, Khaled Albakri, Abdalrahmn Altiti, Iser Abutair, Suhaib Shalan, Omar Bassam Mohd, Ahmed Negida, Gohar Mushtaq and Mohammad A. Kamal

Volume 23, Issue 6, 2024

Published on: 13 June, 2023

Page: [731 - 745] Pages: 15

DOI: 10.2174/1871527322666230519113201

Price: $65

Open Access Journals Promotions 2
Abstract

Long non-coding RNAs (IncRNAs) are regulatory RNA transcripts that have recently been associated with the onset of many neurodegenerative illnesses, including Alzheimer's disease (AD). Several IncRNAs have been found to be associated with AD pathophysiology, each with a distinct mechanism. In this review, we focused on the role of IncRNAs in the pathogenesis of AD and their potential as novel biomarkers and therapeutic targets. Searching for relevant articles was done using the PubMed and Cochrane library databases. Studies had to be published in full text in English in order to be considered. Some IncRNAs were found to be upregulated, while others were downregulated. Dysregulation of IncRNAs expression may contribute to AD pathogenesis. Their effects manifest as the synthesis of beta-amyloid (Aβ) plaques increases, thereby altering neuronal plasticity, inducing inflammation, and promoting apoptosis. Despite the need for more investigations, IncRNAs could potentially increase the sensitivity of early detection of AD. Until now, there has been no effective treatment for AD. Hence, InRNAs are promising molecules and may serve as potential therapeutic targets. Although several dysregulated AD-associated lncRNAs have been discovered, the functional characterization of most lncRNAs is still lacking.

Keywords: Beta-amyloid, Alzheimer's disease, lncRNA, pathogenesis, biomarkers, AD pathophysiology.

Graphical Abstract
[1]
Zhang XX, Tian Y, Wang ZT, Ma YH, Tan L, Yu JT. The epidemiology of Alzheimer’s Disease modifiable risk factors and prevention. J Prev Alzheimers Dis 2021; 8(3): 313-21.
[PMID: 34101789]
[2]
Liu T, Huang Y, Chen J, et al. Attenuated ability of BACE1 to cleave the amyloid precursor protein via silencing long noncoding RNA BACE1-AS expression. Mol Med Rep 2014; 10(3): 1275-81.
[http://dx.doi.org/10.3892/mmr.2014.2351] [PMID: 24970022]
[3]
A Armstrong R. Risk factors for Alzheimer’s disease. Folia Neuropathol 2019; 57(2): 87-105.
[http://dx.doi.org/10.5114/fn.2019.85929] [PMID: 31556570]
[4]
Silva MVF, Loures CMG, Alves LCV, de Souza LC, Borges KBG, Carvalho MG. Alzheimer’s disease: Risk factors and potentially protective measures. J Biomed Sci 2019; 26(1): 33.
[http://dx.doi.org/10.1186/s12929-019-0524-y] [PMID: 31072403]
[5]
2022 Alzheimer’s disease facts and figures. Alzheimers Dement 2022; 18(4): 700-89.
[http://dx.doi.org/10.1002/alz.12638] [PMID: 35289055]
[6]
Li D, Zhang J, Li X, Chen Y, Yu F, Liu Q. Insights into lncRNAs in Alzheimer’s disease mechanisms. RNA Biol 2021; 18(7): 1037-47.
[http://dx.doi.org/10.1080/15476286.2020.1788848] [PMID: 32605500]
[7]
Cohen AD, Landau SM, Snitz BE, Klunk WE, Blennow K, Zetterberg H. Fluid and PET biomarkers for amyloid pathology in Alzheimer’s disease. Mol Cell Neurosci 2019; 97: 3-17.
[http://dx.doi.org/10.1016/j.mcn.2018.12.004] [PMID: 30537535]
[8]
Klyucherev TO, Olszewski P, Shalimova AA, et al. Advances in the development of new biomarkers for Alzheimer’s disease. Transl Neurodegener 2022; 11(1): 25.
[http://dx.doi.org/10.1186/s40035-022-00296-z] [PMID: 35449079]
[9]
Liu Y, Chen X, Che Y, et al. LncRNAs as the regulators of brain function and therapeutic targets for Alzheimer’s Disease. Aging Dis 2022; 13(3): 837-51.
[http://dx.doi.org/10.14336/AD.2021.1119] [PMID: 35656102]
[10]
Riva P, Ratti A, Venturin M. The long non-coding RNAs in neurodegenerative diseases: Novel mechanisms of pathogenesis. Curr Alzheimer Res 2016; 13(11): 1219-31.
[http://dx.doi.org/10.2174/1567205013666160622112234] [PMID: 27338628]
[11]
Jana P, Petr A, Michal B, et al. Epidemiological of and risk factors for Alzheimer's disease: A review Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2012; 156(2): 108-14.
[12]
Monty L, Dafydd GL, Xunming J, Marcela PV, Daqing M. Neuroinflammation: The role and consequences. Neurosci Res 2014; 79: 1-12.
[13]
Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci 2011; 12(12): 723-38.
[http://dx.doi.org/10.1038/nrn3114] [PMID: 22048062]
[14]
Braak H, Braak E. Development of Alzheimer-related neurofibrillary changes in the neocortex inversely recapitulates cortical myelogenesis. Acta Neuropathol 1996; 92(2): 197-201.
[http://dx.doi.org/10.1007/s004010050508] [PMID: 8841666]
[15]
Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991; 82(4): 239-59.
[http://dx.doi.org/10.1007/BF00308809] [PMID: 1759558]
[16]
Arlt S, Buchert R, Spies L, Eichenlaub M, Lehmbeck JT, Jahn H. Association between fully automated MRI-based volumetry of different brain regions and neuropsychological test performance in patients with amnestic mild cognitive impairment and Alzheimer’s disease. Eur Arch Psychiatry Clin Neurosci 2013; 263(4): 335-44.
[http://dx.doi.org/10.1007/s00406-012-0350-7] [PMID: 22940716]
[17]
Miller GA. The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychol Rev 1994; 101(2): 343-52.
[http://dx.doi.org/10.1037/0033-295X.101.2.343] [PMID: 8022966]
[18]
Verma M, Howard RJ. Semantic memory and language dysfunction in early Alzheimer’s disease: A review. Int J Geriatr Psychiatry 2012; 27(12): 1209-17.
[http://dx.doi.org/10.1002/gps.3766] [PMID: 22298328]
[19]
Morris JC. Clinical dementia rating: A reliable and valid diagnostic and staging measure for dementia of the Alzheimer type. Int Psychogeriatr 1997; 9(S1): 173-6.
[http://dx.doi.org/10.1017/S1041610297004870] [PMID: 9447441]
[20]
Moms JC, Heyman A, Mohs RC, et al. The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part I. Clinical and neuropsychological assesment of Alzheimer’s disease. Neurology 1989; 39(9): 1159-65.
[http://dx.doi.org/10.1212/WNL.39.9.1159] [PMID: 2771064]
[21]
Pepeu G, Giovannini MG. Cholinesterase inhibitors and memory. Chem Biol Interact 2010; 187(1-3): 403-8.
[http://dx.doi.org/10.1016/j.cbi.2009.11.018] [PMID: 19941841]
[22]
Pepeu G, Giovannini MG, Bracco L. Effect of cholinesterase inhibitors on attention. Chem Biol Interact 2013; 203(1): 361-4.
[http://dx.doi.org/10.1016/j.cbi.2012.09.016] [PMID: 23047023]
[23]
Peters JM, Hummel T, Kratzsch T, Lötsch J, Skarke C, Frölich L. Olfactory function in mild cognitive impairment and Alzheimer’s disease: an investigation using psychophysical and electrophysiological techniques. Am J Psychiatry 2003; 160(11): 1995-2002.
[http://dx.doi.org/10.1176/appi.ajp.160.11.1995] [PMID: 14594747]
[24]
Gómez-Isla T, Hollister R, West H, et al. Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol 1997; 41(1): 17-24.
[http://dx.doi.org/10.1002/ana.410410106] [PMID: 9005861]
[25]
Galton CJ, Patterson K, Xuereb JH, Hodges JR. Atypical and typical presentations of Alzheimer’s disease: A clinical, neuropsychological, neuroimaging and pathological study of 13 cases. Brain 2000; 123(3): 484-98.
[http://dx.doi.org/10.1093/brain/123.3.484] [PMID: 10686172]
[26]
Taylor KI, Probst A. Anatomic localization of the transentorhinal region of the perirhinal cortex. Neurobiol Aging 2008; 29(10): 1591-6.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.03.024] [PMID: 17478012]
[27]
Delacourte A, David JP, Sergeant N, et al. The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer’s disease. Neurology 1999; 52(6): 1158-65.
[http://dx.doi.org/10.1212/WNL.52.6.1158] [PMID: 10214737]
[28]
van Hoesen GW, Hyman BT, Damasio AR. Entorhinal cortex pathology in Alzheimer’s disease. Hippocampus 1991; 1(1): 1-8.
[http://dx.doi.org/10.1002/hipo.450010102] [PMID: 1669339]
[29]
Fox N, Warrington EK, Seiffer AL, Agnew SK, Rossor MN. Presymptomatic cognitive deficits in individuals at risk of familial Alzheimer’s disease. A longitudinal prospective study. Brain 1998; 121(9): 1631-9.
[http://dx.doi.org/10.1093/brain/121.9.1631] [PMID: 9762953]
[30]
Amieva H, Le Goff M, Millet X, et al. Prodromal Alzheimer’s disease: Successive emergence of the clinical symptoms. Ann Neurol 2008; 64(5): 492-8.
[http://dx.doi.org/10.1002/ana.21509] [PMID: 19067364]
[31]
Tan J, Evin G. β-Site APP-cleaving enzyme 1 trafficking and Alzheimer’s disease pathogenesis. J Neurochem 2012; 120(6): no.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07623.x] [PMID: 22171895]
[32]
Ohsawa I, Takamura C, Morimoto T, Ishiguro M, Kohsaka S. Amino-terminal region of secreted form of amyloid precursor protein stimulates proliferation of neural stem cells. Eur J Neurosci 1999; 11(6): 1907-13.
[http://dx.doi.org/10.1046/j.1460-9568.1999.00601.x]
[33]
Stockley JH, O’Neill C. Understanding BACE1: Essential protease for amyloid-β production in Alzheimer’s disease. Cell Mol Life Sci 2008; 65(20): 3265-89.
[http://dx.doi.org/10.1007/s00018-008-8271-3] [PMID: 18695942]
[34]
Damian HRM, Catriona AM, Konrad B, Colin LM, Geneviève E. increased expression of the amyloid precursor beta-secretase in Alzheimer’s disease. Ann Neurol 2002; 51(6): 783-6.
[35]
Anatoly N, McLaughlin T, O’Leary D, Tessier-Lavigne M. APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 2009; 457(7232): 981-9.
[36]
Sun AP, Dale E Bredesen GMS, Edward HK, Dong Y. Mechanism of cytotoxicity mediated by the C31 fragment of the amyloid precursor protein. Biochem Biophys Res Commun 2009; 388(2): 450-5.
[37]
Zhao G, Cui M-Z, Mao G, et al. gamma-Cleavage is dependent on zeta-cleavage during the proteolytic processing of amyloid precursor protein within its transmembrane domain. J Biol Chem 2005; 280(45): 37689-97.
[http://dx.doi.org/10.1074/jbc.M507993200]
[38]
Dragana STR, Katleen D, Ilse D, et al. Rer1p competes with APH-1 for binding to nicastrin and regulates gamma-secretase complex assembly in the early secretory pathway. J Cell Biol 2007; 176(5): 629-40.
[39]
Obulesu M, Somashekhar R, Venu R. Genetics of Alzheimer’s disease: An insight into presenilins and apolipoprotein E instigated neurodegeneration. Int J Neurosci 2011; 121(5): 229-36.
[http://dx.doi.org/10.3109/00207454.2010.551432] [PMID: 21545304]
[40]
Alessio V, Michael SP, Emma HG, et al. Calsyntenin-1 mediates axonal transport of the amyloid precursor protein and regulates Aβ production. Hum Mol Genet 2012; 21(13): 2845-54.
[41]
Anita S, Yung-Hui K, Silke H. APP anterograde transport requires Rab3A GTPase activity for assembly of the transport vesicle. J Neurosci 2009; 29(46): 14534-44.
[42]
Peer-Hendrik K, Huanhuan W, Bastian D. ADAM10 is the physiologically relevant, constitutive alpha-secretase of the amyloid precursor protein in primary neurons. EMBO J 2010; 29(17): 3020-32.
[43]
Peron R, Vatanabe I, Manzine P, Camins A, Cominetti M. Alpha-Secretase ADAM10 Regulation: Insights into Alzheimer’s Disease Treatment. Pharmaceuticals 2018; 11(1): 12.
[http://dx.doi.org/10.3390/ph11010012] [PMID: 29382156]
[44]
Marcia LM, Martha B, Qian L. The ADAM10 prodomain is a specific inhibitor of ADAM10 proteolytic activity and inhibits cellular shedding events. J Biol Chem 2007; 282(49): 35712-21.
[45]
Spies PE, Slats D, Sjögren JMC, et al. The cerebrospinal fluid amyloid beta42/40 ratio in the differentiation of Alzheimer’s disease from non-Alzheimer’s dementia. Curr Alzheimer Res 2010; 7(5): 470-6.
[46]
Ralf PE, Katharina T, Raik R, et al. Mechanism of amyloid plaque formation suggests an intracellular basis of Abeta pathogenicity. Proc Natl Acad Sci 2010; 107(5): 1942-7.
[47]
Lambert JC, Ibrahim-Verbaas CA, Harold D, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 2013; 45(12): 1452-8.
[http://dx.doi.org/10.1038/ng.2802] [PMID: 24162737]
[48]
Saunders AM, Strittmatter WJ, Schmechel D, et al. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 1993; 43(8): 1467-72.
[http://dx.doi.org/10.1212/WNL.43.8.1467] [PMID: 8350998]
[49]
Corder EH, Saunders AM, Strittmatter WJ, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993; 261(5123): 921-3.
[http://dx.doi.org/10.1126/science.8346443] [PMID: 8346443]
[50]
Farrer LA, Cupples LA, Haines JL, et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. JAMA 1997; 278(16): 1349-56.
[http://dx.doi.org/10.1001/jama.1997.03550160069041] [PMID: 9343467]
[51]
Corder EH, Saunders AM, Risch NJ, et al. Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet 1994; 7(2): 180-4.
[http://dx.doi.org/10.1038/ng0694-180] [PMID: 7920638]
[52]
Christensen DZ, Schneider-Axmann T, Lucassen PJ, Bayer TA, Wirths O. Accumulation of intraneuronal Aβ correlates with ApoE4 genotype. Acta Neuropathol 2010; 119(5): 555-66.
[http://dx.doi.org/10.1007/s00401-010-0666-1] [PMID: 20217101]
[53]
Tiraboschi P, Hansen LA, Masliah E, Alford M, Thal LJ, Corey-Bloom J. Impact of APOE genotype on neuropathologic and neurochemical markers of Alzheimer disease. Neurology 2004; 62(11): 1977-83.
[http://dx.doi.org/10.1212/01.WNL.0000128091.92139.0F] [PMID: 15184600]
[54]
Kok E, Haikonen S, Luoto T, et al. Apolipoprotein E-dependent accumulation of Alzheimer disease-related lesions begins in middle age. Ann Neurol 2009; 65(6): 650-7.
[http://dx.doi.org/10.1002/ana.21696] [PMID: 19557866]
[55]
Mishra S, Blazey TM, Holtzman DM, et al. Longitudinal brain imaging in preclinical Alzheimer disease: impact of APOE ε4 genotype. Brain 2018; 141(6): 1828-39.
[http://dx.doi.org/10.1093/brain/awy103] [PMID: 29672664]
[56]
Fitz NF, Cronican AA, Saleem M, et al. Abca1 deficiency affects Alzheimer’s disease-like phenotype in human ApoE4 but not in ApoE3-targeted replacement mice. J Neurosci 2012; 32(38): 13125-36.
[http://dx.doi.org/10.1523/JNEUROSCI.1937-12.2012] [PMID: 22993429]
[57]
Morales I, Guzmán-Martínez L, Cerda-Troncoso C, Farías GA, Maccioni RB. Neuroinflammation in the pathogenesis of Alzheimer’s disease. A rational framework for the search of novel therapeutic approaches. Front Cell Neurosci 2014; 8: 112.
[http://dx.doi.org/10.3389/fncel.2014.00112] [PMID: 24795567]
[58]
Fillit H, Ding W, Buee L, et al. Elevated circulating tumor necrosis factor levels in Alzheimer’s disease. Neurosci Lett 1991; 129(2): 318-20.
[http://dx.doi.org/10.1016/0304-3940(91)90490-K] [PMID: 1745413]
[59]
Strauss S, Bauer J, Ganter U, Jonas U, Berger M, Volk B. Detection of interleukin-6 and alpha 2-macroglobulin immunoreactivity in cortex and hippocampus of Alzheimer’s disease patients. Lab Invest 1992; 66(2): 223-30.
[PMID: 1370967]
[60]
Liu B, Hong JS. Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J Pharmacol Exp Ther 2003; 304(1): 1-7.
[http://dx.doi.org/10.1124/jpet.102.035048] [PMID: 12490568]
[61]
Nagele RG, D’Andrea MR, Lee H, Venkataraman V, Wang HY. Astrocytes accumulate Aβ42 and give rise to astrocytic amyloid plaques in Alzheimer disease brains. Brain Res 2003; 971(2): 197-209.
[http://dx.doi.org/10.1016/S0006-8993(03)02361-8] [PMID: 12706236]
[62]
Eikelenboom P, Hoozemans JJM, Veerhuis R, van Exel E, Rozemuller AJM, van Gool WA. Whether, when and how chronic inflammation increases the risk of developing late-onset Alzheimer’s disease. Alzheimers Res Ther 2012; 4(3): 15.
[http://dx.doi.org/10.1186/alzrt118] [PMID: 22647384]
[63]
Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature 2001; 409(6822): 860-921.
[http://dx.doi.org/10.1038/35057062] [PMID: 11237011]
[64]
Kapranov P, Willingham AT, Gingeras TR. Genome-wide transcription and the implications for genomic organization. Nat Rev Genet 2007; 8(6): 413-23.
[http://dx.doi.org/10.1038/nrg2083] [PMID: 17486121]
[65]
Derrien T, Johnson R, Bussotti G, et al. The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Res 2012; 22(9): 1775-89.
[http://dx.doi.org/10.1101/gr.132159.111] [PMID: 22955988]
[66]
Cabili MN, Trapnell C, Goff L, et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 2011; 25(18): 1915-27.
[http://dx.doi.org/10.1101/gad.17446611] [PMID: 21890647]
[67]
Jia H, Osak M, Bogu GK, Stanton LW, Johnson R, Lipovich L. Genome-wide computational identification and manual annotation of human long noncoding RNA genes. RNA 2010; 16(8): 1478-87.
[http://dx.doi.org/10.1261/rna.1951310] [PMID: 20587619]
[68]
Iyer MK, Niknafs YS, Malik R, et al. The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 2015; 47(3): 199-208.
[http://dx.doi.org/10.1038/ng.3192] [PMID: 25599403]
[69]
Mattioli K, Volders PJ, Gerhardinger C, et al. High-throughput functional analysis of lncRNA core promoters elucidates rules governing tissue specificity. Genome Res 2019; 29(3): 344-55.
[http://dx.doi.org/10.1101/gr.242222.118] [PMID: 30683753]
[70]
Ruiz-Orera J, Messeguer X, Subirana JA, Alba MM. Long non-coding RNAs as a source of new peptides. eLife 2014; 3: e03523.
[http://dx.doi.org/10.7554/eLife.03523] [PMID: 25233276]
[71]
Guttman M, Russell P, Ingolia NT, Weissman JS, Lander ES. Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell 2013; 154(1): 240-51.
[http://dx.doi.org/10.1016/j.cell.2013.06.009] [PMID: 23810193]
[72]
Anderson DM, Anderson KM, Chang CL, et al. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell 2015; 160(4): 595-606.
[http://dx.doi.org/10.1016/j.cell.2015.01.009] [PMID: 25640239]
[73]
Kung JTY, Colognori D, Lee JT. Long noncoding RNAs: Past, present, and future. Genetics 2013; 193(3): 651-69.
[http://dx.doi.org/10.1534/genetics.112.146704] [PMID: 23463798]
[74]
Martianov I, Ramadass A, Serra Barros A, Chow N, Akoulitchev A. Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature 2007; 445(7128): 666-70.
[http://dx.doi.org/10.1038/nature05519] [PMID: 17237763]
[75]
Khalil AM, Guttman M, Huarte M, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci 2009; 106(28): 11667-72.
[http://dx.doi.org/10.1073/pnas.0904715106] [PMID: 19571010]
[76]
Sunwoo H, Dinger ME, Wilusz JE, Amaral PP, Mattick JS, Spector DL. MEN ε/β nuclear-retained non-coding RNAs are upregulated upon muscle differentiation and are essential components of paraspeckles. Genome Res 2009; 19(3): 347-59.
[http://dx.doi.org/10.1101/gr.087775.108] [PMID: 19106332]
[77]
da Rocha ST, Boeva V, Escamilla-Del-Arenal M, et al. Jarid2 is implicated in the initial xist-induced targeting of PRC2 to the inactive X chromosome. Mol Cell 2014; 53(2): 301-16.
[http://dx.doi.org/10.1016/j.molcel.2014.01.002] [PMID: 24462204]
[78]
Prensner JR, Iyer MK, Sahu A, et al. The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat Genet 2013; 45(11): 1392-8.
[http://dx.doi.org/10.1038/ng.2771] [PMID: 24076601]
[79]
Natoli G, Andrau JC. Noncoding transcription at enhancers: General principles and functional models. Annu Rev Genet 2012; 46(1): 1-19.
[http://dx.doi.org/10.1146/annurev-genet-110711-155459] [PMID: 22905871]
[80]
Yin Y, Yan P, Lu J, et al. Opposing roles for the lncRNA haunt and its genomic locus in regulating hoxa gene activation during embryonic stem cell differentiation. Cell Stem Cell 2015; 16(5): 504-16.
[http://dx.doi.org/10.1016/j.stem.2015.03.007] [PMID: 25891907]
[81]
Yoon JH, Abdelmohsen K, Gorospe M. Posttranscriptional gene regulation by long noncoding RNA. J Mol Biol 2013; 425(19): 3723-30.
[http://dx.doi.org/10.1016/j.jmb.2012.11.024] [PMID: 23178169]
[82]
Ramos AD, Andersen RE, Liu SJ, et al. The long noncoding RNA Pnky regulates neuronal differentiation of embryonic and postnatal neural stem cells. Cell Stem Cell 2015; 16(4): 439-47.
[http://dx.doi.org/10.1016/j.stem.2015.02.007] [PMID: 25800779]
[83]
Huntzinger E, Izaurralde E. Gene silencing by microRNAs: Contributions of translational repression and mRNA decay. Nat Rev Genet 2011; 12(2): 99-110.
[http://dx.doi.org/10.1038/nrg2936] [PMID: 21245828]
[84]
Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 2010; 465(7301): 1033-8.
[http://dx.doi.org/10.1038/nature09144] [PMID: 20577206]
[85]
Zucchelli S, Fedele S, Vatta P, et al. Antisense transcription in loci associated to hereditary neurodegenerative diseases. Mol Neurobiol 2019; 56(8): 5392-415.
[http://dx.doi.org/10.1007/s12035-018-1465-2] [PMID: 30610612]
[86]
Belgard TG, Marques AC, Oliver PL, et al. A transcriptomic atlas of mouse neocortical layers. Neuron 2011; 71(4): 605-16.
[http://dx.doi.org/10.1016/j.neuron.2011.06.039] [PMID: 21867878]
[87]
Ramos AD, Diaz A, Nellore A, et al. Integration of genome-wide approaches identifies lncRNAs of adult neural stem cells and their progeny in vivo. Cell Stem Cell 2013; 12(5): 616-28.
[http://dx.doi.org/10.1016/j.stem.2013.03.003] [PMID: 23583100]
[88]
Bond AM, VanGompel MJW, Sametsky EA, et al. Balanced gene regulation by an embryonic brain ncRNA is critical for adult hippocampal GABA circuitry. Nat Neurosci 2009; 12(8): 1020-7.
[http://dx.doi.org/10.1038/nn.2371] [PMID: 19620975]
[89]
Srikantan V, Zou Z, Petrovics G, et al. PCGEM1, a prostate-specific gene, is overexpressed in prostate cancer. Proc Natl Acad Sci 2000; 97(22): 12216-21.
[http://dx.doi.org/10.1073/pnas.97.22.12216] [PMID: 11050243]
[90]
Arvanitakis Z, Shah RC, Bennett DA. Diagnosis and management of dementia: Review. JAMA 2019; 322(16): 1589-99.
[http://dx.doi.org/10.1001/jama.2019.4782] [PMID: 31638686]
[91]
Ayers D, Scerri C. Non-coding RNA influences in dementia. Noncoding RNA Res 2018; 3(4): 188-94.
[http://dx.doi.org/10.1016/j.ncrna.2018.09.002] [PMID: 30533568]
[92]
Lukiw WJ, Handley P, Wong L, Crapper McLachlan DR. BC200 RNA in normal human neocortex, non-Alzheimer dementia (NAD), and senile dementia of the Alzheimer type (AD). Neurochem Res 1992; 17(6): 591-7.
[http://dx.doi.org/10.1007/BF00968788] [PMID: 1603265]
[93]
Mus E, Hof PR, Tiedge H. Dendritic BC200 RNA in aging and in Alzheimer’s disease. Proc Natl Acad Sci 2007; 104(25): 10679-84.
[http://dx.doi.org/10.1073/pnas.0701532104] [PMID: 17553964]
[94]
Muddashetty RS, Khanam T, Kondrashov A, et al. Poly(A)-binding protein is associated with neuronal BC1 and BC200 ribonucleoprotein particles. J Mol Biol 2002; 321(3): 433-45.
[http://dx.doi.org/10.1016/S0022-2836(02)00655-1] [PMID: 12162957]
[95]
Zalfa F, Adinolfi S, Napoli I, et al. Fragile X mental retardation protein (FMRP) binds specifically to the brain cytoplasmic RNAs BC1/BC200 via a novel RNA-binding motif. J Biol Chem 2005; 280(39): 33403-10.
[http://dx.doi.org/10.1074/jbc.M504286200] [PMID: 16006558]
[96]
Duning K, Buck F, Barnekow A, Kremerskothen J. SYNCRIP, a component of dendritically localized mRNPs, binds to the translation regulator BC200 RNA. J Neurochem 2008; 105(2): 351-9.
[http://dx.doi.org/10.1111/j.1471-4159.2007.05138.x] [PMID: 18045242]
[97]
Nisticò R, Pignatelli M, Piccinin S, Mercuri NB, Collingridge G. Targeting synaptic dysfunction in Alzheimer’s disease therapy. Mol Neurobiol 2012; 46(3): 572-87.
[http://dx.doi.org/10.1007/s12035-012-8324-3] [PMID: 22914888]
[98]
Kondrashov AV, Kiefmann M, Ebnet K, Khanam T, Muddashetty RS, Brosius J. Inhibitory effect of naked neural BC1 RNA or BC200 RNA on eukaryotic in vitro translation systems is reversed by poly(A)-binding protein (PABP). J Mol Biol 2005; 353(1): 88-103.
[http://dx.doi.org/10.1016/j.jmb.2005.07.049] [PMID: 16154588]
[99]
Hardy JA, Higgins GA. Alzheimer’s disease: The amyloid cascade hypothesis. Science 1992; 256(5054): 184-5.
[http://dx.doi.org/10.1126/science.1566067] [PMID: 1566067]
[100]
Goate A. Segregation of a missense mutation in the amyloid β-protein precursor gene with familial Alzheimer’s disease. J Alzheimers Dis 2006; 9(S3): 341-7.
[http://dx.doi.org/10.3233/JAD-2006-9S338] [PMID: 16914872]
[101]
Faghihi MA, Modarresi F, Khalil AM, et al. Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase. Nat Med 2008; 14(7): 723-30.
[http://dx.doi.org/10.1038/nm1784] [PMID: 18587408]
[102]
Ravanan P, Srikumar IF, Talwar P. Autophagy: The spotlight for cellular stress responses. Life Sci 2017; 188: 53-67.
[http://dx.doi.org/10.1016/j.lfs.2017.08.029] [PMID: 28866100]
[103]
Parzych KR, Klionsky DJ. An overview of autophagy: Morphology, mechanism, and regulation. Antioxid Redox Signal 2014; 20(3): 460-73.
[http://dx.doi.org/10.1089/ars.2013.5371] [PMID: 23725295]
[104]
Yao Z, Delorme-Axford E, Backues SK, Klionsky DJ. Atg41/Icy2 regulates autophagosome formation. Autophagy 2015; 11(12): 2288-99.
[http://dx.doi.org/10.1080/15548627.2015.1107692] [PMID: 26565778]
[105]
Pierdominici M, Vomero M, Barbati C, et al. Role of autophagy in immunity and autoimmunity, with a special focus on systemic lupus erythematosus. FASEB J 2012; 26(4): 1400-12.
[http://dx.doi.org/10.1096/fj.11-194175] [PMID: 22247332]
[106]
Mialet-Perez J, Vindis C. Autophagy in health and disease: Focus on the cardiovascular system. Essays Biochem 2017; 61(6): 721-32.
[http://dx.doi.org/10.1042/EBC20170022] [PMID: 29233881]
[107]
Li Q, Liu Y, Sun M. Autophagy and Alzheimer’s Disease. Cell Mol Neurobiol 2017; 37(3): 377-88.
[http://dx.doi.org/10.1007/s10571-016-0386-8] [PMID: 27260250]
[108]
Kang MJ, Abdelmohsen K, Hutchison ER, et al. HuD regulates coding and noncoding RNA to induce APP→Aβ processing. Cell Rep 2014; 7(5): 1401-9.
[http://dx.doi.org/10.1016/j.celrep.2014.04.050] [PMID: 24857657]
[109]
Zhou Y, Ge Y, Liu Q, et al. LncRNA BACE1-AS promotes autophagy-mediated neuronal damage through The miR-214-3p/] ATG5 signalling axis in Alzheimer’s disease. Neuroscience 2021; 455: 52-64.
[http://dx.doi.org/10.1016/j.neuroscience.2020.10.028] [PMID: 33197504]
[110]
Chao MV. Neurotrophins and their receptors: A convergence point for many signalling pathways. Nat Rev Neurosci 2003; 4(4): 299-309.
[http://dx.doi.org/10.1038/nrn1078] [PMID: 12671646]
[111]
Huang EJ, Reichardt LF. Neurotrophins: Roles in neuronal development and function. Annu Rev Neurosci 2001; 24(1): 677-736.
[http://dx.doi.org/10.1146/annurev.neuro.24.1.677] [PMID: 11520916]
[112]
Patapoutian A, Reichardt LF. Trk receptors: Mediators of neurotrophin action. Curr Opin Neurobiol 2001; 11(3): 272-80.
[http://dx.doi.org/10.1016/S0959-4388(00)00208-7] [PMID: 11399424]
[113]
Poo M. Neurotrophins as synaptic modulators. Nat Rev Neurosci 2001; 2(1): 24-32.
[http://dx.doi.org/10.1038/35049004] [PMID: 11253356]
[114]
Tapia-Arancibia L, Aliaga E, Silhol M, Arancibia S. New insights into brain BDNF function in normal aging and Alzheimer disease. Brain Res Brain Res Rev 2008; 59(1): 201-20.
[http://dx.doi.org/10.1016/j.brainresrev.2008.07.007] [PMID: 18708092]
[115]
Bekinschtein P, Cammarota M, Katche C, et al. BDNF is essential to promote persistence of long-term memory storage. Proc Natl Acad Sci 2008; 105(7): 2711-6.
[http://dx.doi.org/10.1073/pnas.0711863105] [PMID: 18263738]
[116]
Yamada K, Nabeshima T. Brain-derived neurotrophic factor/TrkB signaling in memory processes. J Pharmacol Sci 2003; 91(4): 267-70.
[http://dx.doi.org/10.1254/jphs.91.267] [PMID: 12719654]
[117]
Diniz BS, Teixeira AL. Brain-derived neurotrophic factor and Alzheimer’s disease: Physiopathology and beyond. Neuromolecular Med 2011; 13(4): 217-22.
[http://dx.doi.org/10.1007/s12017-011-8154-x] [PMID: 21898045]
[118]
Poon WW, Blurton-Jones M, Tu CH, et al. β-Amyloid impairs axonal BDNF retrograde trafficking. Neurobiol Aging 2011; 32(5): 821-33.
[http://dx.doi.org/10.1016/j.neurobiolaging.2009.05.012] [PMID: 19540623]
[119]
Modarresi F, Faghihi MA, Lopez-Toledano MA, et al. Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. Nat Biotechnol 2012; 30(5): 453-9.
[http://dx.doi.org/10.1038/nbt.2158] [PMID: 22446693]
[120]
Guo CC, Jiao C, Gao ZM. Silencing of LncRNA BDNF-AS attenuates Aβ25-35-induced neurotoxicity in PC12 cells by suppressing cell apoptosis and oxidative stress. Neurol Res 2018; 40(9): 795-804.
[http://dx.doi.org/10.1080/01616412.2018.1480921] [PMID: 29902125]
[121]
Bohnsack JP, Teppen T, Kyzar EJ, Dzitoyeva S, Pandey SC. The lncRNA BDNF-AS is an epigenetic regulator in the human amygdala in early onset alcohol use disorders. Transl Psychiatry 2019; 9(1): 34.
[http://dx.doi.org/10.1038/s41398-019-0367-z] [PMID: 30728347]
[122]
Friocourt G, Parnavelas JG. Identification of Arx targets unveils new candidates for controlling cortical interneuron migration and differentiation. Front Cell Neurosci 2011; 5: 28.
[http://dx.doi.org/10.3389/fncel.2011.00028] [PMID: 22355284]
[123]
Prasad BC, Ye B, Zackhary R, Schrader K, Seydoux G, Reed RR. unc-3, a gene required for axonal guidance in Caenorhabditis elegans, encodes a member of the O/E family of transcription factors. Development 1998; 125(8): 1561-8.
[http://dx.doi.org/10.1242/dev.125.8.1561] [PMID: 9502737]
[124]
Magistri M, Velmeshev D, Makhmutova M, Faghihi MA. Transcriptomics profiling of Alzheimer’s Disease reveal neurovascular defects, altered amyloid-β homeostasis, and deregulated expression of long noncoding RNAs. J Alzheimers Dis 2015; 48(3): 647-65.
[http://dx.doi.org/10.3233/JAD-150398] [PMID: 26402107]
[125]
Gu C, Chen C, Wu R, et al. Long noncoding RNA EBF3-AS promotes neuron apoptosis in Alzheimer’s Disease. DNA Cell Biol 2018; 37(3): 220-6.
[http://dx.doi.org/10.1089/dna.2017.4012] [PMID: 29298096]
[126]
Lin LFH, Doherty DH, Lile JD, Bektesh S, Collins F. GDNF: A glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 1993; 260(5111): 1130-2.
[http://dx.doi.org/10.1126/science.8493557] [PMID: 8493557]
[127]
Airaksinen MS, Saarma M. The GDNF family: Signalling, biological functions and therapeutic value. Nat Rev Neurosci 2002; 3(5): 383-94.
[http://dx.doi.org/10.1038/nrn812] [PMID: 11988777]
[128]
Airavaara M, Pletnikova O, Doyle ME, Zhang YE, Troncoso JC, Liu QR. Identification of novel GDNF isoforms and cis-antisense GDNFOS gene and their regulation in human middle temporal gyrus of Alzheimer disease. J Biol Chem 2011; 286(52): 45093-102.
[http://dx.doi.org/10.1074/jbc.M111.310250] [PMID: 22081608]
[129]
Straten G, Eschweiler GW, Maetzler W, Laske C, Leyhe T. Glial cell-line derived neurotrophic factor (GDNF) concentrations in cerebrospinal fluid and serum of patients with early Alzheimer’s disease and normal controls. J Alzheimers Dis 2009; 18(2): 331-7.
[http://dx.doi.org/10.3233/JAD-2009-1146] [PMID: 19584438]
[130]
Massone S, Ciarlo E, Vella S, et al. NDM29, a RNA polymerase III-dependent non coding RNA, promotes amyloidogenic processing of APP and amyloid β secretion. Biochim Biophys Acta Mol Cell Res 2012; 1823(7): 1170-7.
[http://dx.doi.org/10.1016/j.bbamcr.2012.05.001] [PMID: 22580042]
[131]
von Einem B, Schwanzar D, Rehn F, et al. The role of low-density receptor-related protein 1 (LRP1) as a competitive substrate of the amyloid precursor protein (APP) for BACE1. Exp Neurol 2010; 225(1): 85-93.
[http://dx.doi.org/10.1016/j.expneurol.2010.05.017] [PMID: 20685197]
[132]
Yamanaka Y, Faghihi MA, Magistri M, Alvarez-Garcia O, Lotz M, Wahlestedt C. Antisense RNA controls LRP1 Sense transcript expression through interaction with a chromatin-associated protein, HMGB2. Cell Rep 2015; 11(6): 967-76.
[http://dx.doi.org/10.1016/j.celrep.2015.04.011] [PMID: 25937287]
[133]
William Rebeck G, Reiter JS, Strickland DK, Hyman BT. Apolipoprotein E in sporadic Alzheimer’s disease: Allelic variation and receptor interactions. Neuron 1993; 11(4): 575-80.
[http://dx.doi.org/10.1016/0896-6273(93)90070-8] [PMID: 8398148]
[134]
Ulery PG, Beers J, Mikhailenko I, et al. Modulation of beta-amyloid precursor protein processing by the low density lipoprotein receptor-related protein (LRP). Evidence that LRP contributes to the pathogenesis of Alzheimer’s disease. J Biol Chem 2000; 275(10): 7410-5.
[http://dx.doi.org/10.1074/jbc.275.10.7410] [PMID: 10702315]
[135]
Liu Q, Zerbinatti CV, Zhang J, et al. Amyloid precursor protein regulates brain apolipoprotein E and cholesterol metabolism through lipoprotein receptor LRP1. Neuron 2007; 56(1): 66-78.
[http://dx.doi.org/10.1016/j.neuron.2007.08.008] [PMID: 17920016]
[136]
Kanekiyo T, Cirrito JR, Liu CC, et al. Neuronal clearance of amyloid-β by endocytic receptor LRP1. J Neurosci 2013; 33(49): 19276-83.
[http://dx.doi.org/10.1523/JNEUROSCI.3487-13.2013] [PMID: 24305823]
[137]
Ciarlo E, Massone S, Penna I, et al. An intronic ncRNA-dependent regulation of SORL1 expression affecting Aβ formation is upregulated in post-mortem Alzheimer’s disease brain samples. Dis Model Mech 2013; 6(2): 424-33.
[PMID: 22996644]
[138]
Scherzer CR, Offe K, Gearing M, et al. Loss of apolipoprotein E receptor LR11 in Alzheimer disease. Arch Neurol 2004; 61(8): 1200-5.
[http://dx.doi.org/10.1001/archneur.61.8.1200] [PMID: 15313836]
[139]
Offe K, Dodson SE, Shoemaker JT, et al. The lipoprotein receptor LR11 regulates amyloid beta production and amyloid precursor protein traffic in endosomal compartments. J Neurosci 2006; 26(5): 1596-603.
[http://dx.doi.org/10.1523/JNEUROSCI.4946-05.2006] [PMID: 16452683]
[140]
Brooks PJ. DNA repair in neural cells: Basic science and clinical implications. Mutat Res 2002; 509(1-2): 93-108.
[http://dx.doi.org/10.1016/S0027-5107(02)00222-1] [PMID: 12427533]
[141]
Abner CW, McKinnon PJ. The DNA double-strand break response in the nervous system. DNA Repair 2004; 3(8-9): 1141-7.
[http://dx.doi.org/10.1016/j.dnarep.2004.03.009] [PMID: 15279803]
[142]
Cobbe N, Heck MMS. The evolution of SMC proteins: Phylogenetic analysis and structural implications. Mol Biol Evol 2004; 21(2): 332-47.
[http://dx.doi.org/10.1093/molbev/msh023] [PMID: 14660695]
[143]
Parenti R, Paratore S, Torrisi A, Cavallaro S. A natural antisense transcript against Rad18, specifically expressed in neurons and upregulated during β-amyloid-induced apoptosis. Eur J Neurosci 2007; 26(9): 2444-57.
[http://dx.doi.org/10.1111/j.1460-9568.2007.05864.x] [PMID: 17970741]
[144]
Tateishi S, Sakuraba Y, Masuyama S, Inoue H, Yamaizumi M. Dysfunction of human Rad18 results in defective postreplication repair and hypersensitivity to multiple mutagens. Proc Natl Acad Sci 2000; 97(14): 7927-32.
[http://dx.doi.org/10.1073/pnas.97.14.7927] [PMID: 10884424]
[145]
Kölliker-Frers R, Udovin L, Otero-Losada M, et al. Neuroinflammation: An integrating overview of reactive-neuroimmune cell interactions in health and disease. Mediators Inflamm 2021; 2021: 1-20.
[http://dx.doi.org/10.1155/2021/9999146] [PMID: 34158806]
[146]
Blount GS, Coursey L, Kocerha J. MicroRNA networks in cognition and dementia. Cells 2022; 11(12): 1882.
[http://dx.doi.org/10.3390/cells11121882] [PMID: 35741010]
[147]
Massone S, Vassallo I, Fiorino G, et al. 17A, a novel non-coding RNA, regulates GABA B alternative splicing and signaling in response to inflammatory stimuli and in Alzheimer disease. Neurobiol Dis 2011; 41(2): 308-17.
[http://dx.doi.org/10.1016/j.nbd.2010.09.019] [PMID: 20888417]
[148]
Zhang L, Fang Y, Cheng X, Lian YJ, Xu HL. Silencing of Long Noncoding RNA SOX21-AS1 Relieves Neuronal Oxidative Stress Injury in Mice with Alzheimer’s Disease by Upregulating FZD3/5 via the Wnt Signaling Pathway. Mol Neurobiol 2019; 56(5): 3522-37.
[http://dx.doi.org/10.1007/s12035-018-1299-y] [PMID: 30143969]
[149]
Li H, Zheng L, Jiang A, Mo Y, Gong Q. Identification of the biological affection of long noncoding RNA BC200 in Alzheimer’s disease. Neuroreport 2018; 29(13): 1061-7.
[http://dx.doi.org/10.1097/WNR.0000000000001057] [PMID: 29979260]
[150]
Chao HT, Davids M, Burke E, et al. A syndromic neurodevelopmental disorder caused by de novo variants in EBF3. Am J Hum Genet 2017; 100(1): 128-37.
[http://dx.doi.org/10.1016/j.ajhg.2016.11.018] [PMID: 28017372]
[151]
Knauss JL, Miao N, Kim SN, et al. Long noncoding RNA Sox2ot and transcription factor YY1 co-regulate the differentiation of cortical neural progenitors by repressing Sox2. Cell Death Dis 2018; 9(8): 799.
[http://dx.doi.org/10.1038/s41419-018-0840-2] [PMID: 30038234]
[152]
Arisi I, D’Onofrio M, Brandi R, et al. Gene expression biomarkers in the brain of a mouse model for Alzheimer’s disease: mining of microarray data by logic classification and feature selection. J Alzheimers Dis 2011; 24(4): 721-38.
[http://dx.doi.org/10.3233/JAD-2011-101881] [PMID: 21321390]
[153]
Zhou B, Li L, Qiu X, Wu J, Xu L, Shao W. Long non-coding RNA ANRIL knockdown suppresses apoptosis and pro-inflammatory cytokines while enhancing neurite outgrowth via binding microRNA-125a in a cellular model of Alzheimer’s disease. Mol Med Rep 2020; 22(2): 1489-97.
[http://dx.doi.org/10.3892/mmr.2020.11203] [PMID: 32626959]
[154]
Ma P, Li Y, Zhang W, et al. Long non-coding RNA MALAT1 inhibits neuron apoptosis and neuroinflammation while stimulates neurite outgrowth and its correlation with MiR-125b mediates PTGS2, CDK5 and FOXQ1 in Alzheimer’s Disease. Curr Alzheimer Res 2019; 16(7): 596-612.
[http://dx.doi.org/10.2174/1567205016666190725130134] [PMID: 31345147]
[155]
Chen L, Feng P, Zhu X, He S, Duan J, Zhou D. Long non-coding RNA Malat1 promotes neurite outgrowth through activation of ERK / MAPK signalling pathway in N2a cells. J Cell Mol Med 2016; 20(11): 2102-10.
[http://dx.doi.org/10.1111/jcmm.12904] [PMID: 27374227]
[156]
Garofalo M, Pandini C, Sproviero D, Pansarasa O, Cereda C, Gagliardi S. Advances with long non-coding RNAs in Alzheimer’s Disease as peripheral biomarker. Genes 2021; 12(8): 1124.
[http://dx.doi.org/10.3390/genes12081124] [PMID: 34440298]
[157]
Khodayi M, Khalaj-Kondori M, Hoseinpour FMA, Jabarpour BM, Talebi M. Plasma lncRNA profiling identified BC200 and NEAT1 lncRNAs as potential blood-based biomarkers for late-onset Alzheimer’s disease. EXCLI J 2022; 21: 772-85.
[PMID: 35949493]
[158]
Feng L, Liao YT, He JC, et al. Plasma long non-coding RNA BACE1 as a novel biomarker for diagnosis of Alzheimer disease. BMC Neurol 2018; 18(1): 4.
[http://dx.doi.org/10.1186/s12883-017-1008-x] [PMID: 29316899]
[159]
Wang D, Wang P, Bian X, et al. Elevated plasma levels of exosomal BACE1-AS combined with the volume and thickness of the right entorhinal cortex may serve as a biomarker for the detection of Alzheimer’s disease. Mol Med Rep 2020; 22(1): 227-38.
[http://dx.doi.org/10.3892/mmr.2020.11118] [PMID: 32377715]
[160]
Sintini I, Whitwell JL. Update on neuroimaging in Alzheimer’s disease. Curr Opin Neurol 2021; 34(4): 525-31.
[http://dx.doi.org/10.1097/WCO.0000000000000947] [PMID: 33928929]
[161]
Wittenberg R, Knapp M, Karagiannidou M, Dickson J, Schott JM. Economic impacts of introducing diagnostics for mild cognitive impairment Alzheimer’s disease patients. Alzheimers Dement 2019; 5(1): 382-7.
[http://dx.doi.org/10.1016/j.trci.2019.06.001] [PMID: 31463360]
[162]
Mihailescu R. Gene expression regulation: Lessons from noncoding RNAs. RNA 2015; 21(4): 695-6.
[http://dx.doi.org/10.1261/rna.050815.115] [PMID: 25780195]
[163]
Tu J, Tian G, Cheung HH, Wei W, Lee T. Gas5 is an essential lncRNA regulator for self-renewal and pluripotency of mouse embryonic stem cells and induced pluripotent stem cells. Stem Cell Res Ther 2018; 9(1): 71.
[http://dx.doi.org/10.1186/s13287-018-0813-5] [PMID: 29562912]
[164]
Zhou Y, Chen B. GAS5-mediated regulation of cell signaling (Review). Mol Med Rep 2020; 22(4): 3049-56.
[PMID: 32945519]
[165]
Chen X, Ren G, Li Y, et al. Level of LncRNA GAS5 and hippocampal volume are associated with the progression of Alzheimer’s Disease. Clin Interv Aging 2022; 17: 745-53.
[http://dx.doi.org/10.2147/CIA.S363116] [PMID: 35592641]
[166]
Wang MM, Reed RR. Molecular cloning of the olfactory neuronal transcription factor Olf-1 by genetic selection in yeast. Nature 1993; 364(6433): 121-6.
[http://dx.doi.org/10.1038/364121a0] [PMID: 8321284]
[167]
Zhao LY, Niu Y, Santiago A, et al. An EBF3-mediated transcriptional program that induces cell cycle arrest and apoptosis. Cancer Res 2006; 66(19): 9445-52.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1713] [PMID: 17018599]
[168]
Zhang Y, Zhao Y, Ao X, et al. The role of non-coding RNAs in Alzheimer’s Disease: From regulated mechanism to therapeutic targets and diagnostic biomarkers. Front Aging Neurosci 2021; 13: 654978.
[http://dx.doi.org/10.3389/fnagi.2021.654978] [PMID: 34276336]
[169]
Wang Z, Li K, Huang W. Long non-coding RNA NEAT1-centric gene regulation. Cell Mol Life Sci 2020; 77(19): 3769-79.
[http://dx.doi.org/10.1007/s00018-020-03503-0] [PMID: 32219465]
[170]
Spreafico M, Grillo B, Rusconi F, Battaglioli E, Venturin M. Multiple layers of CDK5R1 regulation in Alzheimer’s disease implicate long non-coding RNAs. Int J Mol Sci 2018; 19(7): 2022.
[http://dx.doi.org/10.3390/ijms19072022] [PMID: 29997370]
[171]
Xu D, Dong P, Xiong Y, et al. MicroRNA-361-mediated inhibition of HSP90 expression and EMT in cervical cancer is counteracted by oncogenic lncRNA NEAT1. Cells 2020; 9(3): 632.
[http://dx.doi.org/10.3390/cells9030632] [PMID: 32151082]
[172]
Feng Y, Gao L, Cui G, Cao Y. LncRNA NEAT1 facilitates pancreatic cancer growth and metastasis through stabilizing ELF3 mRNA. Am J Cancer Res 2020; 10(1): 237-48.
[PMID: 32064164]
[173]
Kou JT, Ma J, Zhu JQ, et al. LncRNA NEAT1 regulates proliferation, apoptosis and invasion of liver cancer. Eur Rev Med Pharmacol Sci 2020; 24(8): 4152-60.
[PMID: 32373951]
[174]
Jiang X, Guo S, Zhang Y, et al. LncRNA NEAT1 promotes docetaxel resistance in prostate cancer by regulating ACSL4 via sponging miR-34a-5p and miR-204-5p. Cell Signal 2020; 65: 109422.
[http://dx.doi.org/10.1016/j.cellsig.2019.109422] [PMID: 31672604]
[175]
Taiana E, Favasuli V, Ronchetti D, et al. Long non-coding RNA NEAT1 targeting impairs the DNA repair machinery and triggers anti-tumor activity in multiple myeloma. Leukemia 2020; 34(1): 234-44.
[http://dx.doi.org/10.1038/s41375-019-0542-5] [PMID: 31427718]
[176]
Zhao MY, Wang GQ, Wang NN, Yu QY, Liu RL, Shi WQ. The long-non-coding RNA NEAT1 is a novel target for Alzheimer’s disease progression via miR-124/BACE1 axis. Neurol Res 2019; 41(6): 489-97.
[http://dx.doi.org/10.1080/01616412.2018.1548747] [PMID: 31014193]
[177]
Ke S, Yang Z, Yang F, Wang X, Tan J, Liao B. Long noncoding RNA NEAT1 aggravates aβ-induced neuronal damage by targeting miR-107 in Alzheimer’s Disease. Yonsei Med J 2019; 60(7): 640-50.
[http://dx.doi.org/10.3349/ymj.2019.60.7.640] [PMID: 31250578]
[178]
Dong LX, Zhang YY, Bao HL, Liu Y, Zhang GW, An FM. LncRNA NEAT1 promotes Alzheimer’s disease by down regulating micro-27a-3p. Am J Transl Res 2021; 13(8): 8885-96.
[PMID: 34540002]
[179]
Cai Y, Sun Z, Jia H, et al. Rpph1 upregulates CDC42 expression and promotes hippocampal neuron dendritic spine formation by competing with miR-330-5p. Front Mol Neurosci 2017; 10: 27.
[http://dx.doi.org/10.3389/fnmol.2017.00027] [PMID: 28223918]
[180]
Gu R, Liu R, Wang L, Tang M, Li SR, Hu X. LncRNA RPPH1 attenuates Aβ25-35-induced endoplasmic reticulum stress and apoptosis in SH-SY5Y cells via miR-326/PKM2. Int J Neurosci 2021; 131(5): 425-32.
[http://dx.doi.org/10.1080/00207454.2020.1746307] [PMID: 32336203]
[181]
Dubois B, Feldman HH, Jacova C, et al. Advancing research diagnostic criteria for Alzheimer’s disease: The IWG-2 criteria. Lancet Neurol 2014; 13(6): 614-29.
[http://dx.doi.org/10.1016/S1474-4422(14)70090-0] [PMID: 24849862]
[182]
Woolley JD, Khan BK, Murthy NK, Miller BL, Rankin KP. The diagnostic challenge of psychiatric symptoms in neurodegenerative disease: rates of and risk factors for prior psychiatric diagnosis in patients with early neurodegenerative disease. J Clin Psychiatry 2011; 72(2): 126-33.
[http://dx.doi.org/10.4088/JCP.10m06382oli] [PMID: 21382304]
[183]
Xie B, Zhou H, Zhang R, et al. Serum miR-206 and miR-132 as potential circulating biomarkers for mild cognitive impairment. J Alzheimers Dis 2015; 45(3): 721-31.
[http://dx.doi.org/10.3233/JAD-142847] [PMID: 25589731]
[184]
Ansari A, Maffioletti E, Milanesi E, et al. miR-146a and miR-181a are involved in the progression of mild cognitive impairment to Alzheimer’s disease. Neurobiol Aging 2019; 82: 102-9.
[http://dx.doi.org/10.1016/j.neurobiolaging.2019.06.005] [PMID: 31437718]
[185]
Kumar S, Vijayan M, Reddy PH. MicroRNA-455-3p as a potential peripheral biomarker for Alzheimer’s disease. Hum Mol Genet 2017; 26(19): 3808-22.
[http://dx.doi.org/10.1093/hmg/ddx267] [PMID: 28934394]
[186]
Dangla-Valls A, Molinuevo JL, Altirriba J, et al. CSF microRNA profiling in Alzheimer’s Disease: A screening and validation study. Mol Neurobiol 2017; 54(9): 6647-54.
[http://dx.doi.org/10.1007/s12035-016-0106-x] [PMID: 27738874]
[187]
Hara N, Kikuchi M, Miyashita A, et al. Serum microRNA miR-501-3p as a potential biomarker related to the progression of Alzheimer’s disease. Acta Neuropathol Commun 2017; 5(1): 10.
[http://dx.doi.org/10.1186/s40478-017-0414-z] [PMID: 28137310]
[188]
Li T, Deng N, Xu R, et al. NEAT1 siRNA packed with chitosan nanoparticles regulates the development of colon cancer cells via lncRNA NEAT1/miR-377-3p axis. BioMed Res Int 2021; 2021: 1-8.
[http://dx.doi.org/10.1155/2021/5528982] [PMID: 34055978]
[189]
Setten RL, Rossi JJ, Han S. The current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discov 2019; 18(6): 421-46.
[http://dx.doi.org/10.1038/s41573-019-0017-4] [PMID: 30846871]
[190]
Khorkova O, Wahlestedt C. Oligonucleotide therapies for disorders of the nervous system. Nat Biotechnol 2017; 35(3): 249-63.
[http://dx.doi.org/10.1038/nbt.3784] [PMID: 28244991]
[191]
Yang J, Luo S, Zhang J, et al. Exosome-mediated delivery of antisense oligonucleotides targeting α-synuclein ameliorates the pathology in a mouse model of Parkinson’s disease. Neurobiol Dis 2021; 148: 105218.
[http://dx.doi.org/10.1016/j.nbd.2020.105218] [PMID: 33296726]
[192]
Wurster CD, Ludolph AC. Antisense oligonucleotides in neurological disorders. Ther Adv Neurol Disord 2018; 11.
[http://dx.doi.org/10.1177/1756286418776932] [PMID: 29854003]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy