Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

Medicinal Chemistry for Sustainable Development

Author(s): Luana da S.M. Forezi, Patricia G. Ferreira, Alcione Silva de Carvalho, Fernando de C. da Silva and Vitor F. Ferreira*

Volume 23, Issue 11, 2023

Published on: 13 June, 2023

Page: [957 - 969] Pages: 13

DOI: 10.2174/1568026623666230517114621

Price: $65

Abstract

Pharmaceutical chemistry has many industrial processes that must be studied and adapted to a new reality where the environment must be the focus of all production chains. Thus, new technologies that are cleaner and use renewable sources of raw materials still need to be developed and applied to materials that go to the market, and they need to reach a level that is less harmful to the environment. This applies especially in areas related to the pharmaceutical industries since chemical products are used in the production of medicines and used in many other areas of everyday life and are included in the Sustainable Development Goals proposed by the United Nations. This article intends to provide insight into some relevant topics that can stimulate researchers toward medicinal chemistry that can contribute to a sustainable future of the biosphere. This article is structured around four interconnected themes that influence how green chemistry can be important for a future where science, technology and innovation are key to mitigating climate change and increasing global sustainability.

Keywords: Sustainable development goals (SDGs), Pharmaceutical chemistry, Green chemistry, Quality of life, Organic synthesis, Medicines.

Graphical Abstract
[1]
Verma, K. Sustainable development and environmental ethics. Int. J. Environ. Sci., 2019, 10, 1-5.
[2]
Keeble, B.R. The Brundtland report: ‘Our common future’. Med. War, 1988, 4(1), 17-25.
[http://dx.doi.org/10.1080/07488008808408783]
[3]
Mayer, A.L. Strengths and weaknesses of common sustainability indices for multidimensional systems. Environ. Int., 2008, 34(2), 277-291.
[http://dx.doi.org/10.1016/j.envint.2007.09.004] [PMID: 17949813]
[4]
Folke, C.; Polasky, S.; Rockström, J.; Galaz, V.; Westley, F.; Lamont, M.; Scheffer, M.; Österblom, H.; Carpenter, S.R.; Chapin, F.S., III; Seto, K.C.; Weber, E.U.; Crona, B.I.; Daily, G.C.; Dasgupta, P.; Gaffney, O.; Gordon, L.J.; Hoff, H.; Levin, S.A.; Lubchenco, J.; Steffen, W.; Walker, B.H. Our future in the Anthropocene biosphere. Ambio, 2021, 50(4), 834-869.
[http://dx.doi.org/10.1007/s13280-021-01544-8] [PMID: 33715097]
[5]
Hedayati, N.; Naeini, M.B.; Nezami, A.; Hosseinzadeh, H.; Wallace Hayes, A.; Hosseini, S.; Imenshahidi, M.; Karimi, G. Protective effect of lycopene against chemical and natural toxins: A review. Biofactors, 2019, 45(1), 5-23.
[http://dx.doi.org/10.1002/biof.1458] [PMID: 30339717]
[6]
Rodprasert, W.; Main, K.M.; Toppari, J.; Virtanen, H.E. Associations between male reproductive health and exposure to endocrine-disrupting chemicals. Curr. Opin. Endocr. Metab. Res., 2019, 7, 49-61.
[http://dx.doi.org/10.1016/j.coemr.2019.05.002]
[7]
Lauretta, R.; Sansone, A.; Sansone, M.; Romanelli, F.; Appetecchia, M. Endocrine disrupting chemicals: Effects on endocrine glands. Front. Endocrinol., 2019, 10, 178.
[http://dx.doi.org/10.3389/fendo.2019.00178] [PMID: 30984107]
[8]
Anastas, P.T.; Williamson, T.C. Green Chemistry; Oxford University Press: Oxford, 1998.
[9]
Zimmerman, J.B.; Anastas, P.T.; Erythropel, H.C.; Leitner, W. Designing for a green chemistry future. Science, 2020, 367(6476), 397-400.
[http://dx.doi.org/10.1126/science.aay3060] [PMID: 31974246]
[10]
Blazquez, J.; Fuentes, R.; Manzano, B. On some economic principles of the energy transition. Energy Policy, 2020, 147111807
[http://dx.doi.org/10.1016/j.enpol.2020.111807]
[11]
Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: Oxford, 1998.
[12]
Horváth, I.T.; Anastas, P.T. Innovations and green chemistry. Chem. Rev., 2007, 107(6), 2169-2173.
[http://dx.doi.org/10.1021/cr078380v] [PMID: 17564478]
[13]
Lenardão, E.J.; Freitag, R.A.; Dabdoub, M.J.; Batista, A.C.F.; Silveira, C.C. “Green chemistry”: The 12 principles of green chemistry and their inclusion in teaching and research activities. Quim. Nova, 2003, 26(1), 123-129.
[http://dx.doi.org/10.1590/S0100-40422003000100020]
[14]
Prado, A.G.S. Green chemistry, the challenges of chemistry for the new millennium. Quim. Nova, 2003, 26(5), 738-744.
[http://dx.doi.org/10.1590/S0100-40422003000500018]
[15]
Galembeck, F.; Barbosa, C.A.S.; Sousa, R.A. Sustainable use of biomass and natural resources in chemical innovation. Quim. Nova, 2009, 32(3), 571-581.
[http://dx.doi.org/10.1590/S0100-40422009000300003]
[16]
Collins, T. Essays on science and society. Toward sustainable chemistry. Science, 2001, 291(5501), 48-49.
[http://dx.doi.org/10.1126/science.291.5501.48] [PMID: 11141549]
[17]
Cunha, P.L.R.; Paula, R.C.M.; Feitosa, J.P.A. Polysaccharides from Brazilian biodiversity: An opportunity to transform knowledge into economic value. Quim. Nova, 2009, 32(3), 649-660.
[http://dx.doi.org/10.1590/S0100-40422009000300009]
[18]
Cai, T.; Sun, H.; Qiao, J.; Zhu, L.; Zhang, F.; Zhang, J.; Tang, Z.; Wei, X.; Yang, J.; Yuan, Q.; Wang, W.; Yang, X.; Chu, H.; Wang, Q.; You, C.; Ma, H.; Sun, Y.; Li, Y.; Li, C.; Jiang, H.; Wang, Q.; Ma, Y. Cell-free chemoenzymatic starch synthesis from carbon dioxide. Science, 2021, 373(6562), 1523-1527.
[http://dx.doi.org/10.1126/science.abh4049] [PMID: 34554807]
[19]
Li, C.J.; Trost, B.M. Green chemistry for chemical synthesis. Proc. Natl. Acad. Sci. USA, 2008, 105(36), 13197-13202.
[http://dx.doi.org/10.1073/pnas.0804348105] [PMID: 18768813]
[20]
Ojima, I. Great challenges in organic chemistry. Front Chem., 2017, 5, 52.
[http://dx.doi.org/10.3389/fchem.2017.00052] [PMID: 28748181]
[21]
Sielex, K.; Andersson, J.T. Separation of polychlorinated dibenzothiophenes from polychlorinated dibenzodioxins and -furans. Fresenius J. Anal. Chem., 1997, 359(3), 261-266.
[http://dx.doi.org/10.1007/s002160050570]
[22]
Conard, B. Some challenges to sustainability. Sustainability, 2013, 5(8), 3368-3381.
[http://dx.doi.org/10.3390/su5083368]
[23]
Jacobi, P.R.; Besen, G.R. Solid waste management in São Paulo: The challenges of sustainability. Estud. Av., 2011, 25, 135-158.
[http://dx.doi.org/10.1590/S0103-40142011000100010]
[24]
Kerton, F.M.; Marriott, R. Alternative Solvents for Green Chemistry, 2nd ed; The Royal Society of Chemistry: Cambridge, 2013.
[http://dx.doi.org/10.1039/9781849736824]
[25]
Earle, M.J.; Seddon, K.R. Ionic liquids. Green solvents for the future. Pure Appl. Chem., 2000, 72(7), 1391-1398.
[http://dx.doi.org/10.1351/pac200072071391]
[26]
Capello, C.; Fischer, U.; Hungerbühler, K. What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chem., 2007, 9(9), 927.
[http://dx.doi.org/10.1039/b617536h]
[27]
DeSimone, J.M. Practical approaches to green solvents. Science, 2002, 297(5582), 799-803.
[http://dx.doi.org/10.1126/science.1069622] [PMID: 12161645]
[28]
Clark, J.H.; Tavener, S.J. Alternative solvents: Shades of green. Org. Process Res. Dev., 2007, 11(1), 149-155.
[http://dx.doi.org/10.1021/op060160g]
[29]
Grossi, L.B.; Alvim, C.B.; Alvares, C.M.S.; Martins, M.F.; Amaral, M.C.S. Purifying surface water contaminated with industrial failure using direct contact membrane distillation. Separ. Purif. Tech., 2020, 233116052
[http://dx.doi.org/10.1016/j.seppur.2019.116052]
[30]
Chemat, S.; Tomao, V.; Chemat, F. Limonene as Green Solvent for Extraction of Natural Products.In: Springer; Green Solvents, I.; Inamuddin, M.A., Eds.; Dordrecht, 2012.
[http://dx.doi.org/10.1007/978-94-007-1712-1_5]
[31]
Soni, J.; Sahiba, N.; Sethiya, A.; Agarwal, S. Polyethylene glycol: A promising approach for sustainable organic synthesis. J. Mol. Liq., 2020, 315113766
[http://dx.doi.org/10.1016/j.molliq.2020.113766]
[32]
Reichardt, C. Solvents and Solvent Effects in Organic Chemistry, 2nd ed; Wiley-VCH: Weinheim, 1988.
[33]
Jessop, P.G. Searching for green solvents. Green Chem., 2011, 13(6), 1391-1397.
[http://dx.doi.org/10.1039/c0gc00797h]
[34]
Curzons, A.D.; Constable, D.C.; Cunningham, D.L. Solvent selection guide: A guide to the integration of environmental, health and safety criteria into the selection of solvents. Clean Prod. Process., 1999, 1, 82-90.
[35]
Jimenez-Gonzalez, C.; Curzons, A.D.; Constable, D.J.C.; Cunningham, V.L. Expanding GSK’s solvent selection guide-application of life cycle assessment to enhance solvent selections. Clean Technol. Environ. Policy, 2005, 7, 42-50.
[http://dx.doi.org/10.1007/s10098-004-0245-z]
[36]
Alfonsi, K.; Colberg, J.; Dunn, P.J.; Fevig, T.; Jennings, S.; Johnson, T.A.; Kleine, H.P.; Knight, C.; Nagy, M.A.; Perry, D.A.; Stefaniak, M. Green chemistry tools to influence a medicinal chemistry and research chemistry based organisation. Green Chem., 2008, 10(1), 31-36.
[http://dx.doi.org/10.1039/B711717E]
[37]
Islam, T.; Islam Sarker, M.Z.; Uddin, A.B.M.H.; Yunus, K.B.; Prasad, R.; Mia, M.A.R.; Ferdosh, S. Kamlet taft parameters: A tool to alternate the usage of hazardous solvent in pharmaceutical and chemical manufacturing/synthesis - a gateway towards green technology. Anal. Chem. Lett., 2020, 10(5), 550-561.
[http://dx.doi.org/10.1080/22297928.2020.1860124]
[38]
Alder, C.M.; Hayler, J.D.; Henderson, R.K.; Redman, A.M.; Shukla, L.; Shuster, L.E.; Sneddon, H.F. Updating and further expanding GSK’s solvent sustainability guide. Green Chem., 2016, 18(13), 3879-3890.
[http://dx.doi.org/10.1039/C6GC00611F]
[39]
United Nations Environment Programme (UNEP). Available from: https://www.unep.org/pt-br/sobre-onu-meio-ambiente (Accessed on: November 22, 2022).
[40]
Lallas, P.L. The Stockholm convention on persistent organic pollutants. Am. J. Int. Law, 2001, 95(3), 692-708.
[http://dx.doi.org/10.2307/2668517]
[41]
Takagi, K. Study on the biodegradation of persistent organic pollutants (POPs). J. Pestic. Sci., 2020, 45(2), 119-123.
[http://dx.doi.org/10.1584/jpestics.J19-06] [PMID: 32508519]
[42]
Gurav, J.L.; Jung, I.K.; Park, H.H.; Kang, E.S.; Nadargi, D.Y. Silica aerogel: Synthesis and applications. J. Nanomater., 2010, 2010, 1-11.
[http://dx.doi.org/10.1155/2010/409310]
[43]
van der Veen, I.; de Boer, J. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis. Chemosphere, 2012, 88(10), 1119-1153.
[http://dx.doi.org/10.1016/j.chemosphere.2012.03.067] [PMID: 22537891]
[44]
Birnbaum, L.S.; Staskal, D.F. Brominated flame retardants: Cause for concern? Environ. Health Perspect., 2004, 112(1), 9-17.
[http://dx.doi.org/10.1289/ehp.6559] [PMID: 14698924]
[45]
Greaves, A.K.; Letcher, R.J.; Chen, D.; McGoldrick, D.J.; Gauthier, L.T.; Backus, S.M. Retrospective analysis of organophosphate flame retardants in herring gull eggs and relation to the aquatic food web in the Laurentian Great Lakes of North America. Environ. Res., 2016, 150, 255-263.
[http://dx.doi.org/10.1016/j.envres.2016.06.006] [PMID: 27322497]
[46]
Ucán, C.A.; Abatal, M.; Romero, C.M.; Franseschi, F.A.; Elias, M.A.R.; Lozano, D.C. Removal of an ethoxylated alkylphenol by adsorption on zeolites and photocatalysis with TiO2/Ag. Processes, 2019, 7(12), 889.
[http://dx.doi.org/10.3390/pr7120889]
[47]
de Bruin, W.; Kritzinger, Q.; Bornman, R.; Korsten, L. Occurrence, fate and toxic effects of the industrial endocrine disrupter, nonylphenol, on plants-a review. Ecotoxicol. Environ. Saf., 2019, 181, 419-427.
[http://dx.doi.org/10.1016/j.ecoenv.2019.06.009] [PMID: 31220782]
[48]
Mudge, S.M.; Belanger, S.E.; DeLeo, P.C. Fatty Alcohols Anthropogenic and Natural Occurrence in the Environment, 2nd ed; Royal Society of Chemistry: UK, 2019.
[49]
Federle, T.W.; Itrich, N.R. Fate of free and linear alcohol-ethoxylate-derived fatty alcohols in activated sludge. Ecotoxicol. Environ. Saf., 2006, 64(1), 30-41.
[http://dx.doi.org/10.1016/j.ecoenv.2005.05.008] [PMID: 16026837]
[50]
Mousavi, S.A.; Khodadoost, F. Effects of detergents on natural ecosystems and wastewater treatment processes: A review. Environ. Sci. Pollut. Res. Int., 2019, 26(26), 26439-26448.
[http://dx.doi.org/10.1007/s11356-019-05802-x] [PMID: 31352596]
[51]
Woodley, J.M. Towards the sustainable production of bulk-chemicals using biotechnology. N. Biotechnol., 2020, 59, 59-64.
[http://dx.doi.org/10.1016/j.nbt.2020.07.002] [PMID: 32693028]
[52]
Kayser, O.; Muller, R.H. Pharmaceutical biotechnology, drug discovery and clinical applications; Wiley-VCH Verlag: Weinheim, 2004.
[http://dx.doi.org/10.1002/3527602410]
[53]
Sheldon, R.A. Biocatalysis and biomass conversion: Enabling a circular economy. Philos. Trans. R. Soc., 2020, 37820190274
[54]
Chakrabarty, S.; Wang, Y.; Perkins, J.C.; Narayan, A.R.H. Scalable biocatalytic C–H oxyfunctionalization reactions. Chem. Soc. Rev., 2020, 49(22), 8137-8155.
[http://dx.doi.org/10.1039/D0CS00440E] [PMID: 32701110]
[55]
Nödling, A.R.; Santi, N.; Williams, T.L.; Tsai, Y.H.; Luk, L.Y.P. Enabling protein-hosted organocatalytic transformations. RSC Advances, 2020, 10(27), 16147-16161.
[http://dx.doi.org/10.1039/D0RA01526A] [PMID: 33184588]
[56]
Sheldon, R.A.; Brady, D.; Bode, M.L. The Hitchhiker’s guide to biocatalysis: Recent advances in the use of enzymes in organic synthesis. Chem. Sci., 2020, 11(10), 2587-2605.
[http://dx.doi.org/10.1039/C9SC05746C] [PMID: 32206264]
[57]
Winkler, C.K.; Schrittwieser, J.H.; Kroutil, W. Power of biocatalysis for organic synthesis. ACS Cent. Sci., 2021, 7(1), 55-71.
[http://dx.doi.org/10.1021/acscentsci.0c01496] [PMID: 33532569]
[58]
Hoffmann, R.W. Complex molecule synthesis, a personal view. Isr. J. Chem., 2018, 58(1-2), 73-79.
[http://dx.doi.org/10.1002/ijch.201700086]
[59]
Hauer, B. Embracing Nature’s Catalysts: A Viewpoint on the Future of Biocatalysis. ACS Catal., 2020, 10(15), 8418-8427.
[http://dx.doi.org/10.1021/acscatal.0c01708]
[60]
Grand View research. Enzymes Market Size, Share & Trends Analysis Report By Product (Lipases, Polymerases & Nucleases, Carbohydrase), By Type (Industrial, Specialty), By Source (Plants, Animals), By Region, And Segment Forecasts, 2022 – 2030. Available from: https://www.grandviewresearch.com/industry-analysis/enzymes-industry (Accessed on: November 22, 2022).
[61]
Verified Market Research. Global Effective Microorganisms (EM) Sales Market Size By Type, By Application, By Geographic Scope And Forecast. Available from: https://www.verifiedmarketresearch.com/product/effective-microorganisms-em-sales-market/ (Accessed on: November 22, 2022).
[62]
Woodley, J.M. Accelerating the implementation of biocatalysis in industry. Appl. Microbiol. Biotechnol., 2019, 103(12), 4733-4739.
[http://dx.doi.org/10.1007/s00253-019-09796-x] [PMID: 31049622]
[63]
Gallego-Jara, J.; Lozano-Terol, G.; Sola-Martínez, R.A.; Cánovas-Díaz, M.; de Diego Puente, T. A compressive review about Taxol®: History and future challenges. Molecules, 2020, 25(24), 5986.
[http://dx.doi.org/10.3390/molecules25245986] [PMID: 33348838]
[64]
Zhao, K.; Yu, L.; Jin, Y.; Ma, X.; Liu, D.; Wang, X.; Wang, X. Advances and prospects of taxol biosynthesis by endophytic fungi. Sheng Wu Gong Cheng Xue Bao, 2016, 32(8), 1038-1051.
[PMID: 29022305]
[65]
El-Sayed, E.S.R.; Ahmed, A.S.; Hassan, I.A.; Ismaiel, A.A.; Karam El-Din, A.Z.A. Semi-continuous production of the anticancer drug taxol by Aspergillus fumigatus and Alternaria tenuissima immobilized in calcium alginate beads. Bioprocess Biosyst. Eng., 2020, 43(6), 997-1008.
[http://dx.doi.org/10.1007/s00449-020-02295-8] [PMID: 31997009]
[66]
Suresh, G.; Kokila, D.; Suresh, T.C.; Kumaran, S.; Velmurugan, P.; Vedhanayakisri, K.A.; Sivakumar, S.; Ravi, A.V. Mycosynthesis of anticancer drug taxol by Aspergillus oryzae, an endophyte of Tarenna asiatica, characterization, and its activity against a human lung cancer cell line. Biocatal. Agric. Biotechnol., 2020, 24101525
[http://dx.doi.org/10.1016/j.bcab.2020.101525]
[67]
El-Sayed, E.S.R.; Zaki, A.G.; Ahmed, A.S.; Ismaiel, A.A. Production of the anticancer drug taxol by the endophytic fungus Epicoccum nigrum TXB502: enhanced production by gamma irradiation mutagenesis and immobilization technique. Appl. Microbiol. Biotechnol., 2020, 104(16), 6991-7003.
[http://dx.doi.org/10.1007/s00253-020-10712-x] [PMID: 32617617]
[68]
Yamada, H.; Kobayashi, M. Nitrile hydratase and its application to industrial production of acrylamide. Biosci. Biotechnol. Biochem., 1996, 60(9), 1391-1400.
[http://dx.doi.org/10.1271/bbb.60.1391] [PMID: 8987584]
[69]
Smith, E.A.; Oehme, F.W. Acrylamide and polyacrylamide: A review of production, use, environmental fate and neurotoxicity. Rev. Environ. Health, 1991, 9(4), 215-228.
[http://dx.doi.org/10.1515/REVEH.1991.9.4.215] [PMID: 1668792]
[70]
Rothenberg, G. Catalysis: Concepts and Green Applications; Wiley-VCH: Weinheim, 2008, p. 17.
[http://dx.doi.org/10.1002/9783527621866]
[71]
Wiciński, M.; Malinowski, B.; Puk, O.; Socha, M.; Słupski, M. Methyldopa as an inductor of postpartum depression and maternal blues: A review. Biomed. Pharmacother., 2020, 127110196
[http://dx.doi.org/10.1016/j.biopha.2020.110196] [PMID: 32413670]
[72]
Yokoyama, M.; Kashiwagi, M.; Iwasaki, M.; Fuhshuku, K.; Ohta, H.; Sugai, T. Realization of the synthesis of αα-disubstituted carbamylacetates and cyanoacetates by either enzymatic or chemical functional group transformation, depending upon the substrate specificity of Rhodococcus amidase. Tetrahedron Asymmetry, 2004, 15(18), 2817-2820.
[http://dx.doi.org/10.1016/j.tetasy.2004.04.047]
[73]
Wu, Z.L.; Li, Z.Y. Practical synthesis of optically active αα-disubstituted malonamic acids through asymmetric hydrolysis of malonamide derivatives with Rhodococcus sp. CGMCC 0497. J. Org. Chem., 2003, 68(6), 2479-2482.
[http://dx.doi.org/10.1021/jo026691u] [PMID: 12636421]
[74]
Mourelle-Insua, Á.; López-Iglesias, M.; Gotor, V.; Gotor-Fernández, V. Stereoselective access to 1-[2-bromo(het)aryloxy]propan-2-amines using transaminases and lipases; Development of a chemoenzymatic strategy toward a Levofloxacin precursor. J. Org. Chem., 2016, 81(20), 9765-9774.
[http://dx.doi.org/10.1021/acs.joc.6b01828] [PMID: 27662230]
[75]
Cheng, G.; Wu, Q.; Shang, Z.; Liang, X.; Lin, X. Stereoselective transformations of α-trifluoromethylated ketoximes to optically active amines by enzyme-nanometal cocatalysis: synthesis of (S)-inhibitor of phenylethanolamine N-methyltransferase. ChemCatChem, 2014, 6(7), 2129-2133.
[http://dx.doi.org/10.1002/cctc.201402114]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy